Let's assume around 10% of the users reach the next step and 90% of users drop off
the flow before reaching the final step. We can also assume that no prefetching feature
(prefetching the content before the user reaches the next step) is implemented. Figure
7.1 shows a rough estimation of what the QPS looks like for different steps. We know
the final reservation TPS is 3 so we can work backward along the funnel. The QPS of the
order confirmation page is 30 and the QPS for the detail page is 300.

View hotel/room detail
(QPS=300)

Order booking page
(QPS=30)

Reserve rooms
(QPS=3)

Figure 7.1: QPS distribution

Step 2 - Propose High-level Design and Get Buy-in

In this section, we’ll discuss:

« API design
« Data models

« High-level design
API design

We explore the API design for the hotel reservation system. The most important APIs
are listed below using the RESTful conventions.

Note that this chapter focuses on the design of a hotel reservation system. For a complete
hotel website, the design needs to provide intuitive features for customers to search for
rooms based on a large array of criteria. The APIs for these search features, while impor-
tant, are not technically challenging. They are out of scope for this chapter.

Hotel-related APIs

Step 2 - Propose High-level Design and Get Buy-in | 197

“/\1ff"- -
GET /v1/hotels/ID
POST /v1/hotels

PUT /v1/hotels/ID

DELETE /v1/hotels/ID

Detail

| -_[_Ip?mﬂal'a"infbrmntinn. This API is only :wai']_
able Lo hotel stafT.

Ge_l detailed information about a hotel, =t
Add a new hotel. This API is only available tq |
hotel staff.

Delete a hotel. This API is only available to hote|

staff.

Room-related APIs

Table 7.1: Hotel-related APIs

API

Detail

GET /v1/hotels/ID/rooms/ID

Get detailed information aboul a room.

POST /v1/hotels/ID/rooms

Add a room. This API is only available to hote]
staff.

PUT /v1/hotels/ID/rooms/ID

Update room information. This API is only avail- |
able to hotel staff.

DELETE
|_/vﬂ/ho«l;els,/ll'.l/rooms/lD

Delete a room. This API is only available to hotel |

staff,

Table 7.2: Hotel-related APIs

Reservation related APls

API

Detail

GET /v1/reservations

Get the reservation history of the logged-in user.

GET /v1/reservations/ID

Get detailed information about a reservation.

POST /v1/reservations

Make a new reservation.

DELETE /v1/reservations/ID

Cancel a reservation.

Table 7.3: Reservation-related APIs

Making a new reservation is a very important feature. The request parameters of making
a new reservation (POST /v1/reservations) could look like this.

{
"startDate": "2821-84-28",
"endDate":"2821-84-38",
"hotelID":"245",
"roomID":"U12354673389",
"reservationID":"13422445"
}

Please note reservationID is used as the idempotency key to prevent double booking.
Double booking means multiple reservations are made for the same room on the same
day. The details are explained in the “Concurrency issue” section on page 206.

198 | Chapter 7. Hotel Reservation System

Data model

Before we decide which database to use, let’s take a close look at the data access palterns.
For the hotel reservation system, we need to support the following queries:

Query 1: View detailed information about a hotel.

Query 2: Find available types of rooms given a date range.
Query 3: Record a reservation.

Query 4: Look up a reservation or past history of reservations.

From the back-of-the-envelope estimation, we know the scale of the system is not large
but we need to prepare for traffic surges during big events. With these requirements in
mind, we choose a relational database because:

« Arelational database works well with read-heavy and write less frequently workflow.
This is because the number of users who visit the hotel website/apps is a few orders
of magnitude higher than those who actually make reservations. NoSQL databases

are generally optimized for writes and the relational database works well enough for
read-heavy workflow.

« A relational database provides ACID (atomicity, consistency, isolation, durability)
guarantees. ACID properties are important for a reservation system. Without those
properties, it’s not easy to prevent problems such as negative balance, double charge,
double reservations, etc. ACID properties make application code a lot simpler and

make the whole system easier to reason about. A relational database usually provides
these guarantees.

+ A relational database can easily model the data. The structure of the business data
is very clear and the relationship between different entities (hotel, room, room_type,
etc) is stable. This kind of data model is easily modeled by a relational database.

Now that we have chosen the relational database as our data store, let’s explore the
schema design. Figure 7.2 shows a straightforward schema design and it is the most
natural way for many candidates to model the hotel reservation system.

Step 2 - Propose High-level Design and Get Buy-in | 199

! 3 i
i Hotel Service ; 1: Rate Service i E Guest Service i
N —— .
i . hotel E i room_typa_rate_ - i E J guest :
y i D 1l =i , '
| | hotel_id PK |1 1 hotel id PK | guest_id PK |1
.: name , 1 |date PK : E | first_name E
' | address v [rate i 1 |last_name :
1 | location E R ———— ¢ ‘email '
s ' ! i
E : s e R e [i e RS S R e e I
i E | Reservation Service i
P e e
E room E E reservation i
'
: room_id PK E i reservation_id PK i
' | room_ type. i : hotel_id
v | floor 1 | room_id :
E number i1 |start_date E
i | hotel_id | | end_date :
i name i E status .:
E is_available . |guest_id :
: v |

b e e mm e mm s e e e

Figure 7.2: Database schema

Most attributes are self-explanatory and we will only explain the status field in the reser-
vation table. The status field can be in one of these states: pending, paid, refunded,
canceled, rejected. The state machine is shown in Figure 7.3.

Pending

Canceled Paid Rejected

Refunded

Figure 7.3: Reservation status

This schema design has a major issue. This data model works for companies like Airbnb
as room_id (might be called 1isting._id) is given when users make reservations. However,
this isn’t the case for hotels. A user actually reserves a type of room in a given hotel
instead of a specific room. For instance, a room type can be a standard room, king-size
room, queen-size room with two queen beds, etc. Room numbers are given when the
guest checks in and not at the time of the reservation. We need to update our data model
to reflect this new requirement. See “Improved data model” in the deep dive section on

200 | Chapter 7. Hotel Reservation System

page 203 for more details.

High-level design

We use the microservice architecture for this hotel reservation system. Over the past
few years, microservice architecture has gained great popularity. Companies that use
microservice include Amazon, Netflix, Uber, Airbnb, Twitter, etc. If you want to learn
more about the benefits of a microservice architecture, you can check out some good
resources [1] [2] .

Our design is modeled with the microservice architecture and the high-level design dia-
gram is shown in Figure 7.4.

Public | Private
) -
s
External CDN
Internal
v l
Public API
Gateway Internal API
// \\‘ |
Hiokal Spvice Rate Sarvice Reserv_atlon Payment Hotel Management
Service Service Service
E %
Hotel Cache Hotel DB Rate DB Reservation DB Payment DB

Figure 7.4: High-level design

We will briefly go over each component of the system from top to bottom.

« User: a user books a hotel room on their mobile phone or computer.

+ Admin (hotel staff): authorized hotel staff perform administrative operations such as
refunding a customer, canceling a reservation, updating room information, etc.

+ CDN (content delivery network): for better load time, CDN is used to cache all static
assets, including javascript bundles, images, videos, HTML, etc.

« Public API Gateway: this is a fully managed service that supports rate limiting, au-
thentication, etc. The API gateway is configured to direct requests to specific ser-
vices based on the endpoints. For example, requests to load the hotel homepage are
directed to the hotel service and requests to book a hotel room are routed to the
reservation service.

« Internal APIs: those APIs are only available for authorized hotel staff. They are
accessible through internal software or websites. They are usually further protected

Step 2 - Propose High-level Design and Get Buy-in | 201

by a VPN (virtual private network).

« Hotel Service: this provides detailed information on hotels and rooms. Hate

: ; | and
room data are generally static, so can be easily cached.

« Rate Service: this provides room rates for different future dates. An interesting (.
about the hotel industry is that the price of a room depends on how full the hote|
expected to be for a given day.

. Reservation Service: receives reservation requests and reserves the hotel rooms, Th,
service also tracks room inventory as rooms are reserved or reservations are czp.
celed.

« Payment Service: executes payment from a customer and updates the reservatioy
status to paid once a payment lransaction succeeds, or rejected if the transactiop
fails.

« Hotel Management Service: only available to authorized hotel staff. Hotel staff are
eligible to use the following features: view the record of an upcoming reservation,
reserve a room for a customer, cancel a reservation, etc.

For clarity, Figure 7.4 omits many arrows of interactions between microservices. For
example, as shown in Figure 7.5, there should be an arrow between Reservation service
and Rate service. Reservation service queries Rate service for room rates. This is used to
compute the total room charge for a reservation. Another example is that there should
be many arrows connecting the Hotel Management Service with most of the other ser-
vices. When an admin makes changes via Hotel Management Service, the requests are
forwarded to the actual service owning the data, to handle the changes.

Reservation Hotel Management
Service Service
; i 2 Reservation
Rate Service Hotel Service Rate Service Broicic

Figure 7.5: Connections between services

For production systems, inter-service communication often employs a modern and high-
performance remote procedure call (RPC) framework like gPRC. There are many benefits
to using such frameworks. To learn more about gPRC in particular, check out [3].

Step 3 - Design Deep Dive
Now we’ve talked about the high-level design, let’s go deeper into the following.

« Improved data model

» Concurrency issues

202 | Chapter 7. Hotel Reservation System

+ Scaling the system

. Resolving data inconsistency in the microservice architecture

Improved data model

As mentioned in the high-level design, when we reserve a hotel room, we actually reserve
a type of room, as opposed to a specific room. What do we need to change about the AP]
and schema to accommodate this?

For the reservation API, roomID is replaced by roomTypelD in the request parameter. The
API to make a reservation looks like this:

POST /v1/reservations
Request parameters:

L
"startDate": "2821-84-28",
"endDate":"20821-04-30",
"hotelID":"245",
“roomTypeID":"12354673389",
"reservationID":"13422445"

}

The updated schema is shown in Figure 7.6.

]
' | H 1 i
I . 1 "] i []
: Hotel Service . Rate Service &y Guest Service |
| | : x : .
E hotel ! E room_type_rate i ! guest E
] ' 1
| | ! !
! | hotel_id PK : ' hotel_id PK : guest_id PK :
! | name \ 1 |date PK i1 |first_name E
i | L i
: address : i |rate ! E last_name)
1
' | location I Somcvrr———— b email
i | i i
i Lo . et S e S e ;
| ! ™ = e e e e et ammmm e
: Lo a
: o Reservation Service ;
1 1 1
| L | i o
' room E ! room_type_inventory reservation !
| ') :
5 room_id PK ' . hotel_id reservation_id PK :
! | room_type_id ' | | room_type_id hotel_id :
Yol I
' | floor |1 | date room_type_id i
" 1 - -]
' number E | | total_inventory start_date !
i |hotel_id ! i total_reserved end_date :
1 1
! |name £ 4 status :
| |is_available Lo guest _id :
|] I |
1 1] 1

Figure 7.6: Updated schema

We'll briefly go over some of the most important tables.

room: contains information regarding a room.

Step 3 - Design Deep Dive | 203

room_type_rate: stores price data for a specific room type, for future dates.
reservation: records guest reservation data.

room_type_inventory: stores inventory data about hotel rooms. This table is very impor-
tant for the reservation system, so let’s take a close look at each column.

» hotel_id: ID of the hotel
« room_type_id: ID of a room type.
» date: a single date.

» total_inventory: the total number of rooms minus those that are temporarily taken
off the inventory. Some rooms might be taken off from the market for maintenance

- total_reserved: the total number of rooms booked for the specified hotel_ig,
room_type_id, and date.

There are other ways to design the room_type_inventory table, but having one row per
date makes managing reservations within a date range and queries easy. As shown in
Figure 7.6, (hotel_id, roon_type_id, date) is the composite primary key. The rows of the
table are pre-populated by querying the inventory data across all future dates within 2

years. We have a scheduled daily job that pre-populates inventory data when the dates
advance further.

Now that we’ve finalized the schema design, let’s do some estimation about the storage
volume. As mentioned in the back-of-the-envelope estimation, we have 5,000 hotels.
Assume each hotel has 20 types of rooms. That’s (5,000 hotels x 20 types of rooms x2
years X365 days) = 73 million rows. 73 million is not a lot of data and a single database
1s enough to store the data. However, a single server means a single point of failure. To

achieve high availability, we could set up database replications across multiple regions
or availability zones.

Table 7.4 shows the sample data of the room_type_inventory table.

hotel_id | room_type_id date total_inventory | total reserved |
211 1001 2021-06-01 100 8
1 1001 2021-06-02 100 82 |
211 1001 2021-06-03 100 86
211 1001 "
211 1001 2023-05-31 100 0o
211 1002 2021-06-01 200 164 |
2210 101 2021-06-01 30 23
2210 101 2021-06-02 30 20 |

Table 7.4: Sample data of the room_type_inventory table

The room_type_inventory table is utilized to check if a customer can reserve a specific
type of room or not. The input and output for a reservation might look like this:

204 | Chapter 7. Hotel Reservation System

« Input: startDate (2021-07-01), endDate (2021-07-03), roomTypeld, hotelld,
number0OfRoomsToReserve

« Output: True if the specified type of room has inventory and users can book it. Oth-
erwise, it returns False.

From the SQL perspective, it contains the following two steps:

1. Select rows within a date range

SELECT date, total_inventory, total_reserved

FROM room_type_inventory

WHERE room_type_id = ${roomTypeld} AND hotel_id = ${
hotelId}

AND date between ${startDate} and ${endDate}

This query returns data like this:

date total_inventory | total reserved
2021-07-01 100 97
2021-07-02 100 96
2021-07-03 100 95

Table 7.5: Hotel inventory

2. For each entry, the application checks the condition below:

if ((total_reserved + ${number0fRoomsToReserve}) <=
total_inventory)

If the condition returns True for all entries, it means there are enough rooms for each
date within the date range.

One of the requirements is to support 10% overbooking. With the new schema, it is easy
to implement:

if ((total_reserved + ${numberOfRoomsToReserve}) <= 110% *
total_inventory)

At this point, the interviewer might ask a follow-up question: “if the reservation data is
too large for a single database, what would you do?” There are a few strategies:

- Store only current and future reservation data. Reservation history is not frequently
accessed. So they can be archived and some can even be moved to cold storage.

« Database sharding. The most frequent queries include making a reservation or
looking up a reservation by name. In both queries, we need to choose the hotel
first, meaning hotel_id is a good sharding key. The data can be sharded by
hash(hotel_id) % number_of_servers.

Step 3 - Design Deep Dive | 205

Concurrency issues
Another important problem to look at is double booking. We need to solve twa prak

lems:
1. The same user clicks on the book button multiple times.

2. Mualtiple users try to book the same room at the same time.

.

7

Let's take a look at the first scenario. As shown in Figure 7.7, two reservations up,

made.
User’s first click User's second click PR R
. resarvation |d
heatel e
room type id
gtart date
end date
. status
INSERT INTO RESERVATION (INSERT INTO RESERVATION (guest_id
121, 121,
2, o
3, 3,
2021-06-01, 2021-06-01,
2021-06-04, 2021-06-04,
pending_pay, pending_pay,
guest1 guest1
K)

row 1: 121, 2, 3, 2021-06-01, 2021-06-04, pending_pay, guest1
row 2: 121, 2, 3, 2021-06-01, 2021-06-04, pending_pay, guest1

Figure 7.7: Two reservations are made

There are two common approaches to solve this problem:

« Client-side implementation. A client can gray out, hide or disable the “submit” button
once a request is sent. This should prevent the double-clicking issue most of the time.
However, this approach is not very reliable. For example, users can disable javascript,
thereby bypassing the client check.

« Idempotent APIs. Add an idempotency key in the reservation API request. An API
call is idempotent if it produces the same result no matter how many times it is
called. Figure 7.8 shows how to use the idempotency key reservation_id to avoid
the double-reservation issue. The detailed steps are explained below.

206 | Chapter 7. Hotel Reservation System

Reservation
Service

—— —

=

——® Generate reservation order ———»

e mom @ Show reservation page (reservation_id) --

38 Submit reservation (reservation_id) —»

—@Submit reservation (reservation_id) —xX—»

Unique constraint is violated
- (reservation_id)

Figure 7.8: Unique constraint

I. Generate a reservation order. After a customer enters detailed information about
the reservation (room type, check-in date, check-out date, etc) and clicks the “continue
button, a reservation order is generated by the reservation service.

2. The system generates a reservation order for the customer to review. The unique
reservation_id is generated by a globally unique ID generator and returned as part of
the APT response. The UI of this step might look like this:

Step 3 - Design Deep Dive | 207

Booking.con Q =
¥ Final Step
O—mF——O0——— O

Almost done, Alex! We just need a
few more details to confirm your
booking.

Hote) A-st

San Francisco Marriott Marquis Union

Square
Check-in Check-out
Wed, Jul 7, 2021 Sat, Jul 10, 2021

3 nights |, 1 room Change dates
King Reom No View $H08
14 % TAX $71.12
Touriem [pe £7.19
2.26 % Cily tox $1143
Card Number

=
Q Mo charge - anly needed o hold your raom
Cardholder's name *

Alex

Expiration date *
| MM/YY

Complete my booking >

Figure 7.9: Confirmation page (Source: [4])

3a. Submit reservation 1. The reservation_id is included as part of the request. It is the
primary key of the reservation table (Figure 7.6). Please note that the idempotency key
doesn’t have to be the reservation_id. We choose reservation_id because it already
exists and works well for our design.

3b. If a user clicks the “Complete my booking” button a second time, reservation 2 is
submitted. Because reservation_id is the primary key of the reservation table, we can
rely on the unique constraint of the key to ensure no double reservation happens.

Figure 7.10 explains why double reservation can be avoided.

208 | Chapter 7. Hotel Reservation System

User's first click User's second click

R
INSERT INTO RESERVATION (INSERT INTO RESERVATION (
DY, Jsscammsimn s e S 2t],
2, 2, o
3, 3, g,
2021-06-01, 2021-06-01, et T
2021-06-04, 2021-06-04, = Unique
pending_pay, pending_pay, constraint
guest1 guest1 violation
))
| |
v X

Figure 7.10: Unique constraint violation
Scenario 2: what happens if multiple users book the same type of room at the same

time when there is only one room left? Let’s consider the scenario as shown in Figure
7.11.

Step 3 - Design Deep Dive | 209

User 1 User 2

total_inventory =100 | 5y @ @ ;) | totalinventory = 109 |
total reserved = gg_. ' -~ total reserved = ag

Time

~—~ Check room inventory
(2) ;
1 room left

L]

Check room inventory
® 1 room left

Reserve room:
total_reserved += 1

@

@ Reserve room:
total_reserved +=1

total_inventory = 100 ‘L .
total_reserved = 100 ® commit
/

@c L i total_inventory = 100
OI‘I‘;I"I"I! total_reserved = 100

b |

Figure 7.11: Race condition

1. Let’s assume the database isolation level is not serializable [5]. User 1 and User 2 try
to book the same type of room at the same time, but there is only 1 room left. Let’s
call User 1’s execution transaction 1 and User 2’s execution transaction 2. At this
time, there are 100 rooms in the hotel and 99 of them are reserved.

2. Transaction 2 checks if there are enough rooms left by checking if (total_reserved +
rooms_to_book) < total_inventory. Since there is 1 more room left, it returns True.

3. Transaction 1 checks if there are enough rooms by checking if (total_reserved +
rooms_to_book) < total_inventory. Since there is 1 more room left, it returns True

as well.

4. Transaction 1 reserves the room and updates the inventory: reserved_room becomes
100.

5. Then transaction 2 reserves the room. The isolation property in ACID means
database transactions must complete their tasks independently from other transac-
tions. S(.) data changes made by transaction 1 are not visible to transaction 2 until
transaction 1 is completed (committed). So transaction 2 still sees total_reserved

210 | Chapter 7. Hotel Reservation S\)stem_

as 00 and reserves the room by updating the inventory: reserved_room becomes
100. This results in the system allowing both users to book a room, but there is only
| room left.

6 Transaction 1 successfully commits the change.

7 Transaction 2 successfully commits the change.

The solution to this problem generally requires some form of locking mechanism. We
explore the following techniques:

« Pessimistic locking
« Optimistic locking

« Database constraints

Before jumping into a fix, let’s take a look at the SQL pseudo-code utilized to reserve a
room. The SQL has two parts:

« Check room inventory

« Reserve a room

step 1: check room inventory
SELECT date, total_inventory, total_reserved
FROM room_type_inventory

WHERE room_type_id = ${roomTypeld} AND hotel_id = ${hotelld}
AND date between ${startDate} and ${endDate}

For every entry returned from step 1

if((total_reserved + ${numberOfRoomsToReserve}) > 118% *
total_inventory) {

Rollback
}

step 2: reserve rooms
UPDATE room_type_inventory

SET total_reserved = total_reserved + ${number0OfRoomsToReserve}
WHERE room_type_id = ${roomTypeld}
AND date between ${startDate} and ${endDate}

Commit

Option 1: Pessimistic locking

The pessimistic locking [6], also called pessimistic concurrency control, prevents simulta-
neous updates by placing a lock on a record as soon as one user starts to update it. Other

users who attempt to update the record have to wait until the first user has released the
lock (committed the changes).

For MySQL, the “SELECT ... FOR UPDATE” statement works by locking the rows returned
by a selection query. Let’s assume a transaction is started by “transaction 1”. Other

Step 3 - Design Deep Dive | 211

transactions have to wait for transaction 1 to finish before beginning another transaction
A detailed explanation is shown in Figure 7.12,

Time User 1 User 2

Transaction 2

Transaction 1

LBEGIN TRANSACTION |

| | BEGIN TRANSACTION

SELECT ... FOR UPDATE
Transaction 2

check room inventory | | T

i waits for # check room inventory
| # reserve room : Transaction 1 | | SELECT ... FOR UPDATE
! UPDATE query i

| [COMMIT TRANSACTION | l

reserve room
Total reserved = 100, cannot
reserve room

[ROLLBACK TRANSACTION

L]
1
1
1
i
:
L]
1]
i
H
L]
]
L]
H
5 '
to finish !
:
L]
1
]
i
]
]
]
]
i
]
]
]
i
I
]
]

Figure 7.12: Pessimistic locking

In Figure 7.12, the “SELECT ... FOR UPDATE” statement of transaction 2 waits for trans-
action 1 to finish because transaction 1 locks the rows. After transaction 1 finishes,
total_reserved becomes 100, which means there is no room for user 2 to book.

Pros:

« Prevents applications from updating data that is being or has been chan ged.

- It is easy to implement and it avoids conflict by serializing updates. Pessimistic lock-
ing is useful when data contention is heavy.

Cons:
« Deadlocks may occur when multiple resources are locked. Writing deadlock-free
application code could be challenging.

« This approach is not scalable. If a transaction is locked for too long, other transac-
tions cannot access the resource. This has a significant impact on database perfor-
mance, especially when transactions are long-lived or involve a lot of entities.

Due to these limitations, we do not recommend pessimistic locking for the reservation
system.

212 | Chapter 7. Hotel Reservation System

Option 2: Optimistic locking
Optimistic locking [7], also referred to as optimistic concurrency control, allows multiple

concurrent users to attempt to updal'e the same resource.

There are two common ways to implement optimistic locking: version number and times-
tamp. Version number is generally considered Lo be a better option because the server
clock can be inaccurate over time. We explain how optimistic locking works with version

number.

Figure 7.13 shows a successful case and a failure case.

...

vi - vi |
; E | d v1 |
| Read v1 . Rad I g ® |
N Y @ / -
| -_—— P User 2 |
LUserl wiite v2 YT wiite v2 |
e \@\ B 2) i
| Read v2\ P Write v2 i
i ® @ | i :
i -9 i Con_l:llct ?
: Write v3 User 2 i i \\ E
: v3 ! i v2 E
‘: V" No conflict i i X Conflict 3

Figure 7.13: Optimistic locking

1. A new column called version is added to the database table.

2. Before a user modifies a database row, the application reads the version number of
the row.

3. When the user updates the row, the application increases the version number by 1
and writes it back to the database.

4, A database validation check is put in place; the next version number should exceed
the current version number by 1. The transaction aborts if the validation fails and
the user tries again from step 2.

Optimistic locking is usually faster than pessimistic locking because we do not lock the
database. However, the performance of optimistic locking drops dramatically when con-
currency is high.

To understand why, consider the case when many clients try to reserve a hotel room at
the same time. Because there is no limit on how many clients can read the available room

Step 3 - Design Deep Dive | 213

count, all of them read back the same available room count and the current version num-
ber. When different clients make reservations and write back the results to the database,
only one of them will succeed, and the rest of the clients receive a version check failure
message. These clients have to retry. In the subsequent round of retries, there is only
one successful client again, and the rest have to retry. Although the end result is correct,
repeated retries cause a very unpleasant user experience.

Pros:

« It prevents applications from ediling stale data.

« We don't need to lock the database resource. There's actually no locking from the
database point of view. It’s entirely up to the application to handle the logic with the
version number.

- Optimistic locking is generally used when the data contention is low. When conflicts
are rare, transactions can complete without the expense of managing locks.

Cons:
« Performance is poor when data contention is heavy.

Optimistic locking is a good option for a hotel reservation system since the QPS for
reservations is usually not high.

Option 3: Database constraints

This approach is very similar to optimistic locking. Let’s explore how it works. In the
room_type_inventory table, add the following constraint:

CONSTRAINT “check_room_count® CHECK((total_inventory - total_reserved
Y o>= 8))

Using the same example as shown in Figure 7.14, when user 2 lries to reserve a
room, total_reserved becomes 101, which violates the total_inventory (100)—
total_reserved (101) > 0 constraint. The transaction is then rolled back.

214 | Chapter 7. Hotel Reservation System

Time User 1 User 2 o

total_inventory = 100 @ ® total_inventory = 100
total_reserved = 99 @ - = O total_reserved _:gg_

@ Check room inventory
1 room left

@ Check room inventory
1 room left

@ Reserve room:
total_reserved +=1

@ Commit
v

Y
Reserve room:
@ total_reserved += 1

X

total_inventory - total_reserved >= 0 constraint is violated

Figure 7.14: Database constraint

Pros

« Easy to implement.

. Tt works well when data contention is minimal.

Cons

« Similar to optimistic locking, when data contention is heavy, it can result in a high
volume of failures. Users could see there are rooms available, but when they try
to book one, they get the “no rooms available” response. The experience can be
frustrating to users.

. The database constraints cannot be version-controlled easily like the application
code.

. Not all databases support constraints. It might cause problems when we migrate
from one database solution to another.

Step 3 - Design Deep Dive | 215

Since this approach is casy to implement and the data contention for a hotel reserva
tion 1s usually not high (low QPS). it is another good option for the hotel reservation

syslem.

Scalability

Usually. the load of the hotel reservation system is not high. However, the interviewer
might have a follow-up guestion: “what if the hotel reservation system is used not just
for a hotel chain but for a popular travel site such as booking.com or expedia.com?” In
this case, the QPS could be 1.000 times higher.

When the system load is high. we need to understand what might become the bottleneck
All our services are stateless, so they can be easily expanded by adding more servers. The
database. however. contains all the states and cannot be scaled up by simply adding more
databases. Let's explore how to scale the database.

Database sharding
One way to scale the database is to apply database sharding. The idea is to split the data
into multiple databases so that each of them only contains a portion of data.

When we shard a database, we need to consider how to distribute the data. As we can
see from the data model section, most queries need to filter by hotel_id. So a natural
conclusion is we shard data by hotel_id. In Figure 7.15, the load is spread among 16
shards. Assume the QPS is 30.000. After database shardmg each shard handles - l':'}

1.575 QPS. which is within a single MySQL server’s load capacity.

Reservation
Service

‘ . ||* hotel_id % 16 e

e il
.|1 14

o =
e ¥
7 e el

Figure 7.15: Database sharding

The hotel inventory data has an interesting characteristic; only current and future ho-
tel inventory data are meaningful because customers can only book rooms in the near

216 | Chapter 7. Hotel Reservation System

future.

So for the storage choice, ideally we want to have a time-to-live (TTL) mechanism to
expire old data automatically. Historical data can be queried on a different datahase.
Redis is a good choice because TTL and Least Recently Used (LRU) cache eviction policy
help us make optimal use of memory.

If the loading speed and database scalability become an issue (for instance, we are design-
ing at booking.com or Expedia’s scale), we can add a cache layer on top of the database
m{d move the check room inventory and reserve room logic to the cache layer, as shown
in Figure 7.16. In this design, only a small percentage of the requests hit the inventory
database as most ineligible requests are blocked by the inventory cache. One thing worth
mentioning is that even when there is enough inventory shown in Redis, we still need to
recheck the inventory at the database side as a precaution. The database is the source of
truth for the inventory data.

Reservation
Service

/N

Query inventory Update inventory

/ 3
6*— Async update cache Sl.}%rd

Inventory Cache Inventory DB

Figure 7.16: Caching

Let’s first go over each component in this system.

Reservation service: supports the following inventory management APIs:

« Query the number of available rooms for a given hotel, room type, and date range.
+ Reserve a room by executing total_reserved +1.

« Update inventory when a user cancels a reservation.

Inventory cache: all inventory management query operations are moved to the inven-
tory cache (Redis) and we need to pre-populate inventory data to the cache. The cache
is a key-value store with the following structure:

key: hotelID_roomTypeID_{date}

value: the number of available rooms for the given hotel ID,
room type ID and date.

For a hotel reservation system, the volume of read operations (check room inventory)
is an order of magnitude higher than write operations. Most of the read operations are

Step 3 - Design Deep Dive | 217

L o

answered by the cache
Inventory DB: stores inventory data as the source of truth
New challenges posed by the cache

Adding a cache laver significantly increases the system scalability and throughput, but it
aleo introduces a new challenge: how 1o maintain data consistency between the database
and the cache

“']'If‘n A Uuser bl"l"k‘ a room, two n"r{*rahnnq are (_\-pr"“—\d n 'hf' happ\ pafh_

1. Querv room inventory to find out if there are enough rooms left. The query runs on
the Inventory cache

[

Update inventory data. The inventory DB is updated first. The change is then prop-
agated to the cache asynchronously. This asynchronous cache update could be in-
voked by the application code. which updates the inventory cache after data is saved
to the database. It could also be propagated using change data capture (CDC) [8].
CDC is a mechanism that reads data changes from the database and applies the
changes to another data system. One common solution is Debezium [9]. It uses
a source connector to read changes from a database and applies them to cache solu-
tions such as Redis [10].

Because the inventory data is updated on the database first, there is a possibility that the
cache does not reflect the latest inventory data. For example, the cache may report there
is still an empty room when the database says there is no room left or vice versa.

If you think carefully, you find that the inconsistency between inventory cache and
database actually does not matter, as long as the database does the final inventory vali-
dation check.

Let’s take a look at an example. Let's say the cache says there is still an empty room.
but the database says no. In this case, when the user queries the room inventory, they
find there is still room available, so they try to reserve it. When the request reaches the
inventory database, the database does the validation and finds that there is no room left.
In this case, the client receives an error, indicating someone else just booked the last room
before them. When a user refreshes the website, they probably see there is no room left
because the database has synchronized inventory data to the cache, before they click the
refresh button.

Pros

+ Reduced database load. Since read queries are answered by the cache layer, database
load is significantly reduced.
« High performance. Read queries are very fast because results are fetched from mem-

ory.

218 | Chapter 7. Hotel Reservation System

Cons

. Maintaining data consistency between the database and cache is hard. We need 1o
think carefully about how this inconsistency affects user experience.

Data consistency among services

In a traditional monolithic architecture [11], a shared relational database is used to ensure
data consistency. In our microservice design, we chose a hybrid approach by having
Reservation Service handle both reservation and inventory APIs so that the inventory
and reservation database tables are stored in the same relational database. As explained
in the “Concurrency issues” section on page 206, this arrangement allows us to leverage
the ACID properties of the relational database to elegantly handle many concurrency
issues that arise during the reservation flow.

However, if your interviewer is a microservice purist, they might challenge this hybrid
approach. In their mind, for a microservice architecture, each microservice has its own
databases as shown on the right in Figure 7.17.

Reservation Inventory Payment Reservation Inventory Payment
Service Service Service Service Service Service
‘ Hotel DB Reservation DB Inventory DB Payment DB
Monolithic Architecture Microservice Architecture

Figure 7.17: Monolithic vs microservice

This pure design introduces many data consistency issues. Since this is the first time
we cover microservices, let’s explain how and why it happens. To make it easier to
understand, only two services are used in this discussion. In the real world, there could
be hundreds of microservices within a company. In a monolithic architecture, as shown
in Figure 7.18, different operations can be wrapped in a single transaction to ensure ACID

properties.

Step 3 - Design Deep Dive | 219

Manage room inventory > I
i e e e T R S T e
I
: Single
i Transaction
Reserve room ———»
*_ —— '_.__‘L—

|
I
]
I
]
]
1
)
)

Figure 7.18: Monolithic architecture

However, in a microservice architecture, each service has its own database. One logi-
cally atomic operation can span multiple services. This means we cannot use a single
transaction to ensure data consistency. As shown in Figure 7.19, if the update operation
fails in the reservation database, we need to roll back the reserved room count in the
inventory database. Generally, there is only one happy path, but many failure cases that
could cause data inconsistency.

U;"-" Inventory ‘ Reservation
Service Service
% v

a z

Single
Transaction :
- !
Reserve room —*| | — 73—
Single
Transaction

A

Figure 7.19: Microservice architecture

To address the data inconsistency, here is a high-level summary of industry-proven tech-

220 | Chapter 7. Hotel Reservation System

niques. If you want to read the details, please refer to the reference materials.

. Two-phase commit (2PC) [12]. 2PC is a database protocol used to guarantee atomic
transaction commit across multiple nodes, i.e., either all nodes succeeded or all nodes
failed. Because 2PC is a blocking protocol, a single node failure blocks the progress
until the node has recovered. It’s not performant.

. Saga. A Saga is a sequence of local transactions. Each transaclion updates and pub-
lishes a message to trigger the next transaction step. If a step fails, the saga executes
compensating transactions to undo the changes that were made by preceding trans-
actions [13]. 2PC works as a single commit to perform ACID transactions while Saga
consists of multiple steps and relies on eventual consistency.

It is worth noting that addressing data inconsistency between microservices requires
some complicated mechanisms that greatly increase the complexity of the overall design.
It is up to you as an architect to decide if the added complexity is worth it. For this prob-
lem. we decided that it was not worth it and so went with the more pragmatic approach
of storing reservation and inventory data under the same relational database.

Step 4 - Wrap Up

In this chapter, we presented a design for a hotel reservation system. We started by
gathering requirements and calculating a back-of-the-envelope estimation to understand
the scale. In the high-level design, we presented the API design, the first draft of the data
model, and the system architecture diagram. In the deep dive, we explored alternative
database schema design as we realized reservations should be made at the room type
level, as opposed to specific rooms. We discussed race conditions in depth and proposed
a few potential solutions:

« pessimistic locking
« optimistic locking
« database constraints
We then discussed different approaches to scale the system, including database sharding

and using Redis cache. Lastly, we went through data consistency issues in microservice
architecture and briefly went through a few solutions.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

Step 4 - Wrap Up | 221

Chapter Summary

reserve a rooms

functional req admin panel

support overbooking

support high concurrency
non-functional req <
moderate latency

- step 1

hotel-related

api design room-related
reservation-related
view hotel detail
slep find available rooms
data model
malke a reservation
(Hotel Reservation lookup a reservation
high-level design

improved data model use roomTypelD
pessimistic locking
concurrency issues optimistic locking

step 3 database constraint

database sharding
scalability <
caching

data consistency among services

wrap up

222 | Chapter 7. Hotel Reservation System

Reference Material

[1] What Are The Benefits of Microservices Architecture? https://www.appdynamics.
com/topics/benefits-of-microservices,

[2] Microservices. https://en.wikipedia.org/wiki/Microservices.

[3] gRPC. https://www.grpc.io/docs/what-is-grpe/introduction/.

[4] Booking.com iOS app.

[5] Serializability. https://en.wikipedia.org/wiki/Serializability.

[6] Optimistic and pessimistic record locking. https://ibm.co/3Eb2930.

[7] Optimistic concurrency control. https://en.wikipedia.org/wiki/Optimistic_concurr
ency_control.

[8] Change data capture. https://docs.oracle.com/cd/B10500_01/server.920/a96520/cd
c.htm.

[9] Debizium. https://debezium.io/.
[10] Redis sink. https://bit.ly/3r3AEUD.
[11] Monolithic Architecture. https://microservices.io/patterns/monolithic.html.

[12) Two-phase commit protocol. https://en.wikipedia.org/wiki/Two-phase_commit_p
rotocol.

[13] Saga. https://microservices.io/patterns/data/saga.html.

Reference Material | 223

e ——

8 Distributed Email Service

In this chapter, we design a large-scale email service, such as Gmail, Outlook, or Yahoo
Mail. The growth of the internet has led to an explosion in the volume of emails. In 2020,
Gmail had over 1.8 billion active users and Outlook had over 400 million users worldwide

(1] [2]-
m outlook.com M gmail.com e’ yahoo.com

Figure 8.1: Popular email providers

Step 1 - Understand the Problem and Establish Design Scope

Over the years, email services have changed significantly in complexity and scale. A
modern email service is a complex system with many features. There is no way we
can design a real-world system in 45 minutes. So before jumping into the design, we
definitely want to ask clarifying questions to narrow down the scope.

Candidate: How many people use the product?
Interviewer: One billion users.

Candidate: Ithink the following features are important:

- Authentication.

+ Send and receive emails.

« Fetch all emails.

. Filter emails by read and unread status.

+ Search emails by subject, sender, and body.

+ Anti-spam and anti-virus.

Interviewer: That’s a good list. We don’t need to worry about authentication. Let’s
focus on the other features you mentioned.

| 225

Candidate: How do users connect with mail servers?

Interviewer: Traditionally, users connect with mail servers through native clients that
use SMTP, POP. IMAP, and vendor-specific protocols. Those protocols are legacy Lo some
extent, yet still very popular. For this interview, let’s assume HTTP is used for client and
server communication.

Candidate: Can emails have attachments?
Interviewer: Yes.

Non-functional requirements
Next. let’s go over the most important non-functional requirements.
Reliability. We should not lose email data.

Availability. Email and user data should be automatically replicated across multiple
nodes to ensure availability. Besides, the system should continue to function despite
partial system failures.

Scalability. As the number of users grows, the system should be able to handle the in-
creasing number of users and emails. The performance of the system should not degrade
with more users or emails.

Flexibility and extensibility. A flexible/extensible system allows us to add new fea-
tures or improve performance easily by adding new components. Traditional email pro-
tocols such as POP and IMAP have very limited functionality (more on this in high-level
design). Therefore, we may need custom protocols to satisfy the flexibility and extensi-
bility requirements.

Back-of-the-envelope estimation

Let’s do a back-of-the-envelope calculation to determine the scale and to discover some
challenges our solution will need to address. By design, emails are storage heavy appli-
cations.

1 billion users.

L]

- Assume the average number of emails a person sends per day is 10. QPS for sending

109 x 10
emails = —=— = 100,000,

« Assume the average number of emails a person receives in a day is 40 [3] and the
average size of email metadata is 50 KB. Metadata refers to everything related to an
email, excluding attachment files.

« Assume metadata is stored in a database. Storage requirement for maintaining meta-
data in 1 year: 1 billion users x 40 emails/day x 365 days x 50 KB = 730 PB.

« Assume 20% of emails contain an attachment and the average attachment size is 500
KB.

- Storage for attachments in 1 year is: 1 billion users x40 emails/day x 365 days X
20% x 500 KB = 1,460 PB

226 | Chapter 8. Distributed Email Service

From this back-of-the-envelope calculation, it's clear we would deal with a lot of data.
So. it’s likely that we need a distributed database solution.

Step 2 - Propose High-level Design and Get Buy-in

In this section, we first discuss some basics about email servers and how email servers
evolve over time. Then we look at the high-level design of distributed email servers. The
content is structured as follows:

« Email knowledge 101
« Traditional mail servers

« Distributed mail servers

Email knowledge 101

There are various email protocols that are used to send and receive emails. Historically,
most mail servers use email protocols such as POP, IMAP, and SMTP.

Email protocols

SMTP: Simple Mail Transfer Protocol (SMTP) is the standard protocol for sending emails
from one mail server to another. .

The most popular protocols for retrieving emails are known as Post Office Protocol
(POP) and the Internet Mail Access Protocol (IMAP).

POP is a standard mail protocol to receive and download emails from a remote mail
server to a local email client. Once emails are downloaded to your computer or phone,
they are deleted from the email server, which means you can only access emails on one
computer or phone. The details of POP are covered in RFC 1939 [4]. POP requires mail
clients to download the entire email. This can take a long time if an email contains a
large attachment.

IMAP is also a standard mail protocol for receiving emails for a local email client. When
you read an email, you are connected to an external mail server, and data is transferred
to your local device. IMAP only downloads a message when you click it, and emails are
not deleted from mail servers, meaning that you can access emails from multiple devices.
IMAP is the most widely used protocol for individual email accounts. It works well when
the connection is slow because only the email header information is downloaded until

opened.

HTTPS is not technically a mail protocol, but it can be used to access your mailbox,
particularly for web-based email. For example, it's common for Microsoft Outlook to talk
to mobile devices over HTTPS, on a custom-made protocol called ActiveSync [5].

Domain name service (DNS)

A DNS server is used to look up the mail exchanger record (MX record) for the recipient’s
domain. If you run DNS lookup for gmail.com from the command line, you may get MX
records as shown in Figure 8.2.

Step 2 - Propose High-level Design and Get Buy-in | 227

draws-mbp:~ draw$ nslookup

> set q=mx

> gmail.com

Server! 192.168.86.1

Address: 192.168.86.1#63

Non-authoritative answer!

gmail.com 11 exchanger\=[20@|@1t2.gmail-smtp-1in.1l.google.com

gmail.com il exchanger |=| 30 alt3.gmai1—smtp—in.l.google.coml

gmail.com il exchanger |=| 4@ alt4.gmail-smtp-in.1.google.com|

gmail.com 1l exchanger |= imail-smtp-in.1l.google.com. |

gmail.com il exchanger /=10 .ltl.gmail-smtp-in-1-Qoogle.coQJ
MX Priority Mail servers

Figure 8.2: MX records

The priority numbers indicate preferences, where the mail server with a lower priority
number is more preferred. In Figure 8.2, gmail-smtp-in.1.google.com is used first (pri-
ority 5). A sending mail server will attempt to connect and send messages to this mail
server first. If the connection fails, the sending mail server will attempt to connect to the
mail server with the next lowest priority, which is alt1.gmail-smtp-in.1.google.com
(priority 10).

Attachment

An email attachment is sent along with an email message, commonly with Base64 encod-
ing [6]. There is usually a size limit for an email attachment. For example, Outlook and
Gmail limit the size of attachments to 20MB and 25MB respectively as of June 2021. This
number is highly configurable and varies from individual to corporate accounts. Multi-
purpose Internet Mail Extension (MIME) [7] is a specification that allows the attachment
to be sent over the internet.

Traditional mail servers

Before we dive into distributed mail servers, let’s dig a little bit through the history and
see how traditional mail servers work, as doing so provides good lessons about how to
scale an email server system. You can consider a traditional mail server as a system that
works when there are limited email users, usually on a single server.

Traditional mail server architecture
Figure 8.3 describes what happens when Alice sends an email to Bob, using traditional
email servers.

228 | Chapter 8. Distributed Email Service

User Alice User Bob
alice@outlook.com bob@gmall.com
o @
Qutlook Gmail
client client
® Send @ Get
: \i ! P \ """""" i
' | IMAP/POP SMTP | ® : SMTP IMAP/POP | |
Server Server ' Send : Server Server E
i \ / | N/ |
i Fetch Store ! i @stora Fetch :
; : i |
i —— 5 ! c— |
1l ! s '
- : | .
outlook.com i i gmail.com ‘
; mail server : E mail server i

Figure 8.3: Traditional mail servers
The process consists of 4 steps:

1. Alice logs in to her Outlook client, composes an email, and presses the “send” button.
The email is sent to the Outlook mail server. The communication protocol between
the Outlook client and the mail server is SMTP.

2. Outlook mail server queries the DNS (not shown in the diagram) to find the address of
the recipient’s SMTP server. In this case, it is Gmail's SMTP server. Next, it transfers
the email to the Gmail mail server. The communication protocol between the mail
servers is SMTP.

3. The Gmail server stores the email and makes it available to Bob, the recipient.

4. Gmail client fetches new emails through the IMAP/POP server when Bob logs in to
Gmail.

Storage

In a traditional mail server, emails were stored in local file directories and each email
was stored in a separate file with a unique name. Each user maintained a user directory
to store configuration data and mailboxes. Maildir was a popular way to store email
messages on the mail server (Figure 8.4).

_Step 2- P_ropose High-level Design and Get Buy-in | 229

home

,QF.

Maildir

= .

z0n e

Figure 8.4: Maildir

File directories worked well when the user base was small, but it was challenging to
retrieve and backup billions of emails. As the email volume grew and the file structure
became more complex, disk I/O became a bottleneck. The local directories also don't
satisfy our high availability and reliability requirements. The disk can be damaged and
servers can go down. We need a more reliable distributed storage layer.

Email functionality has come a long way since it was invented in the 1960s, from text-
based format to rich features such as multimedia, threading [8], search, labels, and more.
But email protocols (POP, IMAP, and SMTP) were invented a long time ago and they were
not designed to support these new features, nor were they scalable to support billions of
users.

Distributed mail servers

Distributed mail servers are designed to support modern use cases and solve the prob-
lems of scale and resiliency. This section covers email APIs, distributed email server
architecture, email sending, and email receiving flows.

Email APIs

Email APIs can mean very different things for different mail clients, or at different stages
of an email’s life cycle. For example;

« SMTP/POP/IMAP APIs for native mobile clients,

« SMTP communications between sender and receiver mail servers.

230 | Chapter 8. Distributed Email Service

» RESTful API over HTTP for full-featured and interactive web-based email applica
tions.

Due to the length limitations of this book, we cover only some of the most important
APIs for webmail. A common way for webmail to communicate is through the HTTP
protocol.

1. Endpoint: POST /v1/messages
Sends a message to the recipients in the To, Cc, and Bec headers.
2. Endpoint: GET /v1/folders

Returns all folders of an email account.
Response:

[{id: string Unique folder identifier.
name: string ~ Name of the folder.
According to RFC6154 [9], the default folders can be one of
the following:
All, Archive, Drafts, Flagged, Junk, Sent, and Trash.
user_id: string Reference to the account owner

i
3. Endpoint: GET /v1/folders/{:folder_id}/messages

Returns all messages under a folder. Keep in mind this is a highly simplified APL In
reality, this needs to support pagination.

Response:
List of message objects.
4. Endpoint: GET /v1/messages/{:message_id}

Gets all information about a specific message. Messages are core building blocks for an
email application, containing information about the sender, recipients, message subject,
body, attachments, etc.

Response:

A message’s object.

f

user_id: string // Reference to the account owner.
from: name: string, email: string // <name, email> pair of the sender.
to: [name: string, email: string] // A list of <name, email> paris

subject: string // Subject of an email
body: string // Message body
is_read: boolean // Indicate if a message is read or not.

J

Step 2 - Propose High-level Design and Get Buy-in | 231

Distributed mail server architecture

While it is easy to set up an email server that handles a small number of users, it g
difficult to scale beyond one server. This is mainly because traditional email servers were
designed to work with a single server only. Synchronizing data across servers can be
difficult, and keeping emails from being misclassified as spam by recipients’ mail servers
is very challenging. In this section, we explore how to leverage cloud technologies to
make il easier. The high-level design is shown in Figure 8.5.

CC O
7N

https WebSocket

Web Real-time
Servers Servers

Metadata DB Attachment store Distributed cache Search store

Storage Layer

Figure 8.5: High-level design

Let us take a close look at each component.
Webmail. Users use web browsers to receive and send emails.

Web servers. Web servers are public-facing request/response services, used to manage
features such as login, signup, user profile, etc. In our design, all email API requests, such
as sending an email, loading mail folders, loading all mails in a folder, etc., go through
web servers.

Real-time servers. Real-time servers are responsible for pushing new email updates
to clients in real-time. Real-time servers are stateful servers because they need to main-
tain persistent connections. To support real-time communication, we have a few op-
tions, such as long polling and WebSocket. WebSocket is a more elegant solution but one
drawback of it is browser compatibility. A possible solution is to establish a WebSocket
connection whenever possible and to use long-polling as a fallback.

Here is an example of a real-world mail server (Apache James [10]) that implements the
JSON Meta Application Protocol (JMAP) subprotocol over WebSocket [11].

Metadata database. This database stores mail metadata including mail subject, body,

232 | Chapter 8. Distributed Email Service

from user. to users, etc. We discuss the database choice in the deep dive section.

Attachment store. We choose object stores such as Amazon Simple Storage Service (S3)
as the attachment store. S3 is a scalable storage infrastructure that’s suitable for storing
large files such as images, videos, files, etc. Attachments can take up to 25 MB in size.
NoSQL column-family databases like Cassandra might not be a good fit for the following
(wo reasons:

« Even though Cassandra supports blob data type and its maximum theoretical size for
a blob is 2GB, the practical limit is less than 1MB [12].

« Another problem with putting attachments in Cassandra is that we can’t use a row
cache as attachments take too much memory space.

Distributed cache. Since the most recent emails are repeatedly loaded by a client,
caching recent emails in memory significantly improves the load time. We can use Redis
here because it offers rich features such as lists and it is easy to scale.

Search store. The search store is a distributed document store. It uses a data structure
called inverted index [13] that supports very fast full-text searches. We will discuss this
in more detail in the deep dive section.

Now that we have discussed some of the most important components to build distributed
mail servers, let’s assemble together two main workflows.

+ Email sending flow.

+ Email receiving flow.

Email sending flow

The email sending flow is shown in Figure 8.6.

Step 2 - Propose High-level Design and Get Buy-in | 233

CCO

Chack vAS

Check spam

Webmall
T i
%\HWPS |
[Load balancer - ,_,_—r{ I k } : / /
b — S H Ret
IQH D Error queue :‘ | v -
Web servers L—w--—@_@-—-—*l i | i | (f—— 5}—‘:
Outgolng gueue :_ _________
-
3 pog
el
/Metadaﬂa Search store Attachment Latest emgl!\‘
Database Database Object Store Cache
Storage Layer

Figure 8.6: Email sending flow

Internet }

1. A user writes an email on webmail and presses the send button. The request is sent

to the load balancer.

2. The load balancer makes sure it doesn’t exceed the rate limit and routes traffic to web

SETVErs.

3. Web servers are responsible for:

- Basic email validation. Each incoming email is checked against pre-defined rules
such as email size limit.

+ Checking if the domain of the recipient’s email address is the same as the sender.
If it is the same, the web server ensures the email data is spam and virus free. If
so, email data is inserted into the sender’s “Sent Folder” and recipient’s “Inbox
Folder”. The recipient can fetch the email directly via the RESTful API. There is
no need to go to step 4.

4. Message queues.

4.1. If basic email validation succeeds, the email data is passed to the outgoing queue.
If the attachment is too large to fit in the queue, we could store the attachment

in the object store and save the object reference in the queued message.

4.2. If basic email validation fails, the email is put in the error queue.

5. SMTP outgoing workers pull messages from the outgoing queue and make sure
emails are spam and virus free.

234 | Chapter 8. Distributed Email Service

6. The outgoing email is stored in the "Sent Folder” of the storage layer.

7. SMTP outgoing workers send the email to the recipient mail server.

Each message in the outgoing queue contains all the metadata required to create an email.
A distributed message queue is a critical component that allows asynchronous mail pro-
cessing. By decoupling SMTP outgoing workers from the web servers, we can scale SMTP
outgoing workers independently.

We monitor the size of the outgoing queue very closely. If there are many emails stuck in
the queue, we need to analyze the cause of the issue. Here are some possibilities:
« The recipient’s mail server is unavailable. In this case, we need to retry sending the
email at a later time. Exponential backoff [14] might be a good retry strategy.
» Not enough consumers to send emails. In this case, we may need more consumers
to reduce the processing time.
Email receiving flow

The following diagram demonstrates the email receiving flow.

' ! i Webmail
| i | Checkspam | ! /‘ \
! [Email Acceptance | ! ; : (8) WebSacket (D) Htips
policy i i Chack i / \
; . Real-time Servers Wab servers

Database Database Object Store Cache

Storage Layer

Figure 8.7: Email receiving flow

1. Incoming emails arrive at the SMTP load balancer.

2. The load balancer distributes traffic among SMTP servers. Email acceptance policy
can be configured and applied at the SMTP-connection level. For example, invalid
emails are bounced to avoid unnecessary email processing.

3. If the attachment of an email is too large to put into the queue, we can put it into the
attachment store (S3).

4, Emails are put in the incoming email queue. The queue decouples mail processing

Step 2 - Propose High-level Design and Get Buy-in | 235

6.

10.

workers from SMTP servers so they can be scaled independently. Moreaver, the
queue serves as a buffer in case the email volume surges.

Mail processing workers are responsible for a lot of tasks, including filtering ou
spam mails, stopping viruses, etc. The following steps assume an email passed the
validation.

The email is stored in the mail storage, cache, and object data store.
If the receiver is currently online, the email is pushed to real-time servers,

Real-time servers are WebSocket servers that allow clients to receive new emails in
real-time.

For offline users, emails are stored in the storage layer. When a user comes back
online, the webmail client connects to web servers via RESTful API.

Web servers pull new emails from the storage layer and return them to the client.

Step 3 - Design Deep Dive

Now that we have talked about all the parts of the email server, let’s go deeper into some
key components and examine how to scale the system.

Metadata database

Search
Deliverability
Scalability

L]

Metadata database

In this section, we discuss the characteristics of email metadata, choosing the right
database, data model, and conversation threads (bonus point).

Characteristics of email metadata

- Email headers are usually small and frequently accessed.

» Email body sizes can range from small to big but are infrequently accessed. You
normally only read an email once.

- Most of the mail operations, such as fetching mails, marking an email as read, and
searching are isolated to an individual user. In other words, mails owned by a user
are only accessible by that user and all the mail operations are performed by the same
user.

- Data recency impacts data usage. Users usually only read the most recent emails.
82% of read queries are for data younger than 16 days [15].

- Data has high-reliability requirements. Data loss is not acceptable.

236 | Chapter 8. Distributed Email Service

Choosing the right database

At Gmail or Outlook scale, the database system is usually custom-made to reduce in-
put/output operations per second (IOPS) [16], as this can easily become a major con-
straint in the system. Choosing the right database is not easy. It is helpful to consider all
the options we have on the table before deciding the most suitable one.

. Relational database. The main motivation behind this is to search through emails
efficiently. We can build indexes for email header and body. With indexes, simple
search queries are fast. However, relational databases are typically optimized for
small chunks of data entries and are not ideal for large ones. A typical email is usu-
ally larger than a few KB and can easily be over 100KB when HTML is involved. You
might argue that the BLOB data type is designed to support large data entries. How-
ever, search queries over unstructured BLOB data type are not efficient. So relational
databases such as MySQL or PostgreSQL are not good fits.

. Distributed object storage. Another potential solution is to store raw emails in cloud
storage such as Amazon S3, which can be a good option for backup storage, but it’s

hard to efficiently support features such as marking emails as read, searching emails
based on keywords, threading emails, etc.

« NoSQL databases. Google Bigtable is used by Gmail, so it’s definitely a viable solu-
tion. However, Bigtable is not open sourced and how email search is implemented

remains a mystery. Cassandra might be a good option as well, but we haven’t seen
any large email providers use it yet.

Based on the above analysis, very few existing solutions seem to fit our needs perfectly.
Large email service providers tend to build their own highly customized databases. How-
ever, in an interview setting, we won'’t have time to design a new distributed database,

though it’s important to explain the following characteristics that the database should
have.

+ A single column can be a single-digit of MB.

Strong data consistency.

Designed to reduce disk I/O.

It should be highly available and fault-tolerant.

« It should be easy to create incremental backups.

Data model

One way to store the data is to use user_id as a partition key so data for one user is stored
ona single shard. One limitation of this data model is that messages are not shared among

multiple users. Since this is not a requirement for us in this interview, it’s not something
we need to worry about.

Now let us define the tables. The primary key contains two components, the partition
key, and the clustering key.

Step 3 - Design Deep Dive | 237

« Partition key: responsible for distributing data across nodes. As a general rule, w
' We
want to spread the data evenly.

» Clustering key: responsible for sorting data within a partition.

Al a high level, an email service needs to support the following queries at the dat
d
layer:

The first query is to get all folders for a user.

-

The second query is to display all emails for a specific folder.

-

The third query is to create/delete/get a specific email. #

The fourth query is to fetch all read or unread emails.

Bonus point: get conversation threads.

Let’s take a look at them one by one.

Query 1: get all folders for a user.

As shown in Table 8.1, user_id is the partition key, so folders owned by the same user
are located in one partition. y

K Partition Key

Ct Clustering Key (ascend-
ing)
C/4Cluslering Key (descend-
+ing)

folders_by_user

user_id uuib K
folder_id uuID
folder name TEXT

Table 8.1: Folders by user

Query 2: display all emails for a specific folder.

When a user loads their inbox, emails are usually sorted by timestamp, showing the
most recent ones at the top. In order to store all emails for the same folder in one parti-
tion, composite partition key <user_id, folder_id> is used. Another column to note is
email_id. Its data type is TIMEUUID [17], and it is the clustering key used to sort emails
in chronological order.

238 | Chapter 8. Distributed Email Service

emails_by folder -

1
|
]
i N

user_id UUID K
folder_id UUID K
emall_id TIMEUUID C|
from TEXT

subject TEXT
preview TEXT

is_read BOOLEAN

Table 8.2: Emails by folder

Query 3: create/delete/get an email

Due to space limitations, we only explain how to get detailed information about an email.
The two tables in Table 8.3 are designed to support this query. The simple query looks
like this:

SELECT * FROM emails_by_user WHERE email_id = 123;

An email can have multiple attachments, and these can be retrieved by the combination
of email_id and filename fields.

[emails_by_user attachments
user_id uuID K emai_id TIMEUUID C
email_id TIMEUUID ClL filename TEXT K
from TEXT url TEXT

to LIST<TEXT>

subject TEXT

body TEXT

attachments LIST<filenamejsize>

Table 8.3: Emails by user

Query 4: fetch all read or unread emails

If our domain model was for a relational database, the query to fetch all read emails would
look like this:

SELECT * FROM emails_hy_folder

WHERE user_id = <user_id> and folder_id = <folder_id> and
is_read = true

ORDER BY email_id;

The query to fetch all unread emails would look very similar. We just need to change
is_read = true to is_read = false in the above query.

Step 3 - Design Deep Dive | 239

Our data model, however, is designed for NoSQL. A NoSQL database normally only sup-
ports queries on partition and cluster keys. Since is_read in the emails_by_folder table
is neither of those, most NoSQL databases will reject this query:.

One way to get around this limitation is to fetch the entire folder for a user and perform
the filtering in the application. This could work for a small email service, but at our
design scale, this does not work well.

This problem is commonly solved with denormalization in NoSQL. To support the read-
/unread queries, we denormalize the emails_by_folder data into two tables as shown in
Table 8.4.

. read_emails: it stores all emails that are in read status.

. unread_emails: it stores all emails that are in unread status.

To mark an UNREAD email as READ, the email is deleted from unread_emails and then in-
serted to read_emails.
To fetch all unread emails for a specific folder, we can run a query like this:

SELECT * FROM unread_emails
WHERE user_id = <user_id> and folder_id = <folder_id>
ORDER BY email_id;

read_emails unread_emails
user_id uuiD K user_id uuID K
folder_id UUID K folder_id UUID K
email_id TIMEUUID C| email_id TIMEUUID C|
from TEXT from TEXT
subject TEXT subject TEXT
preview TEXT preview TEXT

Table 8.4: Read and unread emails

Denormalization as shown above is a common practice. It makes the application code
more complicated and harder to maintain, but it improves the read performance of these

queries at scale.

Bonus point: conversation threads

Threads are a feature supported by many email clients. It groups email replies with their
original message [8]. This allows users to retrieve all emails associated with one conver-
sation. Traditionally, a thread is implemented using algorithms such as JWZ algorithm
[18]. We will not go into detail about the algorithm, but just explain the core idea behind
it. An email header generally contains the following three fields:

240 | Chapter 8. Distributed Email Service

)
[§

"headers"
"Message-Id": "</BAB4BZA-43BC-4D17-8B57-862103C34501Rgmail.
com>",
"In-Reply-To": "<CAEWTXuPfN=LzECjDItgY9VuB3kgFvInJUSHTL6
TwWegmail.com>",
"References": ["<7BAB4B2A-43BC-4D12-8B57-862183C34501@gmail

.com>"]
! | The value of a message ID. It is generated by a client while
| Message-1d ,
. sending a message.
| In-Reply-To The parent Message-Id to which the message replies.
| References A list of message IDs related to a thread.

Table 8.5: Email header

With these fields, an email client can reconstruct mail conversations from messages, if
all messages in the reply chain are preloaded.

Consistency trade-off

Distributed databases that rely on replication for high availability must make a funda-
mental trade-off between consistency and availability. Correctness is very important for
email systems, so by design, we want to have a single primary for any given mailbox. In
the event of a failover, the mailbox isn’t accessible by clients, so their sync/update oper-
ation is paused until failover ends. It trades availability in favor of consistency.

Email deliverability

It is easy to set up a mail server and start sending emails. The hard part is to get emails
actually delivered to a user’s inbox. If an email ends up in the spam folder, it means there
is a very high chance a recipient won'’t read it. Email spam is a huge issue. According
to research done by Statista [19], more than 50% of all emails sent are spam. If we set
up a new mail server, most likely our emails will end up in the spam folder because a
new email server has no reputation. There are a couple of factors to consider to improve
email deliverability.

Dedicated IPs. It is recommended to have dedicated IP addresses for sending emails.
Email providers are less likely to accept emails from new IP addresses that have no his-
tory.

Classify emails. Send different categories of emails from different IP addresses. For
example, you may want to avoid sending marketing and other important emails from
the same servers because it might make ISPs mark all emails as promotional.

Email sender reputation. Warm up new email server IP addresses slowly to build a
good reputation, so big providers such as Office365, Gmail, Yahoo Mail, etc. are less
likely to put our emails in the spam folder. According to Amazon Simple Email Service
(20], it takes about 2 to 6 weeks to warm up a new IP address.

Step 3 - Design Deep Dive | 241

Ban spammers quickly. Spammers should be banned quickly before they have a gig.
nificant impact on the server’s reputation.

Feedback processing. It's very importanl Lo set up feedback loops with ISPs so we can
keep the complaint rate low and ban spam accounts quickly. If an email fails to deliver

or a user complains, one of the following outcomes occurs:

» Hard bounce. This means an email is rejected by ISP because the recipient’s email
address is invalid.

« Soft bounce. A soft bounce indicates an email failed to deliver due to temporary
conditions, such as ISPs being too busy.

« Complaint. This means a recipient clicks the “report spam” button.

Figure 8.8 shows the process of collecting and processing bounces/complaints. We use
separate queues for soft bounces, hard bounces, and complaints so they can be managed

C==10

Soft bounces

| Bounces and _ Feedback
=p Complaints , processing

Hard bounces

separately.

Complaints

Figure 8.8: Handle feedback loop

Email authentication. According to the 2018 data breach investigation report provided
by Verizon, phishing and pretexting represent 93% of breaches [21]. Some of the common
techniques to combat phishing are: Sender Policy Framework (SPF) [22], DomainKeys
Identified Mail (DKIM) [23], and Domain-based Message Authentication, Reporting and

Conformance (DMARC) [24].

Figure 8.9 shows an example header of a Gmail message. As you can see, the sender
@infob.citi.com is authenticated by SPF, DKIM, and DMARC.

242 | Chapter 8. Distributed Email Service

Message ID <F17 3471

Crealed at: Sun, May 2, 2021 al 6:41 PM (Delivered after 17 seconds)

From: Citi Alerts <alerts@info6 citi. com> Using XyzMailer

Subject Your Citi® account statement is ready
'|_SPF i PASS with IP 63.230.204.146 L eam more
| o ‘PASS' with domain info6.citicom Learn more
| DMARC: 'PASS' Learn mare

Figure 8.9: An example of a Gmail header

You don’t need to remember all those terms. The important thing to keep in mind is that

getting emails to work as intended is hard. It requires not only domain knowledge, but
good relationships with ISPs.

Search

RBasic mail search refers to searching for emails that contain any of the entered key-
words in the subject or body. More advanced features include filtering by “From”, “Sub-
ject”, “Unread”, or other attributes. On one hand, whenever an email is sent, received, or
deleted, we need to perform reindexing. On the other hand, a search query is only run
when a user presses the search button. This means the search feature in email systems

has a lot more writes than reads. By comparison with Google search, email search has
quite different characteristics, as shown in Table 8.6.

Scope Sorting Accuracy

| Indexing generally
| takes time, so some
Sort by relevance items may not
' show in the search
| result immediately.

- Google search | The whole internet

| S

Sort by attributes

User’s own email

such as time, has

Indexing should be
near real-time, and

Email search attachment, date
box oy the result has to be
within, is unread,
. accurate.

Table 8.6: Google search vs email search

To support search functionality, we compare two approaches: Elasticsearch and native
search embedded in the datastore.

Step 3 - Design Deep Dive | 243

Option 1: Elasticsearch

The high-level design for email search using Elasticsearch is shown in Figure 8.10. Be-
cause queries are mostly performed on the user's own email server, we can group under-
lying documents to the same node using user_id as the partition key.

Search ’ Send email Receive email Delate email

ASVHC Async Async

S0 Kafka

Y

RESTful API

O O O

Elasticsearch Cluster

Figure 8.10: Elasticsearch

When a user clicks the search button, the user waits until the search response is received.
A search request is synchronous. When events such as “send email”, “receive email”
or “delete email” are triggered, nothing related to search needs to be returned to the
client. Reindexing is needed and it can be done with offline jobs. Kafka is used in the
design to decouple services that trigger reindexing, from services that actually perform
reindexing.

Elasticsearch is the most popular search-engine database as of June 2021 [25] and it sup-
ports full-text search of emails very well. One challenge of adding Elasticsearch is to
keep our primary email store in sync with it.

Option 2: Custom search solution

Large-scale email providers usually develop their own custom search engines to meet
their specific requirements. Designing an email search engine is a very complicated task
and is out of the scope of this chapter. Here we only briefly touch on the disk I/O bottle-
neck, a primary challenge we will face for a custom search engine.

As shown in the back-of-the-envelope calculation, the size of the metadata and attach-
ments added daily is at the petabyte (PB) level. Meanwhile, an email account can easily
have over half a million emails. The main bottleneck of the index server is usually disk

I/0.

244 | Chapter 8. Distributed Email Service

Since the process of building the index is write-heavy, a good strategy might be to use
I,ng—Slmctured Merge-Tree (LSM) [26] to structure the index data on disk ('i-‘igure 8.11).
The write path is optimized by only performing sequential writes. LSM trees are the core
data structure behind databases such as Bigtable, Cassandra, and RocksDB. When a new
email arrives, it is first added to level 0 in-memory cache, and when data size in memory
reaches the predefined threshold, data is merged to the next level. Another reason to use
LSM is to separate data that change frequently from those that don’t. For example, email
data usually doesn’t change, but folder information tends to change more often due to
different filter rules. In this case, we can separate them into two different sections, so
that if a request is related to a folder change, we change only the folder and leave the
email data alone.

If you are interested in reading more about email search, it is highly recommended you
take a look at how search works in Microsoft Exchange servers [27].

Level 4 :
(disk) i

Time

Figure 8.11: LSM tree

Each approach has pros and cons:

Step 3 - Design Deep Dive | 245

| Feature Elasticsearch | Custom search engine |
TSI — — '? - | - - |
Fasier to scale as we can
Scalability Scalable to some extent | optimize the system for

the email use case

Need to maintain two
System complexity . different systems: datas- | One system
| tore and Elasticsearch

Two copies of data. One
in the metadata datas-
tore, and the other in | A single copy of data in
Elasticsearch. Data con- | the metadata datastore
sistency is hard to main-
tain
No. Can rebuild the
Data loss passible Elastic:search index frolm No
the primary storage, in
case of failure

Data consistency

Easy to integrate. To

support large scale email Significant engineering

effort is needed to de-

Development effort search, a dedicated Elas- ,
; : velop a custom email
ticsearch team might be ;
search engine
needed

Table 8.7: Elastic search vs custom search engine

A general rule of thumb is that for a smaller scale email system, Elasticsearch is a good
option as it’s easy to integrate and doesn’t require significant engineering effort. For
a larger scale, Elasticsearch might work, but we may need a dedicated team to develop
and maintain the email search infrastructure. To support an email system at Gmail or
Outlook scale, it might be a good idea to have a native search embedded in the database
as opposed to the separate indexing approach.

Scalability and availability

Since data access patterns of individual users are independent of one another, we expect
most components in the system are horizontally scalable.

For better availability, data is replicated across multiple data centers. Users communicate
with a mail server that is physically closer to them in the network topology. During a
network partition, users can access messages from other data centers (Figure 8.12).

246 | Chapfer 8. Distributed Email Service \

| United States Data Genter
Servers Databases | !

/ = /’A, A i

| Userfom @ — i
' United States «film Replication !
: X !
Servers |——* Databases |
Europe Data Center i
5 United States Data Center i
: Servers Databases | !
| Userfom @ i — !
| United States sl Replication !
: = :
. Servers Databases !
i Europe Data Center |

Figure 8.12: Multi-data center setup

Step 4 - Wrap Up

In this chapter, we have presented a design for building large-scale email servers. We
started by gathering requirements and doing some back-of-the-envelope calculations to
get a good idea of the scale. In the high-level design, we discussed how traditional email
servers were designed and why they cannot satisfy modern use cases. We also discussed
email APIs and high-level designs for sending and receiving flows. Finally, we dived deep
into metadata database design, email deliverability, search, and scalability.

If there is extra time at the end of the interview, here are a few additional talking
points:

« Fault tolerance. Many parts of the system can fail, and you can talk about how to
handle node failures, network issues, event delays, etc.

+ Compliance. Email service works all around the world and there are legal regulations
to comply with. For instance, we need to handle and store personally identifiable
information (PII) from Europe in a way that complies with General Data Protection
Regulation (GDPR) [28]. Legal intercept is another typical feature in this area [29].

+ Security. Email security is important because emails contain sensitive information.

Step 4 - Wrap Up | 247

|

Gmail provides safety features such as phishing protections, safe browsing, proactive
alerts, account safety, confidential mode, and email encryption [30].

- Optimizations. Sometimes, the same email is sent to multiple recipients, and the
same email attachment is stored several times in the object store (S3) in the group
emails. One optimization we could do is to check the existence of the attachment in
storage. before performing the expensive save operation.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

248 | Chapter 8. Distributed Email Service

Chapter Summary

send and receive emails
fetch all emails

functional req filter emails by read/unread
search emails

anti-spam

reliability: we should not lose data
extensibility
non-functional req
scalability
storage heavy system POP
email protocols { IMAP
SMTP
email knowledge 101

step 1

DNS —— MX record

MIME

attachment

email apis
traditional mail servers
high-level design
distributed mail servers
email sending flow
email receiving flow
choose the right database

characteristics
metadata database

data model
email deliverability consistency trade-off

step 2

elasticsearch
search <
custom search engine

scalability & availability

il foleiaiice node failure, network issue,
event delay

PII
compliance <
GDPR

phishing protection, safe brows-
ing, email encryption, etc

step 4

security

P the same email was sent to
optimizations —— ; <
multiple recipients

Chapter Summary | 249

Reference Material

(1]

(2]
3]

(4]
5]
(6]
(7]
(8]
[9]

[10]
[11]

(12]

[13]
(14]

[15]

(16]
(17]

(18]
(19]

[20]

[21]

250

Number of Active Gmail Users. hllps:f;’["lnnncvsunlm(‘.tmnmumlwrnf—ac[ivo-gm

ail-users/.
Outlook. https://en.wikipedia.org/wiki/Outlook.com.

How Many Emails Are Sent Per Day in 20217 hitps://review42.com/resources/how
-many-emails-are-sent-per-day/.

RFC 1939 - Post Office Protocol - Version 3. http://www .fags.org/rlcs/rfc1939 him|,
ActiveSync. https://en.wikipedia.org/wiki/ActiveSync.

Email attachment. https://en.wikipedia.org/wiki/Email_attachment.

MIME. https://en.wikipedia.org/wiki/MIME.

Threading. https://en.wikipedia.org/wiki/Conversation_threading.

IMAP LIST Extension for Special-Use Mailboxes. https://datatracker.ietf.org/doc/h
tml/rfc6154.

Apache James. https://james.apache.org/.

A JSON Meta Application Protocol (JMAP) Subprotocol for WebSocket. https://to
ols.ietf.org/id/draft-ietf-jmap-websocket-07.html#¥RFC7692.

Cassandra Limitations. https://cwiki.apache.org/confluence/display/CASSANDR
A2/CassandraLimitations.

Inverted index. https:f!en.wikipedia.org!wiki/[nverted_index.
Exponential backoff. https://en.wikipedia.org/wiki/Exponential_backoff.

QQ Email System Optimization (in Chinese). https://www.slideshare.net/areyouo
k/06-qq-5431919.

IOPS. https://en.wikipedia.org/wiki/IOPS.

UUID and timeuuid types. https://docs.datastax.com/en/cql-oss/3.3/cql/cql_refer
ence/uuid_type_r.html.

Message threading. https://www.jwz.org/doc/threading.html.

Global spam volume. https://www.statista.com/statistics/420391/spam-email-traffi
c-share/.

Warming up dedicated IP addresses. https://docs.aws.amazon.com/ses/latest/dg/de
dicated-ip-warming.html.

2018 Data Breach Investigations Report. https://enterprise.verizon.com/resources
/reports/DBIR_2018_Report.pdf.

| Chapter 8. Distributed Email Service

[22] Sender Policy Framework. hitps://en.wikipedia.org/wiki/Sender_Policy Framewo

rk.

(23] DomainKeys Identified Mail. https://en.wikipedia.org/wiki/DomainKeys_Identifie
d_Mail.

[24] Domain-based Message Authentication, Reporting & Conformance. https://dmarc.
org/.

[25] DB-Engines Ranking of Search Engines. https://db-engines.com/en/ranking/sear
ch+engine.

[26] Log-structured merge-tree. https://en.wikipedia.org/wiki/Log-structured_merge-t
ree.

[27] Microsoft Exchange Conference 2014 Search in Exchange. https://www.youtube.co
m/watch?v=5EXGCSzzQak&t=2173s.

(28] General Data Protection Regulation. https://en.wikipedia.org/wiki/General_Dat
a_Protection_Regulation.

[29] Lawful interception. https://en.wikipedia.org/wiki/Lawful_interception.

[30] Email safety. https://safety.google/intl/en_us/gmail/.

Reference Material | 251

9 $3-like Object Storage

In this chapter, we design an object storage service similar to Amazon Simple Storage
Service (S3). S3 is a service offered by Amazon Web Services (AWS) that provides object
storage through a RESTful API-based interface. Here are some facts about AWS S3:

+ Launched in June 2006.

« 53 added versioning, bucket policy, and multipart upload support in 2010.

S3 added server-side encryption, multi-object delete, and object expiration in 2011.

« Amazon reported 2 trillion objects stored in S3 by 2013,

Life cycle policy, event notification, and cross-region replication support were intro-
duced in 2014 and 2015.

« Amazon reported over 100 trillion objects stored in S3 by 2021.
Before we dig into object storage, let’s first review storage systems in general and define
some terminologies.
Storage System 101

At a high-level, storage systems fall into three broad categories:

+ Block storage
« File storage
« Object storage

Block storage

Block storage came first, in the 1960s. Common storage devices like hard disk drives
(HDD) and solid-state drives (SSD) that are physically attached to servers are all consid-
ered as block storage.

Block storage presents the raw blocks to the server as a volume. This is the most flexible
and versatile form of storage. The server can format the raw blocks and use them as a file
system, or it can hand control of those blocks to an application. Some applications like

| 253

a database or a virtual machine engine manage these blocks directly in order to squeeze
every drop of performance out of them.

Block storage is not limited to physically attached storage. Block storage could be con-
nected to a server over a high-speed network or over industry-standard connectivity
protocols like Fibre Channel (FC) [1] and iSCSI [2]. Conceptually, the network-attached
block storage still presents raw blocks. To the servers, it works the same as physically
attached block storage.

File storage

File storage is built on top of block storage. It provides a higher-level abstraction to
make it easier to handle files and directories. Data is stored as files under a hierarchical
directory structure. File storage is the most common general-purpose storage solution.
File storage could be made accessible by a large number of servers using common file-
level network protocols like SMB/CITS [3] and NFS [4]. The servers accessing file storage
do not need to deal with the complexity of managing the blocks, formatting volume, etc.
The simplicity of file storage makes it a great solution for sharing a large number of files
and folders within an organization.

Object storage

Object storage is new. It makes a very deliberate tradeoff to sacrifice performance for high
durability, vast scale, and low cost. It targets relatively “cold” data and is mainly used for
archival and backup. Object storage stores all data as objects in a flat structure. There is
no hierarchical directory structure. Data access is normally provided via a RESTful APL
It is relatively slow compared to other storage types. Most public cloud service providers
have an object storage offering, such as AWS S3, Google object storage, and Azure blob

storage.

Comparison

File Storage Object Storage

block || |block || | block . | n
()]

block || | block || | block .

block || | block || | block ‘ _ .

Figure 9.1: Three different storage options

Payload

Table 9.1 compares block storage, file storage, and object storage.

254 | Chapter 9. S3-like Object Storage

| Block storage

[_liile s_torﬁé;c

| 0bjcct s_to_rage

d e i =R P S =i I S
N (object versioning
Mutable l y v is supported,
Content J' in-place update is
| no_t)
Cost ' High - Medium to high Low
o | Medium to high, , ,
Performance |) Medium to high Low to medium
| very high

Consistency [Strong consistency

Strong consistency

Strong consistency

(5]

b o
Data access ; SAS [6]/iSCSI/FC

Standard file access,
CIFS/SMB, and NFS

RESTful API

Scalability __i ‘Medium scalability | High scalability Vast scalability
Virtual machines
(VM), |

Good for high-performance General-purpose file | Binary data,

W, . system access unstructured data
applications like
database
Table 9.1: Storage options
Terminology

To design S3-like object storage, we need to understand some core object storage concepts
first. This section provides an overview of the terms that apply to object storage.

Bucket. A logical container for objects. The bucket name is globally unique. To upload
data to S3, we must first create a bucket.

Object. An object is an individual piece of data we store in a bucket. It contains object
data (also called payload) and metadata. Object data can be any sequence of bytes we
want to store. The metadata is a set of name-value pairs that describe the object.

Versioning. A feature that keeps multiple variants of an object in the same bucket. It is
enabled at bucket-level. This feature enables users to recover objects that are deleted or
overwritten by accident.

Uniform Resource Identifier (URI). The object storage provides RESTful APIs to ac-
cess its resources, namely, buckets and objects. Each resource is uniquely identified by
its URL

Service-level agreement (SLA). A service-level agreement is a contract between a ser-
vice provider and a client. For example, the Amazon S3 Standard-Infrequent Access stor-
age class provides the following SLA [7]:

» Designed for durability of 99.999999999% of objects across multiple Availability
Zones.

+ Data is resilient in the event of one entire Availability Zone destruction.

Storage System 101 | 255

» Designed for 99.9% availability.

Step 1 - Understand the Problem and Establish Design Scope

The following questions help to clarify the requirements and nartow down the

scope.

Candidate: Which features should be included in the design?
Interviewer: We would like you to design an S3-like object storage system with the
following functionalities:

« Bucket creation.

« Object uploading and downloading.

« Object versioning.

« Listing objects in a bucket. It's similar to the aws S3 1s command [8]. ;

Candidate: What is the typical data size?
Interviewer: We need to store both massive objects (a few GBs or more) and a large
number of small objects (tens of KBs,) efficiently. ;,

Candidate: How much data do we need to store in one year?
Interviewer: 100 petabytes (PB).

"\f‘k T e

Candidate: Can we assume data durability is 6 nines (99.9999%) and service availability |

is 4 nines (99.99%)? y

Interviewer: Yes, that sounds reasonable. i

Non-functional requirements
« 100PB of data

» Data durability is 6 nines

|
|
|
]
|
'

» Service availability is 4 nines

« Storage efficiency. Reduce storage costs while maintaining a high degree of reliability
and performance.

Back-of-the-envelope estimation

Object storage is likely to have bottlenecks in either disk capacity or disk IO per second
(IOPS). Let’s take a look.

« Disk capacity. Let’s assume objects follow the distribution listed below:

o 20% of all objects are small objects (less than 1MB).
o 60% of objects are medium-sized objects (1 MB ~ 64MB).
o 20% are large objects (larger than 64MB),

« IOPS. Let’s assume one hard disk (SATA interface, 7200 rpm) is capable of doing

—

256 | Chapter 9. S3- Ilke Object Storage

100 ~ 150 random seeks per second (100 ~ 150 IOPS).

With those assumptions, we can estimate the total number of objects the system can
persist. To simplify the calculation, let’s use the median size for each object type (0.5MB
for small objects, 32MB for medium objects, and 200MB for large objects). A 40% storage
usage ratio gives us:

« 100PB = 100 x 1000 x 1000 x 1000 MB = 10'! MB
101 % 0.4
" (0.2 x 0.5MB+0.6 x 32MB +0.2 x 200 MB)

» If we assume the metadata of an object is about 1KB in size, we need 0.68TB space
to store all metadata information.

= (.68 billion objects.

Even though we may not use those numbers, it’s good to have a general idea about the
scale and constraint of the system.

Step 2 - Propose High-level Design and Get Buy-in

Before diving into the design, let’s explore a few interesting properties of object storage,
as they may influence it.

Object immutability. One of the main differences between object storage and the other
two types of storage systems is that the objects stored inside of object storage are im-
mutable. We may delete them or replace them entirely with a new version, but we cannot
make incremental changes.

Key-value store. We could use object URI to retrieve object data (Listing 9.1). The object
URI is the key and object data is the value.

Request:
GET /bucketl/objectl.txt HTTP/1.1

Response:
HTTP /1.1 288 0K
Content-Length: 4567

[4567 bytes of object data]
Listing 9.1: Use object URI to retrieve object data

Write once, read many times. The data access pattern for object data is written once
and read many times. According to the research done by LinkedIn, 95% of requests are
read operations [9].

Support both small and large objects. Object size may vary and we need to support
both.

The design philosophy of object storage is very similar to that of the UNIX file system.
In UNIX, when we save a file in the local file system, it does not save the filename and
file data together. Instead, the filename is stored in a data structure called “"inode” [10],

Step 2 - Propose High-level Design and Get Buy-in | 257

and the file data is stored in different disk locations. The inode contains a list of file block
pointers that point to the disk locations of the file data. When we access a local file, we
first fetch the metadata in the inode. We then read the file data by following the file block
pointers to the actual disk locations.

The object storage works similarly. The inode becomes the metadata store that storeg]
the object metadata. The hard disk becomes the data store that stores the object data, I
the UNIX file system, the inode uses the file block pointer to record the location of data
on the hard disk. In object storage. the metadata store uses the 1D of the object to find
the corresponding object data in the data store, via a network request. Figure 9.2 shows

P
the UNIX file system and the object storage. #
i Unix File System i E Object Store System |
:' inode i E MetaStore E
: File Name i E Object name—* Object ID l
E Owner UID : : I
! Group UID : ! Object name—Object ID :
[M 1 : - :
E " | t | Object name—>Object ID !
| ! | |
I | Object name—Object ID :
l File block pointers : i ; i
i LIITTITITT] ' I Object name—Object ID !]
S i N W | : - | 1
1 1 1]] r
: ! | Network Request | !
' Local Disk Access i i ' I liﬂ.
' ! I | L
= - |
| L (®) | |
: = j : | i
: = ! ' | |
! ! ; |
i _— : : :
' i " |
", E E DataStore i 1
: o = |

Figure 9.2: UNIX file system and object store

Separating metadata and object data simplifies the design. The data storr? contains im-
mutable data while the metadata store contains mutable data. This separation enables us
to implement and optimize these two components independently. Figure 9.3 shows what
the bucket and object look like. l;’.
2
|
:-1k
R

———t

258 | Chapter 9. S3-like Object Storage

_ Data
0110101010110
Metadata 1010010101001
- | 0100100010100

Bucket Name o
=W O
Life Cycle N ~— Metadata

Bucket Object s D
Object Name
Version 1D
Expiration
Access Control
Buckst

Figure 9.3: Bucket & object

High-level design
Figure 9.4 shows the high-level design.

@&

i Secondary E
i Data Store ___,@ !
Load balancer %&. ': Service ;
E A Storage Node E
i 1
E Primary| |
i] i i
: ! Data Store F J
<«————{ APISenice | I e s | :
Identity & Access E Stovng Hode E
Management 1 i
¥ Secondary| !
¥ : Data Store . @ '
i | Metadata Service E ' Service :
' : J Storage Node| |

| ' o Data Store

Metadata Store

Figure 9.4: High-level design

Let’s go over the components one by one.
Load balancer. Distributes RESTful API requests across a number of API servers.

API service. Orchestrates remote procedure calls to the identity and access manage-

ment service, metadata service, and storage stores. This service is stateless so it can be
horizontally scaled.

Identity and access management (IAM). The central place to handle authentication,
authorization, and access control. Authentication verifies who you are, and authorization
validates what operations you could perform based on who you are.

Step 2 - Propose High-level Design and Get Buy-in | 259

Data store. Stores and retrieves the actual data. All data-related operations are based
on object ID (UUID).

Metadata store. Stores the metadata of the objects.

Note that the metadata and data stores are just logical components. and there are different
ways to implement them. For example. in Ceph’s Rados Gateway [11]. there is no stand-
alone metadata store. Evervthing. including the object bucket. is persisted as one or

multiple Rados objects.

Now we have a basic understanding of the high-level design. let’s explore some of the
most important workflows in object storage.

« Uploading an object.

« Downloading an object.

- Object versioning and listing objects in a bucket. They will be explained in the “de-
sign deep dive” section on page 263.

Uploading an object

®
E-
HTTP PUT. HTTPPUT e mmm—mmmmmm e, .
@OCreatebucket | @ Create object :
fucket-$o-share soript ot Secondary] |
) 1 Data : |
Load baiancer | =~ ot T l .
| O ry - E (]
®6 ® Primary| :
mﬁy- T W] g m E
s AiSevee 58— soves [U |
“am'ﬁ“‘m @ Creste bucket | o Create abject : == 4 i
metadata metadata ! H
S . v Secondarny| ; 3
: | : : e e g |
. [Metadata Service | | 5 Senica :
: & S Bmson
: Metadatz DB
..........................
Figure 9.5: Uploading an object

An object has to reside in a bucket. In this example, we first create a bucket named
bucket-to-share and then upload a file named script.txt to the bucket. Figure 9.5 ex-
plains how this flow works in 7 steps.

1. The client sends an HTTP PUT request to create a bucket named bucket-to-share. The

260 | Chapter 9. S3-like OI—)jec_tStorag;a _ '

0.

request is forwarded to the API service.

The API service calls the IAM to ensure the user is authorized and has WRITE permis-
sion.

The API service calls the metadata store to create an entry with the bucket info in
the metadata database. Once the entry is created, a success message is returned to
the client.

After the bucket is created, the client sends an HTTP PUT request to create an object
named script.txt.

The API service verifies the user’s identity and ensures the user has WRITE permission
on the bucket.

Once validation succeeds, the API service sends the object data in the HTTP PUT pay-
load to the data store. The data store persists the payload as an object and returns
the UUID of the object.

The API service calls the metadata store to create a new entry in the metadata
database. It contains important metadata such as the object_id (UUID), bucket_id
(which bucket the object belongs to), object_name, etc. A sample entry is shown in
Table 9.2.

| object_name | object_id bucket_id
| serint. txt 239D5866-86852-08F 6- 82AATB2E-F599-4598-
. pL. B14E-C914E61ED42B BSE4-1F51AAESF7E4

Table 9.2: Sample entry

The API to upload an object could look like this:

PUT /bucket-to-share/script.txt HTTP/1.1
Host: foo.s3example.org

Date: Sun, 12 Sept 20821 17:51:88 GMT
Authorization: authorization string
Content-Type: text/plain

Content-Length: 4567

x-amz-meta-author: Alex

(4567 bytes of object data]

Listing 9.2: Uploading an object

Downloading an object

A bucket has no directory hierarchy. However, we can create a logical hierarchy by
concatenating the bucket name and the object name to simulate a folder structure. For
example, we name the object bucket-to-share/script.txt instead of script.txt. To get

an object, we specify the object name in the GET request. The API to download an object
looks like this:

Step 2 - Propose High-level Design and Get Buy-in | 261

GE1 /bucket-to-share/script.txt HITP/1.1
Host: foo.s3example.org
Date: Sun, 12 Sept 2021 18:30:81 GMI

uthorization: authorization string

Listing 9.3: Downloading an object

&
=
HTTP GET:
@ Mucket-to-share/ ® Download object ~ r--=m-TTToTTmITIssossssssooao. ,
script xt | Secondary
| Storage @ :
= I 1 — 1
Load balancer X é 2 : Service :
4 : 4 Storage Node| |
@ @ E Primary| f
Identity A Get ! !
«— validation and LAPI Service I*— abject by ——* S‘S»tnre:ge ——ui :
authorization s uuiD ! i i
] |
Identity & Access Query DB to get ' Storage Node :
Management @ object location) j
___________ (}’_U'_D_] . i ! Y Secondary| |
i) : Storage @ ;
. |_Metadata Service | ! : Service '
i l ! E Storage Node| |
i ! ST)
:. Ej : Data Store
1 |
i Metadata DB 3
l |

Metadata store

Figure 9.6: Downloading an object

As mentioned earlier, the data store does not store the name of the object and it only
supports object operations via object_id (UUID). In order to download the object, we
first map the object name to the UUID. The workflow of downloading an object is shown
below:

1. The client sends an HTTP GET request to the load balancer: GET /bucket-to-share/sc
ript.txt

2. The API service queries the IAM to verify that the user has READ access to the bucket.

3. Once validated, the API service fetches the corresponding object’s UUID from the
metadata store.

4. Next, the API service fetches the object data from the data store by its UUID.
5. The API service returns the object data to the client in HTTP GET response.

262 | Chapter 9. S3-like Object Storage

step 3 - Design Deep Dive

In this section, we dive deep into a few areas:

. Data store

. Metadata data model
. Listing objects in a bucket

. Object versioning

. Optimizing uploads of large files

. Garbage collection

Data store

Lel’s take a closer look at the design of the data store. As discussed previously, the API
service handles external requests from users and calls different internal services to fulfill
those requests. To persist or retrieve an object, the API service calls the data store. Figure
9.7 shows the interactions between the API service and the data store for uploading and

downloading an object.

Upload Object

Request: Upload

APl |———" Payload: file_content \/@

Service
T DataStore
Response: ObjectID=30a3e98e-55d9-11ec-bf63-0242ac130002

Download Obiject

Request: Download

APl | ObjectiD: 30a3e98e-559-11ec-bf63-0242ac130002___,_
Service
e DataStore

Response: data = file_content

Figure 9.7: Upload and download an object

High-level design for the data store

The data store has three main components as shown in Figure 9.8.

Step 3 - Design Deep Dive | 263

Data Node

J— [@i"fimaw
s s .
Data traffic ‘/-'/ l N\ [
2l Heartbeat Qata
o replication
X o /’/ ‘ b 4
Data Routin P gy Data
} Service ¥ e— == g:i?;znj* — Heartbeat ——» @ replication
S % Data Node !
_ Secondary ‘,f‘
Heartbeat .
'®‘|Secondary i /
Dal-a N'Ode j’l:.l
Figure 9.8: Data store components i
Data routing service S
The data routing service provides RESTful or gRPC [12] APIs to access the data node #
cluster. It is a stateless service that can scale by adding more servers. This service has |
the following responsibilities: 4!
4
" d

« Query the placement service to get the best data node to store data.
» Read data from data nodes and return it to the API service.
« Write data to data nodes.

Placement service

The placement service determines which data nodes (primary and replicas) should be
chosen to store an object. It maintains a virtual cluster map, which provides the physical

topology of the cluster. The virtual cluster map contains location information for each
data node which the placement service uses to make sure the replicas are physically
separated. This separation is key to high durability. See the “Durability” section on
page 270 for details. An example of the virtual cluster map is shown in Figure 9.9.

Root

Host

[Partttion-1 | | [Partiton-3 | [Partition-4 | | [Partition-6 | [Partiton7 | | [Partiton-s | [Partttion-10]

Partition-2 | Partition-5 | Partition-8 I Pamﬂ::n-ﬂ 1

Partition

Figure 9.9: Virtual cluster map

264 | Chapter 9. S3-like Object Storage

The placement service continuously monitors all data nodes through heartbeats. If a
data node doesn’t send a heartbeat within a configurable 15-sccond grace period, the
placement service marks the node as "down” in the virtual cluster map.

This is a critical service, so we suggest building a cluster of 5 or 7 placement service
nodes with Paxos [13] or Raft [14] consensus protocol. The consensus protocol ensures
that as long as more than half of the nodes are healthy, the service as a whole continues
to work. For example, if the placement service cluster has 7 nodes, it can tolerate a 3
node failure. To learn more about consensus protocols, refer to the reference materials
[13] [14]).

Data node

The data node stores the actual object data. It ensures reliability and durability by repli-
cating data to multiple data nodes, also called a replication group.

Each data node has a data service daemon running on it. The data service daemon con-

tinuously sends heartbeats to the placement service. The heartbeat message includes the
following essential information:

+ How many disk drives (HDD or SSD) does the data node manage?

« How much data is stored on each drive?

When the placement service receives the heartbeat for the first time, it assigns an ID

for this data node, adds it to the virtual cluster map, and returns the following informa-
tion:

« a unique ID of the data node
» the virtual cluster map

« where to replicate data

Data persistence flow

Step 3 - Design Deep Dive | 265

Data Store Data Node _]

(o)l Primary

e— —

@ Send data to primary node

Heartbeat @ Data Y
- replication
/ ot @ // l "\E
/ 10058 -
— = ___(DWTI‘E data | e 5 pllmaly b\‘r —) 4)
API TDatsae?vC:éﬁ!ngg)* — consulting —» Plgcer_nent <+—— Heartbeat———#» ‘(cﬂ rnplﬂ:i'mr.
Service | peplywith 420 C placement _ wenvice M/
=) Obild service oy Data Node
N Secondary
Heartbeat
ot
i@ 4Secondary
Data Node

Figure 9.10: Data persistence flow

Now let’s take a look at how data is persisted in the data node.

1. The API service forwards the object data to the data store.

2. The data routing service generates a UUID for this object and queries the placement
service for the data node to store this object. The placement service checks the virtual
cluster map and returns the primary data node.

3. The data routing service sends data directly to the primary data node, together with
its UUID.
4. The primary data node saves the data locally and replicates it to two secogda.ry data
| nodes. The primary node responds to the data routing service when data is success-
fully replicated to all secondary nodes.

5. The UUID of the object (Objld) is returned to the API service.

iven a UUID for the object as an input, the placement ser.vice retu‘rns Fhe
n sFep -2’ 4 for the object. How does the placement service do this? Keep in mind
rephcaf_fmn ;S eds to be deterministic, and it must survive the addition or removal
that tl;lls i?OkI;P;Or;;S Consistent hashing is a common implementation of such a lookup
Of rep ication .

1 tion.
functi 15] for more informa
ction. Refer to [|
imary data node replicates data to all secondary nodes before it l:ettums
In step 4 the p,rl akes data strongly consistent among all data nodes. ms consis ency
e L ause we have to wait until the slowest replica finishes. Fig-
ith lat
comes Wit

osts bec
i between consistency and latency.
hows
ure 9.11 8

the trade- offs

jike Object Storage

266 | Chapter %-5%

AP| service wait tima]

Data routing service

First option:
Best consistency
Highest latency

Primary data node

Secondary data node 1

Secondary data node 2

Data routing service

Second option:
Medium consistency
Medium latency

Primary data node

Secondary data node 1

Secondary data node 2

Data routing service

Third option:
Worst consistency
Lowest latency

Primary data node

Secondary data node 1 \

Secondary data node 2

1
[
T
i
! P
T >
]
T
|
]

Figure 9.11: Trade-off between consistency and latency

1. Data is considered as successfully saved after all three nodes store the data. This
approach has the best consistency but the highest latency.

2. Data is considered as successfully saved after the primary and one of the secondaries
store the data. This approach has a medium consistency and medium latency.

3. Data is considered as successfully saved after the primary persists the data. This
approach has the worst consistency but the lowest latency.

Both 2 and 3 are forms of eventual consistency.

How data is organized

Now let’s take a look at how each data node manages the data. A simple solution is to
store each object in a stand-alone file. This works, but the performance suffers when
there are many small files. Two issues arise when having too many small files on a file
system. First, it wastes many data blocks. A file system stores files in discrete disk blocks.
Disk blocks have the same size, and the size is fixed when the volume is initialized. The
typical block size is around 4KB. For a file smaller than 4KB, it would still consume the
entire disk block. If the file system holds a lot of small files, it wastes a lot of disk blocks,
with each one only lightly filled with a small file.

Second, it could exceed the system’s inode capacity. The file system stores the location
and other information about a file in a special type of block called inode. For most file
systems, the number of inodes is fixed when the disk is initialized. With millions of
small files, it runs the risk of consuming all inodes. Also, the operating system does not
handle a large number of inodes very well, even with aggressive caching of file system

Step 3 - Design Deep Dive | 267

meladata. For these reasons, storing small objects as individual files does not work well
in practice.)

To address these issues, we can merge many small ohjects into a larger file. Tt works
conceptually like a write-ahead log (WAL). When we save an object, it is appended to an
existing read-write file. When the read-write file reaches its capacity threshold (usually
sel to a few GBs). the read-write file is marked as read-only and a new read-write file iq
created to receive new objects. Once a file is marked as read-only, it can only serve r(‘ad
requests. Figure 9.12 explains how this process works.

APl Service 1

object 4

Read-only File Read-only File Read-write File
[_ object 1

object 2

Empty spaces

Local File System

Figure 9.12: Store multiple small objects in one big file

Note that write access to the read-write file must be serialized. As shown in Figure 9.12,
objects are stored in order, one after the other, in the read-write file. To maintain this on-
disk layout, multiple cores processing incoming write requests in parallel must take their
turns to write to the read-write file. For a modern server with a large number of cores
processing many incoming requests in parallel, this seriously restricts write throughput.
To fix this, we could provide dedicated read-write files, one for each core processing

incoming requests.

Object lookup
With each data file holding many small objects, how does the data node locate an object
by UUID? The data node needs the following information:

« The data file that contains the object
. The starting offset of the object in the data file
« The size of the object

268 | Chapter 9. S3-like Object Storage

The database schema to support this lookup is shown in Table 9.3.

ob}eci___ﬁ;;pang_-

object_id
file_name
start_offset

object_size

Table 9.3: Object_mapping table

Field Description
object_id UUID of the object
file_name The name of the file that contains the object

 start_offset | Beginning address of the object in the file
object_size | The number of bytes in the object

Table 9.4: Object_mapping fields

We considered two options for storing this mapping: a file-based key-value store such as
RocksDB [16] or a relational database. RocksDB is based on SSTable [17], and it is fast
for writes but slower for reads. A relational database usually uses a B+ tree [18] based
storage engine, and it is fast for reads but slower for writes. As mentioned earlier, the
data access pattern is write once and read multiple times. Since a relational database
provides better read performance, it is a better choice than RocksDB.

How should we deploy this relational database? At our scale, the data volume for the
mapping table is massive. Deploying a single large cluster to support all data nodes could
work, but is difficult to manage. Note that this mapping data is isolated within each data
node. There is no need to share this across data nodes. To take advantage of this property,
we could simply deploy a simple relational database on each data node. SQLite [19] is a
good choice here. It is a file-based relational database with a solid reputation.

Updated data persistence flow
Since we have made quite a few changes to the data node, let’s revisit how to save a new
object in the data node (Figure 9.13).

1. The API service sends a request to save a new object named object 4.

2. The data node service appends the object named object 4 at the end of the read-write
file named /data/c.

3. A new record of object 4 is inserted into the object_mapping table.
4. The data node service returns the UUID to the API service.

Step 3 - Design Deep Dive | 269

| APISendcn

*
4 S
1 {4
\ ¥

L

Local Maching [Data Node |

Service |
Y
Read-only File Read-only File Read-write File 6
/data/a /data/b /datale L
| - B Y
| object 1 _—
== [
I object 2 7/ file_name "h'i'“ﬂ mj{u_pinq table]
| : g | ~abj_ id_[file_name offset [nbj qlm |
| :
[’ J
objectd -
' T 1] stant offset L L ____
| = | objectd - _a
! : f - [floserrman ki o S} _0 | fdatafr 0x23253L 512 i
! object size | __
[L —— 1 ik :
[| B —— =3 Empty spaces Ob]r'ri Mapplnq
| '[__—_‘ | =l Database
| e ==
| Local File System

Figure 9.13: Updated data persistence flow

Durability

Data reliability is extremely important for data storage systems. How can we create a
storage system that offers six nines of durability? Each failure case has to be carefully
considered and data needs to be properly replicated.

Hardware failure and failure domain

Hard drive failures are inevitable no matter which media we use. Some storage media
may have better durability than others, but we cannot rely on a single hard drive to
achieve our durability objective. A proven way to increase durability is to replicate data
to multiple hard drives, so a single disk failure does not impact the data availability, as a
whole. In our design, we replicate data three times.

Let’s assume the spinning hard drive has an annual failure rate of 0.81% [20]. This
number highly depends on the model and make. Making 3 copies of data gives us
1 — 0.0081% =~ 0.999999 reliability. This is a very rough estimate. For more sophisti-
cated calculations, please read [20].

For a complete durability evaluation, we also need to consider the impacts of different
failure domains. A failure domain is a physical or logical section of the environment that
is negatively affected when a critical service experiences problems. In a modern data cen-
ter, a server is usually put into a rack [21], and the racks are grouped into rows/floors/-
rooms. Since each rack shares network switches and power, all the servers in a rack
are in a rack-level failure domain. A modern server shares components like the mother-
board, processors, power supply, HDD drives, etc. The components in a server are in a
node-level failure domain.

Here is a good example of a large-scale failure domain isolation. Typically, data cen-

270 | Chapter 9. S3-like Object Storage

ters divide infrastructure that shares nothing into different Availability Zones (AZs). We
replicate our data to different AZs to minimize the failure impact (Figure 9.14). Note
that the choice of failure domain level doesn’t directly increase the durability of data,
but it will result in better reliability in extreme cases, such as large-scale power outages,
cooling system failures, natural disasters, etc.

AZA1
(Independent power and networking)

Rack 1 Rack 2

Node 1 Node 1

Node 2 Node 2

Replicate Replicate
AZ 3 AZ 2 _
(Independent power and networking) (Independent power and networking)

Rack 1 Rack 2 Rack 1 Rack 2
Node 1 Node 1 =—Haplioste Node 1 Node 1
Node 2 Node 2 Node 2 Node 2

Figure 9.14: Multi-Datacenter replication

Erasure coding

Making three full copies of data gives us roughly 6 nines of data durability. Are there
other options to further increase durability? Yes, erasure coding is one option. Era-
sure coding [22] deals with data durability differently. It chunks data into smaller pieces
(placed on different servers) and creates parities for redundancy. In the event of failures,
we can use chunk data and parities to reconstruct the data. Let’s take a look at a concrete
example (4 + 2 erasure coding) as shown in Figure 9.15.

Step 3 - Design Deep Dive | 271

@
Split into
equal-sized
data chunks

@
Calculale
panfties

di

-1

dz

d3

d4

p1

p2

Data loss due
lo node crash

Figure 9.15: Erasure coding

@
Data
reconstruction

1. Data is broken up into four even-sized data chunks d1, d2, d3, and d4.

2. The mathematical formula [23] is used to calculate the parities p1 and p2. To give a
much simplified example, p1 = d1 +2xd2 — d3 +4xd4 and p2 = —d1 +5xd2 + d3

—3xd4 [24].

3. Data d3 and d4 are lost due to node crashes.

4. The mathematical formula is used to reconstruct lost data d3 and d4, using the known

values of d1, d2, p1, and p2.

Let’s take a look at another example as shown in Figure 9.16 to better understand how
erasure coding works with failure domains. An (8+4) erasure coding setup breaks up the
original data evenly into 8 chunks and calculates 4 parities. All 12 pieces of data have the
same size. All 12 chunks of data are distributed across 12 different failure domains. The
mathematics behind erasure coding ensures that the original data can be reconstructed

when at most 4 nodes are down.

272 | Chapter 9. S3-like Object Storage

EFTE oo)

Math Calculation

T

[©0goo0233p09e

VNN

oDoon DE DD YOjpoo | | oobeo
oopooo doooo o oo |\ ooooO
Dopoo ;/DDDDD /'DUDED \ooooao
ooooo |/l ooooo) g woooo
oooo ooooogf de ooa
Failure Dorr)m/n Failure Domain/ | Flurk Domain| | Faiture Domain
Ny L] i
Dnﬂun nodo ooo\ | oocoo
osooo wfalalal oDoooo ooooo
Doooo Aooo oleooo \ oooo®e
oDopooo ‘nooo obooo oooaao
ooooo [/| oooo ofooo ooooo
Failure Domaig'| | Failure Domain | | Failute Domain Fhlure Domain
Pl [| X
noodo googao ooooo DSDDD
oodoan ooodo oolooo ooooo
odooo ooogo oopoo DDSDD
doooo oooeo ooboo oDoogoo
oooaoo ooooo ooooOo noo®o

Failure Domain Failure Domain Failure Domain Failure Domain

Figure 9.16: (8 + 4) erasure coding

Compared to replication where the data router only needs to read data for an object
from one healthy node, in erasure coding the data router has to read data from at least 8
healthy nodes. This is an architectural design tradeoff. We use a more complex solution
with a slower access speed, in exchange for higher durability and lower storage cost. For
object storage where the main cost is storage, this tradeoff might be worth it.

How much extra space does erasure coding need? For every two chunks of data, we
need one parity block, so the storage overhead is 50% (Figure 9.17). While in 3-copy
replication, the storage overhead is 200% (Figure 9.17).

Step 3 - Design Deep Dive | 273

3-copy rephcation
Data is distributed across 3 nodes

£ 4

1GB 1GB

=]

0.25(0.25{0.2% |0 25|0.25|0.25
Gh | GB r!nJr;r-. GR | GB
ik

Tt

Data is distributed across 6 nodes

Erasure coding (4+2)

\

1GB

Figure 9.17: Extra space for replication and erasure coding

Does erasure coding increase data durability? Let’s assume a node has a 0.81% annual
failure rate. According to the calculation done by Backblaze [20], erasure coding can
achieve 11 nines durability. The calculation requires complicated math. If you're inter-

ested, refer to [20] for details.

Table 9.5 compares the pros and cons of replication and erasure coding.

I

Replication Erasure coding
o = 11 nines of durability (8 + 4
o 6 nines of durability (data . 24
Durability : _ erasure coding). Erasure
copied 3 times) . :
coding wins.
Storage 50% storage overhead. Erasure
26 200% storage overhead. : 8
efficiency coding wins.
Compute No computation. Replication | Higher usage of computation
resource wins. resources to calculate parities.
Write Replicating data to multiple Increased write latency because
nodes. No calculation is needed. | we need to calculate parities
performance hine- . B .
Replication wins. before data is written to disk.
In normal operation, reads are In normal operation, every read
served from the same replica. has to come from multiple
Read Reads under a failure mode are | nodes in the cluster. Reads
performance | not impacted because reads can | under a failure mode are slower
be served from a non-fault because the missing data must
replica. Replication wins. be reconstructed first.

In summary, replication is widely adopted in latency-sensitive applications while erasure
coding is often used to minimize storage cost. Erasure coding is attractive for its cost

Table 9.5: Replication vs erasure coding

274 | Chapter 9. S3-like Object Storage

efMciency and durability, but it greatly complicates the data node design. Therelore, for
this design, we mainly focus on rephication.

Correctness verification

Erasure coding increases data durability at comparable storage costs. Now we can move
on o solve another hard challenge: dala corruption.

Il a disk fails completely and the failure can be detected, it can be treated as a data node
failure. In this case, we can reconstruct data using erasure coding. However, in-memory
data corruption is a regular occurrence in large-scale systems,

This problem can be addressed by verifying checksums [25] between process boundarics.
A checksum is a small-sized block of data that is used lo detect data errors. Figure 9.18
illustrates how the checksum is generated.

Data
0110101010110 Checksum
1010010101001 - %’I‘g":rll‘ﬁ]unzn o[F7 33 51 18 9D F6
0100100010100

Figure 9.18: Generate checksum

If we know the checksum of the original data, we can compute the checksum of the data
after transmission:

» If they are different, data is corrupted.

« If they are the same, there is a very high probability the data is not corrupted. The
probability is not 100%, but in practice, we could assume they are the same.

Checksum of Checksum of the
the original data recelved data

[F7 13 51 18 9D F6 |4— compare—{ F7 33 51 16 90 6]

Figure 9.19: Compare checksums

There are many checksum algorithms, such as MD5 [26], SHA1 [27], HMAC [28], etc. A
good checksum algorithm usually outputs a significantly different value even for a small

change made to the input. For this chapter, we choose a simple checksum algorithm such
as MD5.

In our design, we append the checksum at the end of each object. Before a file is marked

as read-only, we add a checksum of the entire file at the end. Figure 9.20 shows the
layout.

Step 3 - Design Deep Dive | 275

v oaE——

Read-only File Read-only File Read-write File

object 1 | Checksum

object 2 | Checksum

object 3 | Checksum

| object4 | Checksum

object 5 | Checksum

Empty spaces

™

Checksum Checksum

Local File System

Figure 9.20: Add checksum to data node

With (8 + 4) erasure coding and checksum verification, this is what happens when we
read data:
1. Fetch the object data and the checksum.
2. Compute the checksum against the data received.
(a) If the two checksums match, the data is error-free.

(b) If the checksums are different, the data is corrupted. We will try to recover by
reading the data from other failure domains.

3. Repeat steps 1 and 2 until all 8 pieces of data are returned. We then reconstruct the
data and send it back to the client.

Metadata data model

In this section, we first discuss the database schema and then dive into scaling the
database.

Schema

The database schema needs to support the following 3 queries:
Query 1: Find the object ID by object name.

Query 2: Insert and delete an object based on the object name.

Query 3: List objects in a bucket sharing the same prefix.

276 | Chapter 9. $3-like Object Storage

Figure 9.21 shows the schema design.

object.

bucket

bucket_name
bucket_id
owner_id
enable_versioning

We need two database tables:

 object

bucket_name
object_name
object_version
object_id

bucket and

Figure 9.21: Database tables

Scale the bucket table

Since there is usually a limit on the number of buckels a user can create, the size of the
bucket table is small. Let’s assume we have 1 million customers, each customer owns 10
buckets and each record takes 1KB. That means we need 10GB (1 million x10 x 1KB)
of storage space. The whole table can easily fit in a modern database server. However, a
single database server might not have enough CPU or network bandwidth to handle all
read requests. If so, we can spread the read load among multiple database replicas.

Scale the object table

The object table holds the object metadata. The dataset at our design scale will likely not
fit in a single database instance. We can scale the object table by sharding.

One option is to shard by the bucket_id so all the objects under the same bucket are

stored in one shard. This doesn’t work because it causes hotspot shards as a bucket
might contain billions of objects.

Another option is to shard by object_id. The benefit of this sharding scheme is that
it evenly distributes the load. But we will nol be able to execute query 1 and query 2
efficiently because those two queries are based on the URL

We choose to shard by a combination of bucket_name and object_name. This is because
most of the metadata operations are based on the object URI, for example, finding the
object ID by URI or uploading an object via URL. To evenly distribute the data, we can
use the hash of the <bucket_name, object_name> as the sharding key.

With this sharding scheme, it is straightforward to support the first two queries, but the
last query is less obvious. Let’s take a look.

Listing objects in a bucket

The object store arranges files in a flat structure instead of a hierarchy, like in a file system.
An object can be accessed using a path in this format, s3: //bucket-name/object-name.
For example, s3: //mybucket/abc/d/e/f/file.txt contains:

» Bucket name: mybucket
» Object name: abc/d/e/f/file.txt

Step 3 - Design Deep Dive | 277

To help users organize their objects in a bucket, S3 introduces a concept called "prefixes’.
A prefix is a string at the beginning of the object name. S3 uses prefixes to organize the
data in a way similar to directories. However, prefixes are not directories. Listing a bucket
by prefix limits the results to only those object names that begin with the prefix.

In the example above with the path s3: //mybucket/abc/d/e/f/file.txt, the prefix is
abc/d/e/f/.

The AWS S3 listing command has 3 typical uses:

1. List all buckets owned by a user. The command looks like this:

aws <3 list-buckets

2. List all objects in a bucket that are at the same level as the specified prefix. The
command looks like this:
aws s1 1s s3://mybucket/abc/
In this mode, objects with more slashes in the name after the prefix are rolled up into
a common prefix. For example, with these objects in the bucket:
CA/cities/losangeles.txt
CA/cities/sanfranciso. txt

NY/cities/ny.txt
federal.txt

Listing the bucket with the "/" prefix would return these results, with everything
under CA/ and NY/ rolled up into them:

CA/
NY/
federal.txt

3. Recursively list all objects in a bucket that shares the same prefix. The command
looks like this:

aws s3 1s s3://mybucket/abc/ --recursive
Using the same example as above, listing the bucket with the CA/ prefix would return
these results:

CA/cities/losangeles.txt
CA/cities/sanfranciso.txt

Single database

Let’s first explore how we would support the listing command with a single database. To
list all buckets owned by a user, we run the following query:

SELECT * FROM bucket WHERE owner_id={id}

To list all objects in a bucket that share the same prefix, we run a query like this.

SELECT * FROM object
WHERE bucket_id = "123" AND object_name LIKE ‘abc/%°

278 | Chapter 9. S3-like Object Storage

In this example, we find all objects with bucket._id equals to 123 that share the prefix
abc/. Any objects with more slashes in their names after the specified prefix are rolled
up in the application code as stated earlier in use casc 2.

The same query would support the recursive listing mode, as slated in use case 3 pre-
viously. The application code would list every object sharing the same prefix, without
performing any rollups.

Distributed databases

When the metadata table is sharded, it's difficult to implement the listing function be-
cause we don’t know which shards contain the data. The most obvious solution is to run
a search query on all shards and then aggregate the results, To achieve this, we can do
the following:

1. The metadata service queries every shard by running the following query:

SELECT * FROM object
WHERE bucket_id = "123" AND object_name LIKE ‘a/b/%"

2. The metadata service aggregates all objects returned from each shard and returns the
result to the caller.

This solution works, but implementing pagination for this is a bit complicated. Before we
explain why, let’s review how pagination works for a simple case with a single database.
To return pages of listing with 10 objects for each page, the SELECT query would start
with this:

SELECT * FROM object
WHERL bucket_id = "123" AND object_name LIKE ‘a/b/%"
URDER BY object_name OFFSET @ LIMIT 10

The OFFSET and LIMIT would restrict the results to the first 10 objects. In the next call,
the user sends the request with a hint to the server, so it knows to construct the query
for the second page with an OFFSET of 10. This hint is usually done with a cursor that
the server returns with each page to the client. The offset information is encoded in the
cursor. The client would include the cursor in the request for the next page. The server
decodes the cursor and uses the offset information embedded in it to construct the query

for the next page. To continue with the example above, the query for the second page
looks like this:

SELECT * FROM metadata
WHERE bucket_id = “123" AND object_name LIKE “a/b/%"
URDER BY object_name OFFSET 18 LIMIT 18

This client-server request loop continues until the server returns a special cursor that
marks the end of the entire listing.

Now, let’s explore why it’s complicated to support pagination for sharded databases.
Since the objects are distributed across shards, the shards would likely return a varying
number of results. Some shards would contain a full page of 10 objects, while others

Step 3 - Design Deep Dive | 279

would be partial or empty. The application code would receive results from every shard,
aggregate and sort them, and return only a page of 10 in our example. The objects that
don’t get included in the current round must be considered again for the next round,
This means that each shard would likely have a different offset. The server must track
the offsets for all the shards and associate those offsets with the cursor, If there are
hundreds of shards, there will be hundreds of offsets to track.

We have a solution that can solve the problem, but there are some tradeoffs. Since object
storage is tuned for vast scale and high durability, object listing performance is rarely a
priority. In fact, all commercial object storage supports object listing with sub-optimal
performance. To take advantage of this, we could denormalize the listing data into a sepa-
rate table sharded by bucket ID. This table is only used for listing objects. With this setup,
even buckets with billions of objects would offer acceptable performance. This isolates
the listing query to a single database which greatly simplifies the implementation.

Object versioning

Versioning is a feature that keeps multiple versions of an object in a bucket. With ver-
sioning, we can restore objects that are accidentally deleted or overwritten. For example,
we may modify a document and save it under the same name, inside the same bucket.
Without versioning, the old version of the document metadata is replaced by the new
version in the metadata store. The old version of the document is marked as deleted, so
its storage space will be reclaimed by the garbage collector. With versioning, the object
storage keeps all previous versions of the document in the metadata store, and the old
versions of the document are never marked as deleted in the object store.

Figure 9.22 explains how to upload a versioned object. For this to work, we first need to
enable versioning on the bucket.

280 | Chapter 9. S3-like Object Storage

(1) HTTP PUT obiject

E o Secm‘n—(—iar_\f1 .
] [
l I Storage _.ﬁ '
' Service o
Load balancer | ¢ E 2 : 3 diaagibodal |
; i
@ | ® E Primary :
Identity : Upload ' || Storage 1
<«+— validation and —{ API Service]-—— object —t Serilce - » :
authorization : :
: i 1 N
Identity Service . , P, |
@ ?h(?)::}(ect exists? ®Create object i :
2. Versioning enabled?| meradata ‘: Secondary] |
! Storage @ E
R B S A R S | i Service :
]]] 1
1 v | ! i
) \ | Storage Node
i | Metadata Service | ! ! !
| | Hascsapsnseas s o e oo
E | Data Store
i i
I)
: Metadata DB :
Metadata Store

Figure 9.22: Object versioning

1. The client sends an HTTP PUT request to upload an object named script. txt.

2. The API service verifies the user’s identity and ensures that the user has WRITE per-
mission on the bucket.

3. Once verified, the API service uploads the data to the data store. The data store
persists the data as a new object and returns a new UUID to the API service.

4. The API service calls the metadata store to store the metadata information of this
object.

5. To support versioning, the object table for the metadata store has a column called
object_version that is only used if versioning is enabled. Instead of overwriting the
existing record, a new record is inserted with the same bucket_id and object_name
as the old record, but with a new object_id and object_version. The object_id is
the UUID for the new object returned in step 3. The object_version is a TIMEUUID
[29] generated when the new row is inserted. No matter which database we choose
for the metadata store, it should be efficient to look up the current version of an
object. The current version has the largest TIMEUUID of all the entries with the same
object_name. See Figure 9.23 for an illustration of how we store versioned metadata.

Step 3 - Design Deep Dive | 281

Current version

Metadata Store
1

—

_ ;

. } - R - Data Store
{ i = {7 — .
Previous @;ect_v_erilgn = fas3 nh;m name= surpil
current obqect id= DwMT’!n i -[ohmct td OxMISn]»‘{
version “t. - i T .

|

v

A
object_version = bn31 object _name=script.txt

(_:bjeqt id=0x12Ha - === '-l object id=0x12Ha }——(I

object_name=script.ixt

object id=0x91b4 | -{----- --[object_id=0x91b4 ’—{j

object_version = 1ag’

A

Figure 9.23: Versioned metadata

In addition to uploading a versioned object, it can also be deleted. Lelt's take a look.

When we delete an object, all versions remain in the bucket and we insert a delete marker,

as shown in Figure 9.24.

Current version

Metadata Store
X Iy
‘a8
‘ob}ect_\rersion = kk1 h]| »| object_name=script.txt
Previous Delete Marker
current :
N Data Store
object_version = fas3 + object_name=script.txt

object_id=0xM13n f-f=-==- > ob]ect_id:Dxmaﬂ—O
object_name=script.txt
object_id=0x12Ha | -F----- | object_id=0x12Ha }—O

object version = 1agi »| object_name=script.txt

object_id=0x91b4 [-f----- -+ object_id=0x91b4]—D

v

object_version = bn31

Figure 9.24: Delete object by inserting a delete marker

A delete marker is a new version of the object, and it becomes the current version of the
object once inserted. Performing a GET request when the current version of the object is
a delete marker returns a 484 Object Not Found error.

Optimizing uploads of large files

In the back-of-the-envelope estimation, we estimated that 20% of the objects are large.
Some might be larger than a few GBs. It is possible to upload such a large object file
directly, but it could take a long time. If the network connection fails in the middle of
the upload, we have to start over. A better solution is to slice a large object into smaller

282 | Chapter 9, 53-like Object Storage

parts and upload them independently. After all the parts are uploaded, the object store
re-assembles the object from the parts. This process is called multipart upload.

Figure 9.25 illustrates how multipart upload works:

® Data Store
=)

————D-Multipart upload initiation————"
Initiation

- @ uploadID

Y

3 [Part 1
[] uploadiD

@- ETag 1

A

Upload [] uploadID
- ETag 2

[Part 8
[] uploadiD

v

Multipart | [Part2 N

uploadiD
Multipart | Part 1—>ETag 1

® upload | Part2—>ETag2 >
completion

Completion

Part B—=ETag 8

- {&)Success

-l
-
<

o

Figure 9.25: Multipart upload

1. The client calls the object storage to initiate a multipart upload.
2. The data store returns an uploadID, which uniquely identifies the upload.

3. The client splits the large file into small objects and starts uploading. Let’s assume
the size of the file is 1.6GB and the client splits it into 8 parts, so each part is 200MB
in size. The client uploads the first part to the data store together with the uploadID
it received in step 2.

4. When a part is uploaded, the data store returns an ETag, which is essentially the md5
checksum of that part. It is used to verify multipart uploads.

5. After all parts are uploaded, the client sends a complete multipart upload request,
which includes the uploadID, part numbers, and ETags.

6. The data store reassembles the object from its parts based on the part number. Since

Step 3 - Design Deep Dive | 283

the object is really large, this process may take a few minutes. After reassembly is
complete, it returns a success message to the client,

One potential problem with this approach is that old parts are no longer useful after
the object has been reassembled from them. To solve this problem, we can introduce a
garbage collection service responsible for frecing up space from parts that are no longer

needed.

Garbage collection

Garbage collection is the process of automatically reclaiming storage space that is no
longer used. There are a few ways that data might become garbage:

« Lazy object deletion. An object is marked as deleted at delete time without actually

being deleted.
+ Orphan data. For example, half uploaded data or abandoned multipart uploads.

« Corrupted data. Data that failed the checksum verification.

The garbage collector does not remove objects from the data store, right away. Deleted
objects will be periodically cleaned up with a compaction mechanism.

The garbage collector is also responsible for reclaiming unused space in replicas. For
replication, we delete the object from both primary and backup nodes. For erasure cod-
ing, if we use (8 + 4) setup, we delete the object from all 12 nodes.

Figure 9.26 shows an example of how compaction works.

1. The garbage collector copies objects from /data/b to a new file named /data/d. Note
the garbage collector skips “Object 2” and “Object 5” because the delete flag is set to
true for both of them.

2. After all objects are copied, the garbage collector updates the object_mapping ta-
ble. For example, the obj_id and object_size fields of “Object 3” remain the same,
but file_name and start_offset are updated to reflect its new location. To ensure
data consistency, it's a good idea to wrap the update operations to file_name and
start_offset in a database transaction.

284 | Chapter 9. 53-like Object Storage

.|

object_mapping table object_mapping table -
| obj_id_|file_name| offset | obj size obj_id |file_name| offset | obj size
11—
-] _\\\i
object 3 | /data/b | 0x232B3 object 3 | /data/d | 0x10013
.“.__@_4/ "‘ .‘\.
y A \
/data/b \ /data/d |
_____ .r'J-_---_.‘...____-__..__.-_-..-‘... J'j
f' ’
. ’ - Object 3
x| Objecte | . B
Objecta
e
_ ¥
x| Objects "
== i Read-only File
Read-only File
L
Before Compaction After Compaction

Figure 9.26: Compaction

As we can see from Figure 9.26, the size of the new file after compaction is smaller than
the old file. To avoid creating a lot of small files, the garbage collector usually waits
until there are a large number of read-only files to compact, and the compaction process
appends objects from many read-only files into a few large new files.

Step 4 - Wrap Up

In this chapter, we described the high-level design for S3-like object storage. We com-
pared the differences between block storage, file storage, and object storage.

The focus of this interview is on the design of object storage, so we listed how the up-

loading, downloading, listing objects in a bucket, and versioning of objects are typically
done in object storage.

Then we dived deeper into the design. Object storage is composed of a data store and a
metadata store. We explained how the data is persisted into the data store and discussed
two methods for increasing reliability and durability: replication and erasure coding. For
the metadata store, we explained how the multipart upload is executed and how to design
the database schema to support typical use cases. Lastly, we explained how to shard the

Step 4 - Wrap Up | 285

Reference Material

[1] Fibre channel. https://en.wikipedia.org/wiki/Fibre_Channel.

[2] iSCSL https://en.wikipedia.org/wiki/ISCSI.

[3] Server Message Block. https://en.wikipedia.org/wiki/Server_Message_Block.

(4] Network File System. https://en.wikipedia.org/wiki/Network_File_System.

[5) Amazon S3 Strong Consistency. https://aws.amazon.com/s3/consistency/.

(6] Serial Attached SCSI. https://en.wikipedia.org/wiki/Serial _Attached_SCSI.

[7] AWS CLIls command. https://docs.aws.amazon.com/cli/latest/reference/s3/Is.html.
[8] Amazon S3 Service Level Agreement. https://aws.amazon.com/s3/sla/.

[9] Ambry. LinkedIn’sScalableGeo-DistributedObjectStore:https://assured-cloud-co
mputing.illinois.edu/files/2014/03/Ambry- LinkedIns- Scalable-GeoDistributed-Obj
ect-Store.pdf.

[10] inode. https://en.wikipedia.org/wiki/Inode.

[11] Ceph’s Rados Gateway. https://docs.ceph.com/en/pacific/radosgw/index.html.
[12] grpe. https://grpe.io/.

(13] Paxos. https://en.wikipedia.org/wiki/Paxos_(computer_science).

[14] Raft. https://raft.github.io/.

(15] Consistent hashing, https://www.toptal.com/big-data/consistent-hashing.

[16] RocksDB. https://github.com/facebook/rocksdb.

[17] SSTable. https://www.igvita.com/2012/02/06/sstable-and-log-structured-storage-1
eveldb/.

(18] B+ tree. https://en.wikipedia.org/wiki/B%2B_tree.
[19] SQLite. https://www.sqlite.org/index.html.

[20] Data Durability Calculation. https://www.backblaze.com/blog/cloud-storage-dur
ability/.

[21] Rack. https://en.wikipedia.org/wiki/19-inch_rack.
(22] Erasure Coding. https://en.wikipedia.org/wiki/Erasure_code.

(23] Reed-Solomon error correction. https://en.wikipedia.org/wiki/Reed %E2%80%93Sol
omon_error_correction.

[24] Erasure Coding Demystified. https://www.youtube.com/watch?v=Q5kVuM7zEUL
[25] Checksum. https://en.wikipedia.org/wiki/Checksum.

Reference Material | 287

[26] Md5. https://en.wikipedia.org/wiki/MD5.

[27] Shal. https://en.wikipedia.org/wiki/SHA-1.

[28] Hmac. https://en.wikipedia.org/wiki/ HMAC.

[29] TIMEUUID. hl‘t'pS:Udocs.dalastax.com/en/cqI~oss/3.3a‘cqlfcql_reference/timeuuidhf

unctions_r.html.

288 .I Chapte_r 9. 53-like Object Storage

10 Real-time Gaming Leaderboard

In this chapter, we are going to walk through the challenge of designing a leaderboard
for an online mobile game.

What is a leaderboard? Leaderboards are common in gaming and elsewhere to show who
is leading a particular tournament or competition. Users are assigned points for complet-
ing tasks or challenges, and whoever has the most points is at the top of the leaderboard.
Figure 10.1 shows an example of a mobile game leaderboard. The leaderboard shows the
ranking of the leading competitors and also displays the position of the user on it.

Rank Player Points
Q* 1 Aquaboys 976)
(% 2 B team 956)
(* 3 Berlin's Angels 890)
(ﬁ' 4 GrendelTeam 878)

Figure 10.1: Leaderboard

Step 1 - Understand the Problem and Establish Design Scope

Leaderboards can be pretty straightforward, but there are a number of different matters
that can add complexity. We should clarify the requirements.

Candidate: How is the score calculated for the leaderboard?
Interviewer: The user gets a point when they win a match. We can go with a simple

point system in which each user has a score associated with them. Each time the user
wins a match, we should add a point to their total score.

Candidate: Are all players included in the leaderboard?
Interviewer: Yes.

| 289

Candidate: Is there a time segment associated with the leaderboard?
Interviewer: Each month, a new tournament kicks off which starts a new leaderboard,

Candidate: Can we assume we only care about the top 10 users?

Interviewer: We want to display the top 10 users as well as the position of a specific
user on the leaderboard. If time allows, let’s also discuss how to return users who are
four places above and below a specific user.

Candidate: How many users are in a fournament?
Interviewer: Average of 5 million daily active users (DAU) and 25 million monthly
active users (MAU).

Candidate: How many matches are played on average during a tournament?
Interviewer: Each player plays 10 matches per day on average.

Candidate: How do we determine the rank if two players have the same score?
Interviewer: In this case, their ranks are the same. If time allows, we can talk about
ways to break ties.

Candidate: Does the leaderboard need to be real-time?
Interviewer: Yes, we want to present real-time results, or as close as possible. It is not
okay to present a batched history of results.

Now that we've gathered all the requirements, let’s list the functional require-
ments.

« Display top 10 players on the leaderboard.
- Show a user’s specific rank.

« Display players who are four places above and below the desired user (bonus).

Other than clarifying functional requirements, it’s important to understand non-
functional requirements.

Non-functional requirements

« Real-time update on scores.
- Score update is reflected on the leaderboard in real-time.

. General scalability, availability, and reliability requirements.

Back-of-the-envelope estimation

Let’s take a look at some back-of-the-envelope calculations to determine the potential
scale and challenges our solution will need to address.

With 5 million DAU, if the game had an even distribution of players during a 24-hour

5,000,000 DAU __ =0 How-

period, we would have an average of 50 users per second (TP seconds . =

ever, we know that usages most likely aren’t evenly distributed, and potentially there
are peaks during evenings when many people across different time zones have time to
play. To account for this, we could assume that peak load would be 5 times the average.

290 | Chapter 10. Real-time Gaming Leaderboard

Therefore we'd wanl to allow for a peak load of 250 users per second.

QPS for users scoring a point: if a user plays 10 games per day on average, the QPS for

users scoring a point is: 50 x 10 =~ 500. Peak QPS is Hx of the average: H00 x 5 =
2,500.

QPS for fetching the top 10 leaderboard: assume a user opens the game once a day an.d
the top 10 leaderboard is loaded only when a user first opens the game. The QPS for this

is around 5H0).
Step 2 - Propose High-level Design and Get Buy-in

In this section, we will discuss API design, high-level architecture, and data mod-
els.

API design

At a high level, we need the following three APIs:

POST /v1/scores

Update a user’s position on the leaderboard when a user wins a game. The request param-

eters are listed below. This should be an internal API that can only be called by the game
servers. The client should not be able to update the leaderboard score directly.

Field Description

user_id | The user who wins a game.

points | The number of points a user gained by winning a game.
Table 10.1: Request parameters
Response:
Name Description
208 0K

Successfully updated a user’s score.
488 Bad Request | Failed to update a user’s score.

Table 10.2: Response

GET /v1/scores

Fetch the top 10 players from the leaderboard.

Sample response:

Step 2 - Propose High-level Design and Get Buy-in | 291

"data": [

{
"user_id": "user_id1",
"user_name": "alice",
"rank™: 1,
"score": 976

o e —

"user_id": "user_id?",
"user_name": "bob",
"rank": 2,
"score": 965

1

]

1y

"total": 10
]
GET /v1/scores/{:user_id}

Fetch the rank of a specific user.

Field Description
user_id | The ID of the user whose rank we would like to fetch.

Table 10.3: Request parameters

Sample response:

{

"user_info": {
"user_id": "user5",
"score": 948,
“rank": 6,

}

}

High-level architecture

The high-level design diagram is shown in Figure 10.2. There are two services in this
design. The game service allows users to play the game and the leaderboard service
creates and displays a leaderboard.

292 | Chapter 10. Real-time Gaming Leaderboard

20

Wi " a. Get leaderboard
@ W el b. Gel player_rank

Game Leaderboard
9 Update score —» aaprita

I

@ Update score

Leaderboard
Store

Figure 10.2: High-level design

1. When a player wins a game, the client sends a request to the game service.

The game service ensures the win is valid and calls the leaderboard service to update
the score.

(o]

3. The leaderboard service updates the user’s score in the leaderboard store.

4. A player makes a call to the leaderboard service directly to fetch leaderboard data,
including:

(a) top 10 leaderboard.
(b) the rank of the player on the leaderboard.

Before settling on this design, we considered a few alternatives and decided against them.

It might be helpful to go through the thought process of this and to compare different
options.

Should the client talk to the leaderboard service directly?

Step 2 - Propose High-level Design and Get Buy-in | 293

---=-Current Option ---- oo Alternative Option

o @ |
Sel score |
- D |

J\ Win a game

l

Game

|
|
I
|
1
|
|
il
|
i
|
U
I
1
il
U
!
[
1
i
1
1
1
]
[}
|
|
1
I
|
'
L
'
I
I
l
I
I
]
]
]

boeniliind (2) Update score
E @ Update score

e 1 e '
Leaderboard ! Leaderboard
; service ! service

Figure 10.3: Who sets the leaderboard score

In the alternative design, the score is set by the client. This option is not secure because it
is subject to man-in-the-middle attack [1], where players can put in a proxy and change
scores at will. Therefore, we need the score to be set on the server-side.

Note that for server authoritative games such as online poker, the client may not need
to call the game server explicitly to set scores. The game server handles all game logic,
and it knows when the game finishes and could set the score without any client inter-
vention.

Do we need a message queue between the game service and the leaderboard ser-
vice?

The answer to this question highly depends on how the game scores are used. If the data
is used in other places or supports multiple functionalities, then it might make sense to
put data in Kafka as shown in Figure 10.4. This way, the same data can be consumed
by multiple consumers, such as leaderboard service, analytics service, push notification
service, etc. This is especially true when the game is a turn-based or multi-player game
in which we need to notify other players about the score update. As this is not an explicit
requirement based on the conversation with the interviewer, we do not use a message
queue in our design.

294 | Chapter 10. Real-time Gaming Leaderboard

Leaderboard

service
- Game Analytic
service Kafka service

Push Notification
service

Figure 10.4: Game scores are used by multiple services

Data models

One of the key components in the system is the leaderboard store. We will discuss three

potential solutions: relational database, Redis, and NoSQL (NoSQL solution is explained
in deep dive section on page 309).

Relational database solution

First, let's take a step back and start with the simplest solution. What if the scale doesn’t
matter and we have only a few users?

We would most likely opt to have a simple leaderboard solution using a relational
database system (RDS). Each monthly leaderboard could be represented as a database
table containing user id and score columns. When the user wins a match, either award
the user 1 point if they are new, or increase their existing score by 1 point. To determine

a user's ranking on the leaderboard, we would sort the table by the score in descending
order. The details are explained below.

Leaderboard DB table:

leaderboard —‘

user_id varchar
score int

Figure 10.5: Leaderboard table

In reality, the leaderboard table has additional information, such as a game_id, a times-
tamp, etc. However, the underlying logic of how to query and update the leaderboard

remains the same. For simplicity, we assume only the current month’s leaderboard data
is stored in the leaderboard table.

A user wins a point:

Leaderi_::oard t————— Insert or update DB “@
service

Figure 10.6: A user wins a point

Step 2 - Propose High-level Design and Get Buy-in | 295

Assume every score update would be an increment of 1. If a user doesn’t yet have an
entry in the leaderboard for the month, the first insert would be:

INSCRT INTO leaderboard (user_id, score) VALUES ('mary1934', 1)

)
An update to the user’s score would be:

UPDATE leaderboard set score=score + 1 where user_id='mary1934';

Find a user’s leaderboard position:

Leaderboard | getch from DB, sorted by rank 4@
service

Figure 10.7: Find a user's leaderboard position

To fetch the user rank, we would sort the leaderboard table and rank by the score:

SELECT (@rownum := @rownum + 1) AS rank, user_id, score
FROM leaderboard
ORDER BY score DESC;

The result of the SQL query looks like this:

rank | user_id score
1 happy_tomato | 987
2 mallow 902
3 smith 870
4 mary1934 850

Table 10.4: Result sorted by score

This solution works when the data set is small, but the query becomes very slow when
there are millions of rows. Let’s take a look at why.

To figure out the rank of a user, we need to sort every single player into their correct spot
on the leaderboard so we can determine exactly what the correct rank is. Remember that

there can be duplicate scores as well, so the rank isn’t just the position of the user in the
list.

SQL databases are not performant when we have to process large amounts of continu-
ously changing information. Attempting to do a rank operation over millions of rows is
going to take 10s of seconds, which is not acceptable for the desired real-time approach.
Since the data is constantly changing, it is also not feasible to consider a cache.

A relational database is not designed to handle the high load of read queries this imple-
mentation would require. An RDS could be used successfully if done as a batch operation,
but that would not align with the requirement to return a real-time position for the user

296 | Chapter 10. Real-time Gaming Leaderboard

on the leaderboard.

One optimization we can do is to add an index and limit the number of pages to scan
with the LIMIT clause. The query looks like this:

SELECT (@rownum := @rownum + 1) AS rank, user_id, score
FROM leaderboard

ORDER BY score DESC

LIMNIT 18

However, this approach doesn'’t scale well. First, finding a user’s rank is not performant
because it essentially requires a table scan to determine the rank. Second, this approach
doesn’t provide a straightforward solution for determining the rank of a user who is not
at the top of the leaderboard.

Redis solution

We want to find a solution that gives us predictable performance even for millions of users
and allows us to have easy access to common leaderboard operations, without needing
to fall back on complex DB queries.

Redis provides a potential solution to our problem. Redis is an in-memory data store
supporting key-value pairs. Since it works in memory, it allows for fast reads and writes.

Redis has a specific data type called sorted sets that are ideal for solving leaderboard
system design problems.

What are sorted sets?

A sorted set is a data type similar to a set. Each member of a sorted set is associated with

a score. The members of a set must be unique, but scores may repeat. The score is used
to rank the sorted set in ascending order.

Our leaderboard use case maps perfectly to sorted sets. Internally, a sorted set is imple-
mented by two data structures: a hash table and a skip list [2]. The hash table maps users
to scores and the skip list maps scores to users. In sorted sets, users are sorted by scores.
A good way to understand a sorted set is to picture it as a table with score and member
columns as shown in Figure 10.8. The table is sorted by score in descending order.

Step 2 - Propose High-level Design and Get Buy-in | 297

[[score | member
99 user10
07 - user20
o1 | usert05 |
_ 92 | userd5 |
leaderboard feb 2021 | = < 90 | userr |
- 86 user101 ;
83 user9
82 user302
79 user200
K 72) user309

Figure 10.8: February leaderboard is represented by the sorted set

In this chapter, we don’t go into the full detail of the sorted set implementation, but we
do go over the high-level ideas.

A skip list is a list structure that allows for fast search. It consists of a base sorted linked
list and multi-level indexes. Let’s take a look at an example. In Figure 10.9, the base
list is a sorted singly-linked list. The time complexity of insertion, removal, and search
operations is O(n).

How can we make those operations faster? One idea is to get to the middle quickly, as
the binary search algorithm does. To achieve that, we add a level 1 index that skips every
other node, and then a level 2 index that skips every other node of the level 1 indexes.
We keep introducing additional levels, with each new level skipping every other nodes
of the previous level. We stop this addition when the distance between nodes is § — 1,
where n is the total number of nodes. As shown in Figure 10.9, searching for number 45
is a lot faster when we have multi-level indexes.

298 | Chapter 10. Real-time Gaming Leaderboard

Figure 10.9: Skip list

When the data set is small, the speed improvement using the skip list isn’t obvious. Figure
10.10 shows an example of a skip list with 5 levels of indexes. In the base linked list, it

needs to travel 62 nodes to reach the correct node. In the skip list, it only needs to traverse
11 nodes [3].

0
4 -
o o (=] o & - -
@ o (=] (-] @ a o o l =
1~ o o a (] (] Q o o {+} o (] =) = o Q L] (=] -1 (:] o o o o \b) o
'-.'C-r.'\'?l"l'--'-"‘OHU-C-‘-‘-E-':u&.1oO|J0ODOGQ':IflIJQOOOQDOODDOvaOOLaODOCODOODO\L--.O(}

Figure 10.10: Skip list with 5 levels of indexes

Sorted sets are more performant than a relational database because each element is auto-
matically positioned in the right order during insert or update, as well as the fact that the
complexity of an add or find operation in a sorted set is logarithmic: O(log (n)).

In contrast, to calculate the rank of a specific user in a relational database, we need to
run nested queries:

Step 2.-_Propose High-level Design and Get Buy-in | 299

SELECT *,(SELECT COUNT(*)

[ROM leaderboard 1b?2

WHERE 1b2.score >= 1b1.score) RANK

FROM leaderboard 1b1

WHERE 1b1.user_id = {:user_id};

Implementation using Redis sorted sets

Now that we know sorted sets are fast, let’s take a look at the Redis operations we will
use to build our leaderboard [4] [5] [6] [7]:

» ZADD: insert the user into the set if they don’t yet exist. Otherwise, update the score
for the user. It takes O(log(n)) to execute.

» ZINCRBY: increment the score of the user by the specified increment. If the user
doesn’t exist in the set, then it assumes the score starts at 0. It takes O(log(n))

to execute.

« ZRANGE/ZREVRANGE: fetch a range of users sorted by the score. We can specify the order
(range vs. revrange), the number of entries, and the position to start from. This takes
O(log(n)+m) to execute, where m is the number of entries to fetch (which is usually
small in our case), and 7 is the number of entries in the sorted set.

« ZRANK/ZREVRANK: fetch the position of any user sorting in ascending/descending order

in logarithmic time.

Workflow with sorted sets

1. A user scores a point

Leaderboard
service

ZINCRBY ———» 0
redis

Figure 10.11: A user scores a point

Every month we create a new leaderboard sorted set and the previous ones are moved to
historical data storage. When a user wins a match, they score 1 point; so we call ZINCRBY
to increment the user’s score by 1 in that month’s leaderboard, or add the user to the
leaderboard set if they weren’t already there. The syntax for ZINCRBY is:

ZINCRBY <key> <increment> <user>

The following command adds a point to user mary1934 after they win a match.

ZINCRBY leaderboard_feb_2821 1 'mary1934'

2. A user fetches the top 10 global leaderboard

300 | Chapter 10. Real-time Gaming Leaderboard

Leaderboard °
BT P ZREVERANGE ————

redis
Figure 10.12: Fetch top 10 global leaderboard

We will call ZREVRANGE to obtain the members in descending order because we want the
highest scores, and pass the WITHSCORES attribute to ensure that it also returns the total

score for each user, as well as the set of users with the highest scores. The following
command fetches the top 10 players on the Feb-2021 leaderboard.

JREVRANGE leaderboard_feb_2B821 8 9 WITHSCORES
This returns a list like this:
[(user2,score2),(userl,scorel),(user5,score5)...]

3. A user wants to fetch their leaderboard position

1

Leaderboard ‘
P ————— ZREVERANK —— »

redis

Figure 10.13: Fetch a user’s leaderboard position

To fetch the position of a user in the leaderboard, we will call ZREVRANK to retrieve their
rank on the leaderboard. Again, we call the rev version of the command because we want
to rank scores from high to low.

IREVRANK leaderboard_feb_2821 'mary1934°

4. Fetch the relative position in the leaderboard for a user. An example is shown in Figure
10.14.

Step 2 - Propose High-level Design and Get Buy-in | 301

[Rank Player Points T

(267 Aquaboys 876)
k 258 B team 845 j
L 259 Berlin's Angels 832)

360 GrendelTeam 799 j

C 361 Mallow007 785)
k 362 Woo78 743)
(363 milan~114 7323

364 G3NAAND 726 j

365 Mailso_91_ 712)

Figure 10.14: Fetch 4 players above and below

While not an explicit requirement, we can easily fetch the relative position for a user by
leveraging ZREVRANGE with the number of results above and below the desired player. For
example, if user MallowB87’s rank is 361 and we want to fetch 4 players above and below
them, we would run the following command.

ZREVRANGE leaderboard_feb_2821 357 365

Storage requirement

At a minimum, we need to store the user id and score. The worst-case scenario is that
all 25 million monthly active users have won at least one game, and they all have entries
in the leaderboard for the month. Assuming the id is a 24-character string and the score
is a 16-bit integer (or 2 bytes), we need 26 bytes of storage per leaderboard entry. Given
the worst-case scenario of one leaderboard entry per MAU, we would need 26 bytes x25
million = 650 million bytes or ~ 650MB for leaderboard storage in the Redis cache. Even
if we double the memory usage to account for the overhead of the skip list and the hash
for the sorted set, one modern Redis server is more than enough to hold the data.

Another related factor to consider is CPU and 1/0 usage. Our peak QPS from the back-
of-the-envelope estimation is 2500 updates/sec. This is well within the performance en-
velope of a single Redis server.

One concern about the Redis cache is persistence, as a Redis node might fail. Luckily,
Redis does support persistence, but restarting a large Redis instance from disk is slow.
Usually, Redis is configured with a read replica, and when the main instance fails, the
read replica is promoted, and a new read replica is attached.

302 | Chapter 10. Real-time Gaming Leaderboard

Resides, we need to have 2 supporting tables (user and point) in a relational database like
\vSQL. The user table would store the user ID and user’s display name (in a real-world
application, this would contain a lot more data). The point table would contain the user
id, score, and timestamp when they won a game. This can be leveraged for other game
functions such as play history, and can also be used to recreate the Redis leaderboard in
the event of an infrastructure failure.

As a small performance optimization, it may make sense to create an additional cache of
the user details, potentially for the top 10 players since they are retrieved most frequently.
However, this doesn’t amount to a large amount of data.

Step 3 - Design Deep Dive

Now that we've discussed the high-level design, let’s dive into the following:

Whether or not to use a cloud provider
o Manage our own services

o Leverage cloud service providers like Amazon Web Services (AWS)
Scaling Redis
Alternative solution: NoSQL

Other considerations

To use a cloud provider or not

Depending on the existing infrastructure, we generally have two options for deploying
our solution. Let’s take a look at each of them.

Manage our own services

In this approach, we will create a leaderboard sorted set each month to store the leader-
board data for that period. The sorted set stores member and score information. The rest
of the details about the user, such as their name and profile image, are stored in MySQL
databases. When fetching the leaderboard, besides the leaderboard data, API servers also
query the database to fetch corresponding users’ names and profile images to display on
the leaderboard. If this becomes too inefficient in the long term, we can leverage a user

profile cache to store users’ details for the top 10 players. The design is shown in Figure
10.15.

Step 3 - Design Deep Dive | 303

Leaderboard ——» é

Load balancer

~ Sorted set I'Edls
///
//
S S
’ — f__ User profile o
® - o R B - F B W\
PN M _ servers sar Eirite MysoLs

User profile cache °
(for top 10) —
redis

Figure 10.15: Manage our own services

Build on the cloud

The second approach is to leverage cloud infrastructures. In this section, we assume our
existing infrastructure is built on AWS and that it’s a natural fit to build the leaderboard
on the cloud. We will use two major AWS technologies in this design: Amazon API
Gateway and AWS Lambda function [8]. The Amazon API gateway provides a way to
define the HTTP endpoints of a RESTful API and connect it to any backend services. We

use it to connect to our AWS lambda functions. The mapping between Restful APIs and
Lambda functions is shown in Table 10.5.

APIs Lambda function

GET /v1/scores LeaderboardFetchTop18

GET /v1/scores/{:user_id} | LeaderboardFetchPlayerRank
POST /v1/scores LeaderboardUpdateScore

Table 10.5: Lambda functions

AWS Lambda is one of the most popular serverless computing platforms. It allows us
to run code without having to provision or manage the servers ourselves. It runs only
when needed and will scale automatically based on traffic. Serverless is one of the hottest
topics in cloud services and is supported by all major cloud service providers. For exam-
ple, Google Cloud has Google Cloud Functions [9] and Microsoft has named its offering
Microsoft Azure Functions [10].

At a high level, our game calls the Amazon API Gateway, which in turn invokes the
appropriate lambda functions. We will use AWS Lambda functions to invoke the appro-
priate commands on the storage layer (both Redis and MySQL), return the results back
to the API Gateway, and then to the application.

We can leverage Lambda functions to perform the queries we need without having to
spin up a server instance. AWS provides support for Redis clients that can be called from
the Lambda functions. This also allows for auto-scaling as needed with DAU growth.
Design diagrams for a user scoring a point and retrieving the leaderboard are shown
below:

304- | Chapter 10. Real-time Gaming Leaderboard

Use case 1: scoring a point

e Leaderboard

—"redis
Call ZINCRBY
| Leaderboard -] N\ —
eade —— Win game ——» - a\ \
| service f T
AWS AWS Ineert point
AP| Gateway Lambda T

” l_i_‘:‘}I\,-{ Point table
l__‘ >

Figure 10.16: Score a point

Use case 2: retrieving leaderboard

é Leaderboard

—"redis
@ Call ZREVRANGE

Leaderboard Get a ['\ \ .l
service leaderboard - Bl /) W~
: L/ @ Fetch
AWS AWS user details

AP| Gateway Lambda T

| .
MHSI} Point table

Figure 10.17: Retrieve leaderboard

Lambdas are great because they are a serverless approach, and the infrastructure will
take care of auto-scaling the function as needed. This means we don’t need to manage
the scaling and environment setup and maintenance. Given this, we recommend going
with a serverless approach if we build the game from the ground up.

Scaling Redis

With 5 million DAU, we can get away with one Redis cache from both a storage and
QPS perspective. However, let’s imagine we have 500 million DAU, which is 100 times
our original scale. Now our worst-case scenario for the size of the leaderboard goes up

to 65GB (650MB x 100), and our QPS goes up to 250,000 (2,500 x 100) queries per
second. This calls for a sharding solution.

Data sharding
We consider sharding in one of the following two ways: fixed or hash partitions.
Fixed partition

One way to understand fixed partitions is to look at the overall range of points on the
leaderboard. Let’s say that the number of points won in one month ranges from 1 to 1000,
and we break up the data by range. For example, we could have 10 shards and each shard
would have a range of 100 scores (For example, 1 ~ 100, 101 ~ 200, 201 ~ 300, ...) as
shown in Figure 10.18.

Step 3 - Design Deep Dive | 305

e ———————————————— t B
(1, 100) | [ot1,200 [(201, 300) S (901, 1000)
Sorted sel Sorted set Sorted sat Sorted get

Figure 10,18: Fixed partition

For this to work. we want to ensure there is an even distribulion ol scores across the
leaderboard. Otherwise, we need to adjust the score range in cach shard to make sure
of a relatively even distribution. In this approach, we shard the data ourselves in the
application code.

When we are inserting or updating the score for a user, we need to know which shard
they are in. We could do this by calculating the user’s current score from the MySQL
database. This can work, but a more performant option is to create a secondary cache to
store the mapping from user ID to score. We need to be careful when a user increases
their score and moves between shards. In this case, we need to remove the user from
their current shard and move them to the new shard.

To fetch the top 10 players in the leaderboard, we would fetch the top 10 players from
the shard (sorted set) with the highest scores. In Figure 10.18, the last shard with scores
[901.1000] contains the top 10 players.

To fetch the rank of a user, we would need to calculate the rank within their current
shard (local rank), as well as the total number of players with higher scores in all of the
shards. Note that the total number of players in a shard can be retrieved by running the
info keyspace command in O(1) [11].

Hash partition

A second approach is to use the Redis cluster, which is desirable if the scores are very
clustered or clumped. Redis cluster provides a way to shard data automatically across
multiple Redis nodes. It doesn’t use consistent hashing but a different form of sharding,
where every key is part of a hash slot. There are 16384 hash slots [12] and we can
compute the hash slot of a given key by doing CRC16(key) %16384 [13]. This allows us to
add and remove nodes in the cluster easily without redistributing all the keys. In Figure
10.19, we have 3 nodes, where:

« The first node contains hash slots [0, 5500].
« The second node contains hash slots [5501, 11000].
. The third node contains hash slots [11001, 16383].

306 | Chapter 10. Real-time Gaming Leaderhoard

Client l

Proxy Slot = CRC16(key) % 16384

e

Slot: [0, 5500] Slot: [6501, 11000] Slot: [11001, 16383]

/ | \

| Replica Replica

E Shard 1
, Slot [0, 5500]

Replica Replica

Shard 2 :
Slot: [11001, 16383

Shard 2
Slot: [5501, 11000]

[}
]
1
]
1
i
I
1
1
]
'
‘ e é
I
1
]
1
1
]
L]
1
i
I
I
¥

i
Replica Replica 1
i

Redis Cluster

Figure 10.19: Hash partition

An update would simply change the score of the user in the corresponding shard (de-
termined by CRC16(key) %16384). Retrieving the top 10 players on the leaderboard is
more complicated. We need to gather the top 10 players from each shard and have the
application sort the data. A concrete example is shown in Figure 10.20. Those queries
can be parallelized to reduce latency.

Step 3 - Design Deep Dive | 307

shard 0 (top 10)

score

06

00

useri10

member

userinl

user109

| top 10
™y “score member
_ \\‘\ 00 user10
i shard 1 (top 10) \"--\\ o7 user20
score member o useri105
Ll e scatler-galher 02 userd5
83 user9 90 user7
T user200 oA uscr101_
72 user309 / a1 " userd
/ 82 user30z
70 user200
shard 2 (top 10) / T2 user308
score mern.ber
91 user105
02 userd5
82 user302
T users

This approach has a few limitations:

«+ When we need to return top % results (where & is a very large number) on the leader-
board, the latency is high because a lot of entries are returned from each shard and

need to be sorted.

» Latency is high if we have lots of partitions because the query has to wait for the

slowest partition.

« Another issue with this approach is that it doesn’t provide a straightforward solution

Figure 10.20: Scatter-gather

for determining the rank of a specific user.

Therefore, we lean towards the first proposal: fixed partition.

Sizing a Redis node

There are multiple things to consider when sizing the Redis nodes [14]. Write-heavy
applications require much more available memory, since we need to be able to accom-
modate all of the writes to create the snapshot in case of a failure. To be safe, allocate

twice the amount of memory for write-heavy applications.

Redis provides a tool called Redis-benchmark that allows us to benchmark the perfor-

308 | Chapter 10. Real-time Gaming Leaderboard

mance of the Redis setup, by simulating multiple clients exccuting multiple queries and
returning the number of requests per second for the given hardware. To learn more about
Redis-benchmark, see [15].

Alternative solution: NoSQL

An alternative solution to consider is NoSQL databases. What kind of NoSQL should we
use? Ideally, we want to choose a NoSQL that has the following properties:

. Oplimjzed for writes.

« Efficiently sort items within the same partition by score.

NoSQL databases such as Amazon’s DynamoDB [16], Cassandra, or MongoDB can be
a good fit. In this chapter, we use DynamoDB as an example. DynamoDB is a fully
managed NoSQL database that offers reliable performance and great scalability. To allow
efficient access to data with attributes other than the primary key, we can leverage global
secondary indexes [17] in DynamoDB. A global secondary index contains a selection of

attributes from the parent table, but they are organized using a different primary key.
Let’s take a look at an example.

The updated system diagram is shown in Figure 10.21. Redis and MySQL are replaced
with DynamoDB.

Leaderboard R .
service 3 » 0 »

AWS AWS AWS
AP| Gateway Lambda DynamoDB

Figure 10.21: DynamoDB solution

Assume we design the leaderboard for a chess game and our initial table is shown in
Figure 10.22. It is a denormalized view of the leaderboard and user tables and contains
everything needed to render a leaderboard.

Primary key Attributes
user_id score | email profile_pic I;a_derboard_nanTe‘ y
lovelove 300 love@test.com | https://cdn.example/3.png | chess#2020-02
i_love tofu 209 test@test.com | https://cdn.example/p.png | chess#2020-02

‘golden_gate 103 gold@test.com | hitps://cdn.example/2.png | chess#2020-03
pizza_or_bread | 203 piz@test.com | https://cdn.example/31.png | chess#2021-05
ocean 10 oce@test.com | https://cdn.example/32 png | chess#2020-02

B

Figure 10.22: Denormalized view of the leaderboard and user tables

This table scheme works, but it doesn’t scale well. As more rows are added, we have to
scan the entire table to find the top scores.

Step 3 - Deslgn Deep Dive | 309

linear scan, we need to add indexes. Our firgy alle
¢ linea an.

mpl is 14 use
ar-month} as the partition key and the score as th
year= |

€ sor| l\'(‘_\" as
surc 10.23.
consayider [At ————_
ey | Sort | rus.«z'r_it:i email profile_pic o
|
key |
L(scoreJ) . S R e
02 | 300 Jf lovelove | love@test.com httpsﬁcdn,exampleia.png
02— 200 B f i_love_tofu test@test.com hltpswcdn.examplégp-ng
AT he e R ———e D S B y
03 | 103 golden_gate gold@test_.com hnps:h’cdn.examplefz.png
= -.'E o pizza_or_bread | piz@test.com htlps:ﬂcdn.examplefﬂ.png
i | ¢ _-_-_-___-_-_-___-___-_-_-_—_-_-_‘___
2 110 | ocean oce@test.com https:l!pdn.examplel32.png
.-

—_—]

Figure 10.23: Partition key and sort key

orresponding node based on jts
© want to structure the data so that data is evenly distributed across

T table design (Figure 10.23), all the data for the mosl recent month

1l one partition and that partition becomes a hot partition. How can we

10N we need 1o answer
"Tite volume o DAU. Th
1 load op partitions an
venly acrogg multiple p
to read jtems for a gi
Alts, which adds read

soks Something
the updateq schema tab]e.

is, how many partitions should we have? .It
e important thing to remember is that there is
d read complexity. Because data for the same
artitions, the load for a single partition is much

ven month, we have to query all the partitions
complexity.

1-time Gaming Leaderboard

like this: game_name#{year-month}#tp{partition_number}.

cocondary Index_|

' e
GUM —r K) Sort
on k&Y PR ey
¥ ' (score) |

N L
.-"'-.-'d-.-.—_ -F

2P0 w |

|

""%"2'0'2/0:6’2'# gt | 209 A
opste? | 108 |
g]

" 5‘,50’2@2#& R |
20-02H

e 10
o10-02#4p2
‘,&/

. 1

Figu

ohal secondary index ui
m key and the score as t
;j,,,d vithin their own par
_J,,['ﬁorder (o fetch th'e top 10
;;'nrntioned earhfer. We
i{he “scatter” portion), anc
_aﬂ the partitions (this is

op 10 from partition O (scatt,

% 10 from partition 1 (scatter)

key (PK) | Sort
key
(score)

_GI;)bi_l geconzlary__l;u_l_e{

econaanl g) Attributes

Partition key (PK) | Sort | user_id | emait | profile_pic

key

fseom) |
chess#2020-02#p0 [309 | lovelove | love@test.com | htips://cdn.example/3.png
"Eﬁe?sEozo-ozﬂp1 209 r__!ove__lt_:fu test@test.com | https://cdn.example/p.png
@20-03#[}2 103 golden _gate | gold@test.com | https:/cdn.example/2.png
chess#2020-02#p1 | 203 pizza_or_bread | piz@test.com | https://cdn.example/31.png
| chess#2020-02#p2 | 10 ocean océ@test_oom https:h'cdn.exam—p_le-J’S_é.bng

Figure 10.24: Updated partition key

The global secondary index uses game_name#{year-month}#p{partition_number} as the
partition key and the score as the sort key. What we end up with are n partitions that are
all sorted within their own partition (locally sorted). If we assume we had 3 partitions,
then in order to fetch the top 10 leaderboard, we would use the approach called “scatter-
gather” mentioned earlier. We would fetch the top 10 results in each of the partitions
(this is the “scatter” portion), and then we would allow the application to sort the results
among all the partitions (this is the “gather” portion). An example is shown in Figure

10.25.
top 10 from partition O (scatter)
Partition key (PK) | Sort user_id
key
(score)
chess#2020-02#p0 | 309 lovelove Top 10 leaderboard
- ather score | user_id
top 10 from partition 1 (scatter) B e
(o] rom parti er
P P 209 i_love_tofu
Partition key (PK) i:;t user_id 203 P —
i (score) gather 200 Apple
1 chess#2020-02#p1 | 209 i_love_tofu [~ -+ 199 Orange
| chess#2020-02#p1 | 203 pizza_or_bread 197 | peach
= |as 196 | data
gathe 180 | Bird
top 10 from partition 2 (scatter) 170 cc
Partition key (PK) | Sort user_id 177 too_much
key ===
(score)
" chess#2020-02#p2 | 10 ocean

Figure 10.25: Scatter-gather

Step 3 - Design Deep Dive | 311

How do we decide on the number of partitions? This might require some careful bench-
marking. More partitions decrease the load on each partition but add complexity, a5
we need Lo scatter across more partitions (o build the final leaderboard. By omplnymg
benchmarking, we can see the trade-off more clearly. '

However, similar to the Redis partition solution mentioned carlier, this approach doesn'y
provide a straightforward solution for determining the relative rank of a user. But i is
possible 1o get the percentile of a user's position, which could be good enough. In req)
life, telling a player that they are in the top 10 ~ 20% might be better than showing
the exact rank at eg. 1.200,001. Therefore, if the scale is large enough that we needed
lo shard, we could assume that the score distributions are roughly the same across al|
shards. If this assumption is true, we could have a cron job that analyzes the distribution
of the score for each shard, and caches that result.

The result would look something like this:

10th percentile = score < 100
20th percentile = score < 500

90th percentile = score < 6500

Then we could quickly return a user’s relative ranking (say 90th percentile).

Step 4 - Wrap Up

[n this chapter, we have created a solution for building a real-time game leaderboard with
the scale of millions of DAU. We explored the straightforward solution of using a MySQL
database and rejected that approach because it does not scale to millions of users. We
then designed the leaderboard using Redis sorted sets. We also looked into scaling the
solution to 500 million DAU, by leveraging sharding across different Redis caches. We
also proposed an alternative NoSQL solution.

In the event you have some extra time at the end of the interview, you can cover a few
more opics:

Faster retrieval and breaking tie

A Redis Hash provides a map between string fields and values. We could leverage a hash
for 2 use cases:

1. To store a map of the user id to the user object that we can display on the leaderboard.
This allows for faster retrieval than having to go to the database to fetch the user
object.

2. In the case of two players having the same scores, we could rank the users based on
who received that score first. When we increment the score of the user, we can also
store a map of the user id to the timestamp of the most recently won game. In the
case of a tie, the user with the older timestamp ranks higher.

312 | Chapter 10. Real-time Gaming Leaderhoard

System failure recovery

The Redis cluster can potentially experience a large-scale failure. Given the design above.
we could create a script that leverages the fact that the MySQL database records an entry
with a timestamp each time a user won a game. We could iterate through all of the entries
for each user, and call ZINCRBY once per entry, per user. This would allow us to recreale
the leaderboard offline if necessary, in case of a large-scale oulage.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

Chapter Summary
display top 10
functional req show a user’s rank

four places above and
below the desired user

real-time update
non-functional req -<
scalable

5 million DAU
estimation <
update score gps: 2.5k

score point

step 1

api design get leaderboard

get player rank
(Gaming Leaderboard step 2

high-level design

relational database solution
data model <

redis solution
build on the cloud or not
step 3 scale Redis

alternative solution: NoSQL

faster retrieval and breaking tie
step 4

system failure recovery

Chapter Summary | 313

Reference Material

(1] Man-in-the-middle attack. https://en.wikipedia.org/wiki/Man-in-the-middle_altac
k.

[2] Redis Sorted Set source code. hlt_ps://github.com}redis/redis;‘hloh/unstnble;src,’t_z
set.c.

[3] Geekbang. https://static001.geekbang.org/resource/image/46/a9/46d283cd82c¢987
153b3fe0c76dfbagad.jpg.

[4] Building real-time Leaderboard with Redis. https://medium.com/@sandeep4.verm
a/building-real-time-leaderboard-with-redis-82c98aa47b9t.

[5] Build a real-time gaming leaderboard with Amazon ElastiCache for Redis. https:
//aws.amazon.com/blogs/database/building-a-real-time- gaming-leaderboard-with
-amazon-elasticache-for-redis.

[6] How we created a real-time Leaderboard for a million Users. https://levelup.gitcon
nected.com/how-we-created-a-real-time-leaderboard-for-a-million-users-555aaa

3cef7b.
[7] Leaderboards. https://redislabs.com/solutions/use-cases/leaderboards/.
[8] Lambda. htips://aws.amazon.com/lambda/.
[9] Google Cloud Functions. https://cloud.google.com/functions.
[10] Azure Functions. https://azure.microsoft.com/en-us/services/functions/.
[11] Info command. https://redis.io/commands/INFO.

[12] Why redis cluster only have 16384 slots. https://stackoverflow.com/questions/3620
3532/why-redis-cluster-only-have-16384-slots.

[13] Cyclic redundancy check. https://en.wikipedia.org/wiki/Cyclic_redundancy_che
ck.

[14] Choosing your node size. https://docs.aws.amazon.com/AmazonElastiCache/latest
/red-ug/nodes-select-size.hitml.

[15] How fast 1s Redis? https://redis.io/topics/benchmarks.

[16] Using Global Secondary Indexes in DynamoDB. https://docs.aws.amazon.com/am
azondynamodb/latest/developerguide/GSLhtml.

[17] Leaderboard & Write Sharding. https://www.dynamodbguide.com/leaderboard-wr
ite-sharding/.

314 | Chapter 10. Real-time Gaming Leaderboard

s S S T S|

11 Payment System

In this chapter, we design a payment system. E-commerce has exploded in popularity
across the world in recent years. What makes every transaction possible is a payment

system running behind the scenes. A reliable, scalable, and flexible payment system is
essential.

What is a payment system? According to Wikipedia, “a payment system is any system
used to settle financial transactions through the transfer of monetary value. This includes

the institutions, instruments, people, rules, procedures, standards, and technologies that
make its exchange possible” [1].

A payment system is easy to understand on the surface but is also intimidating for many
developers to work on. A small slip could potentially cause significant revenue loss and

destroy credibility among users. But fear not! In this chapter, we demystify payment
systems.

Step 1 - Understand the Problem and Establish Design Scope

A payment system can mean very different things to different people. Some may think
it's a digital wallet like Apple Pay or Google Pay. Others may think it's a backend system
that handles payments such as PayPal or Stripe. It is very important to determine the
exact requirements at the beginning of the interview. These are some questions you can
ask the interviewer:

Candidate: What kind of payment system are we building?

Interviewer: Assume you are building a payment backend for an e-commerce applica-
tion like Amazon.com. When a customer places an order on Amazon.com, the payment
system handles everything related to money movement.

Candidate: What payment options are supported? Credit cards, PayPal, bank cards,
etc?

Interviewer: The payment system should support all of these options in real life. How-
ever, in this interview, we can use credit card payment as an example.

Candidate: Do we handle credit card payment processing ourselves?

| 315

Interviewer: No, we use third-party payment processors, such as Stripe, Braintree,
Square, elc.

Candidate: Do we store credit card data in our system?

Interviewer: Due to extremely high security and compliance requirements, we do pot
store card numbers directly in our system. We rely on third-parly payment processors
to handle sensitive credit card data.

Candidate: Is the application global? Do we need to support different currencies anq

international payments?
Interviewer: Great question. Yes, the application would be global but we assume only

one currency is used in this interview.

Candidate: How many payment transactions per day?
Interviewer: 1 million transactions per day.

Candidate: Do we need to support the pay-out flow, which an e-commerce site like
Amazon uses to pay sellers every month?
Interviewer: Yes, we need to support that.

Candidate: I think I have gathered all the requirements. Is there anything else I should

pay attention to?
Interviewer: Yes. A payment system interacts with a lot of internal services (account-

ing, analytics, etc.) and external services (payment service providers). When a service
fails, we may see inconsistent states among services. Therefore, we need to perform

reconciliation and fix any inconsistencies. This 1s also a requirement.

With these questions, we get a clear picture of both the functional and non-functional
requirements. In this interview, we focus on designing a payment system that supports
the following.

Functional requirements

+ Pay-in flow: payment system receives money from customers on behalf of sellers.

« Pay-out flow: payment system sends money to sellers around the world.

Non-functional requirements
. Reliability and fault tolerance. Failed payments need to be carefully handled.
« A reconciliation process between internal services (payment systems, accounting

systems) and external services (payment service providers) is required. The process
asynchronously verifies that the payment information across these systems is con-

sistent.

Back-of-the-envelope estimation

The system needs to process 1 million transactions per day, which is 1,000,000 transac-
tions /10° seconds = 10 transactions per second (TPS). 10 TPS is not a big number for
a typical database, which means the focus of this system design interview is on how (0

316 | Chapter 11. Payment System

e ——

correctly handle payment transactions, rather than aiming for high throughput.

Step 2 - Propose High-level Design and Get Buy-in

At a high level, the payment flow is broken down into two steps Lo reflect how
flows:

+ Pay-in flow

» Pay-out flow

Take the e-commerce site, Amazon, as an example. After a buyer places a
money flows into Amazon’s bank account, which is the pay-in flow. Althoug

is in Amazon’s bank account, Amazon does not own all of the money. The

a substantial part of it and Amazon only works as the money custodian fo;

when the products are delivered and money is released. the balance after fe l
from Amazon’s bank account to the seller’s bank account. This is the pay:
simplified pay-in and pay-out flows are shown in Figure 11.1.

E-commerce
Buyer Website Seller
e W 2
C_ = -

[
I
)
[}
I

I Credit | . [Bank ’ Bank ,
Card i " Account Pay-oul—f Account

Figure 11.1: Simplified pay-in and pay-out flow

Pay-in flow

The high-level design diagram for the pay-in flow is shown in Figure 11.2. Let’s take a
look at each component of the system.

Step 2 - Propose High-level Design and Get Buy-in | 317

(DPayment event

|
|
)
|
[
]
]
1
] —
\ |

]

— | | P wsﬂ
Payment o . .
‘m ® stripe |
adldyen teréult
H S

F_,} i Payment Service Card Schemesg
|

Providers (PSP)

E U Payment System

1
Internal | External

Figure 11.2: Pay-in flow

Payment service

‘The payment service accepts payment events from users and coordinates the payment
process. The first thing it usually does is a risk check, assessing for compliance with
regulations such as AML/CFT [2], and for evidence of criminal activity such as money
laundering or financing of terrorism. The payment service only processes payments that
pass this risk check. Usually, the risk check service uses a third-party provider because
it is very complicated and highly specialized.

Payment executor

The payment executor executes a single payment order via a Payment Service Provider
(PSP). A payment event may contain several payment orders.

Payment Service Provider (PSP)

A PSP moves money from account A to account B. In this simplified example, the PSP
moves the money out of the buyer's credit card account.

Card schemes

Card schemes are the organizations that process credit card operations. Well known
card schemes are Visa, MasterCard, Discovery, etc. The card scheme ecosystem is very
complex [3].

Ledger

The ledger keeps a financial record of the payment transaction. For example, when a user
pays the seller $1, we record it as debit $1 from the user and credit $1 to the seller. The
ledger system is very important in post-payment analysis, such as calculating the total
revenue of the e-commerce website or forecasting future revenue.

318 | Chapter 11. Payment System

Wallet

The wallet keeps the account balance of the merchant. It may also record how much a
given user has paid in total.

As shown in Figure 11.2, a typical pay-in flow works like this:

1.

9.

When a user clicks the “place order” button, a payment event is generated and sent
to the payment service.

The payment service stores the payment event in the database.

. Sometimes, a single payment event may contain several payment orders. For exam-

ple, you may select products from multiple sellers in a single checkout process. If the
e-commerce website splits the checkout into multiple payment orders, the payment
service calls the payment executor for each payment order.

The payment executor stores the payment order in the database.
The payment executor calls an external PSP to process the credit card payment.

After the payment executor has successfully processed the payment, the payment
service updates the wallet to record how much money a given seller has.

The wallet server stores the updated balance information in the database.

After the wallet service has successfully updated the seller’s balance information, the
payment service calls the ledger to update it.

The ledger service appends the new ledger information to the database.

APIs for payment service

We use the RESTful API design convention for the payment service.

POST /v1/payments

This endpoint executes a payment event. As mentioned above, a single payment event
may contain multiple payment orders. The request parameters are listed below:

Field Description Type
buyer_info The information of the buyer json
checkout_id A globally unique ID for this checkout string

This could be encrypted credit card informa-
credit_card_info | tion or a payment token. The value is PSP- | json
specific.
payment_orders A list of the payment orders list

Table 11.1: API request parameters (execute a payment event)

The payment_orders look like this:

Step 2 - Propose High-level Design and Get Buy-in | 319

feld | Desripton __ [Tye
| | Which seller will receive the —
seller_account _ string
| money -
_ | The transaction amount for the . = e
amount string
oder -
_currency The currency for the order string (1SO 4217 [4])
A plobally unique ID for this _ ==t
: g y unig
payment_order_id string
| payment B _\

Table 11.2: payment_orders

Note that the payment_order_id is globally unique. When the payment executor seng
a payment request Lo a third-party PSP, the payment_order_id is used by the PSP a5 ths
deduplication ID, also called the idempotency key. >
You may have noticed that the data type of the “amount” field is “string” rather thap
“double”. Double is not a good choice because:

1. Different protocols, software, and hardware may support different numeric preci
sions in serialization and deserialization. This difference might cause unintended

rounding errors.

2 The number could be extremely big (for example, Japan's GDP is around 5 x 10
yen for the calendar year 2020), or extremely small (for example, a satoshi of Bitcoin

is 107°),

It is recommended to keep numbers in string format during transmission and storage
They are only parsed to numbers when used for display or calculation.

GET /v1/payments/{:id}
This endpoint returns the execution status of a single payment order based on
payment_order_id.

The payment API mentioned above is similar to the API of some well-known PSPs. If
you are interested in a more comprehensive view of payment APIs, check out Stripe’s
API documentation [5].

The data model for payment service

We need two tables for the payment service: payment event and payment order. When
we select a storage solution for a payment system, performance is usually not the most
important factor. Instead, we focus on the following:

1. Proven stability. Whether the storage system has been used by other big financial
firms for many years (for example more than 5 years) with positive feedback.

2. The richness of supporting tools, such as monitoring and investigation tools.

3. Maturity of the database administrator (DBA) job market. Whether we can recruit
experienced DBAs is a very important factor to consider.

320 | Chapter 11. Payment System

.;-.miﬂi

Usually, we prefer a traditional relational database with ACID transaction supporl over
NoSQL/NewSQL.

The payment event table contains detailed payment event information. This is what it
looks like:

Name | Type J
checkout_id string PK

buyer_info string

seller_info string

credit_card_info | depends on the card provider |
is_payment_done | boolean

Table 11.3: Payment event

The payment order table stores the execution status of each payment order. This is what
it looks like:

Name Type
payment_order_id String PK
buyer_account string
amount string
currency string
checkout_id string FK
payment_order_status | string
ledger_updated boolean
wallet_updated boolean

Table 11.4: Payment order

Before we dive into the tables, let’s take a look at some background information.

« The checkout_id is the foreign key. A single checkoul creates a payment event that
may contain several payment orders.

« When we call a third-party PSP to deduct money from the buyer’s credit card, the
money is not directly transferred to the seller. Instead, the money is transferred to
the e-commerce website’s bank account. This process is called pay-in. When the pay-
out condition is satisfied, such as when the products are delivered, the seller initiates
a pay-out. Only then is the money transferred from the e-commerce website’s bank
account to the seller’s bank account. Therefore, during the pay-in flow, we only need
the buyer’s card information, not the seller’s bank account information.

In the payment order table (Table 11.4), payment_order_status is an enumerated type
(enum) that keeps the execution status of the payment order. Execution status includes
NOT_STARTED, EXECUTING, SUCCESS, FAILED. The update logic is:

1. The initial status of payment_order_status is NOT_STARTED.

Step 2 - Propose High-level Design and Get Buy-in | 321

When the pavment service sends the payment order to the payment executor, (he
payment_order_status is EXECUTING.

i The pavment service updates the payment_order_status to SUCCESS or FAILED de-
pending on the response of the payment executor.

Once the payment._order_status is SUCCESS, the payment service calls the wallet Service
toupdate the seller balance and update the wallet_updated field to TRUE. Here we simplify
the design by assuming wallet updates always succeed.

Onceitis done, the next step for the payment service is to call the ledger service to update
the ledger database by updating the ledger_updated ficld to TRUE.

When all payment orders under the same checkout_id are processed successfully, the
payment service updates the is_payment_done to TRUE in the payment event table. A
scheduled job usually runs at a fixed interval to monitor the status of the in-flight pay-

ment orders, It sends an alert when a payment order does not finish within a threshold
so that engineers can investigate il.

Double-entry ledger system

There is a very important design principle in the ledger system: the double-entry princi-
ple (also called double-entry accounting/bookkeeping [6]). Double-entry system is fun-
damental 1o any payment system and is key to accurate bookkeeping. It records every
payment transaction into two separate ledger accounts with the same amount. One ac-
count is debited and the other is credited with the same amount (Table 11.5),

Account | Debit | Credit |
buyer 51
seller $1

Table 11.5: Double-entry system

The double-entry system states that the sum of all the transaction entries must be 0,
One cent lost means someone else gains a cent. It provides end-to-end traceability and
ensures consistency throughout the payment cycle. To find out more about implementing
the double-entry system, see Square’s engineering blog about immutable double-entry
accounting database service [7].

Hosted payment page

Most companies prefer not to store credit card information internally because if they "10'
they have to deal with complex regulations such as Payment Card Industry Data Secu-rlt}’
Standard (PCI DSS) [8] in the United States. To avoid handling credit card information,
companies use hosled credil card pages provided by PSPs. For websites, it is a widget
or an iframe, while for mobile applications, it may be a pre-built page from the payment
SDK. Figure 11.3 illustrates an example of the checkout experience with PayPal integra-
tion. The key point here is that the PSP provides a hosted payment page that captures the
customer card information directly, rather than relying on our payment service.

322 | Chapter 11. Payment System

| 4 PayPal

Pay with PayPal

Wiin a r"‘.'Pal account. you're "”l\]i'ﬂ[‘ 1o free retum shipping
Pirchase B oEecthon, And more

Email or mobile number

Password

Stay logged in for faster purchases (3\1

Having trouble logging in?

ar

Pay with Debit or Credit Card

Figure 11.3: Hosted pay with PayPal page

Pay-out flow

| The components of the pay-out flow are very similar to the pay-in flow. One difference is
that instead of using PSP to move money from the buyer's credit card to the e-commerce
website’s bank account, the pay-out flow uses a third-party pay-out provider to move
money from the e-commerce website’s bank account to the seller’s bank account.

Usually, the payment system uses third-party account payable providers like Tipalti [9]
to handle pay-outs. There are a lot of bookkeeping and regulatory requirements with
pay-outs as well.

Step 3 - Design Deep Dive

. In this section, we focus on making the system faster, more robust, and secure. In a
distributed system, errors and failures are not only inevitable but common. For exam-
ple, what happens if a customer pressed the “pay” button multiple times? Will they be
charged multiple times? How do we handle payment failures caused by poor network
connections? In this section, we dive deep into several key topics.

» PSP integration

» Reconciliation

« Handling payment processing delays

Step 3 - Design Deep Dive | 323

f
-

B B N Y

Handling failed payments

Exact-once delivery

. (_“nnsislenc_\'

Security

PSP integration

Communication among internal services

= |

If the payment system can directly connect to bariks or card schemes such as Visa or Mas-
terCard, payment can be made without a PSP, These direct connections are uncommon
and highly specialized. They are usually reserved for really large companies that can

justify such an investment. For most companies, the payment system integrates with a
PSP instead, in one of two ways:

1. If a company can safely store sensitive payment information and chooses to do so,
PSP can be integrated using APL The company is responsible for developing the
payment web pages, collecting and storing sensitive payment information. PSP is
responsible for connecting to banks or card schemes.

=]

If a company chooses not to store sensitive payment information due to complex reg-

ulations and security concerns, PSP provides a hosted payment page to collect card
payment details and securely store them in PSP. This is the approach most companies

take.

We use Figure 11.4 to explain how the hosted payment page works in detail.

Client Browser
Checkout Payment Payment Complete
Page Page Page
Redirect =
—® to completion—»
page
AN
e / N
?:I.Z%?Sy Payment®
Payment @® Start result
Checkout bage payment
with token
vy / Create payment
@ token Service |+
\\@)Reium payment token
Payment System \@ /
Webhook with

completion resuit

Figure 11.4: Hosted payment flow

324 | Chapter 11. Payment System

Pl

1'ﬂt

We omitted the payment executor, ledger, and wallet in Figure 11.4 for simplicity. The
payment service orchestrates the whole payment process.

1.

The user clicks the “checkout” button in the client browser. The client calls the pay-
ment service with the payment order information.

After receiving the payment order information, the payment service sends a payment
registration request to the PSP. This registration request contains payment informa-
tion, such as the amount, currency, expiration date of the payment request, and the
redirect URL. Because a payment order should be registered only once, there is a

UUID field to ensure the exactly-once registration. This UUID is also called nonce
[10]. Usually, this UUID is the ID of the payment order.

. The PSP returns a token back to the payment service. A token is a UUID on the PSP

side that uniquely identifies the payment registration. We can examine the payment
registration and the payment execution status later using this token.

. The payment service stores the token in the database before calling the PSP-hosted

payment page.

Once the token is persisted, the client displays a PSP-hosted payment page. Mobile
applications usually use the PSP’s SDK integration for this functionality. Here we
use Stripe’s web integration as an example (Figure 11.5). Stripe provides a JavaScript
library that displays the payment Ul, collects sensitive payment information, and
calls the PSP directly to complete the payment. Sensitive payment information is
collected by Stripe. It never reaches our payment system. The hosted payment page
usually needs two pieces of information:

(a) The token we received in step 4. The PSP’s javascript code uses the token to
retrieve detailed information about the payment request from the PSP’s backend.
One important piece of information is how much money to collect.

(b) Another important piece of information is the redirect URL. This is the web page
URL that is called when the payment is complete. When the PSP’s JavaScript
finishes the payment, it redirects the browser to the redirect URL. Usually, the
redirect URL is an e-commerce web page that shows the status of the checkout.
Note that the redirect URL is different from the webhook [11] URL in step 9.

Step 3 - Design Deep Dive | 325

$129.00

Fr I
1 Pure set $65.00
Cuard Informat
Fure glow cream SE4.00 A IJIS E

2

Couniry 9F regian

Umted Siates i,

Figure 11.5: Hosted payment page by Stripe

(=,

- The user fills in the payment delails on the PSP’s web page, such as the credit card
number, holder’s name, expiration date, etc, then clicks the pay button. The PSP
starts the payment processing,

7. The PSP returns the payment status,

co

- The web page is now redirected to the redirect URL. The payment status that is re-
ceived in step 7 is typically appended to the URL. For example, the full redirect URL

could be [12]: https://your-company.com/?tokenID=1I0UIQ123NSF&payResul t=X32
4FSa

=]

. Asynchronously, the PSP calls the payment service with the payment status via a
webhook. The webhook is an URL on the payment system side that was registered
with the PSP during the initial setup with the PSP. When the payment system re-
ceives payment events through the webhook, it extracts the payment status and up-
dates the payment_order_status field in the Payment Order database table.

So far, we explained the happy path of the hosted payment page. In reality, the network
connection could be unreliable and all 9 steps above could fail. Is there any systematic
way to handle failure cases? The answer is reconciliation.

Reconciliation

When system components communicate asynchronously, there is no guarantee that a
message will be delivered, or a response will be returned. This is very common in the
payment business, which often uses asynchronous communication to increase system
performance. External systems, such as PSPs or banks, prefer asynchronous communi-

326 | Chapter 11. Payment System

fr

=3

cation as well. So how can we ensure correctness in this case?

The answer is reconciliation. This is a practice that periodically compares the states

among related services in order to verify that they are in agreement. It is usually the las|
line of defense in the payment system.

Every night the PSP or banks send a settlement file to their clients. The settlement file
contains the balance of the bank account, Logether with all the transactions that took
place on this bank account during the day. The reconciliation system parses the sel-

tlement file and compares the details with the ledger system. Figure 11.6 below shows
where the reconciliation process fits in the system.

o Internal i External
* : Payment Service
' Payment event 5 Providers (PSP) Card Schemes
- : | e VISA
[~| Eeve |1 stripe |— gme
§ audyen
| Ledger Wallet \ Settlement file

l El] o

Reconcillation

Payment System

Figure 11.6: Reconciliation

Reconciliation is also used to verify that the payment system is internally consistent.
For example, the states in the ledger and wallet might diverge and we could use the
reconciliation system to detect any discrepancy.

To fix mismatches found during reconciliation, we usually rely on the finance team to
perform manual adjustments. The mismatches and adjustments are usually classified into
three categories:

1. The mismatch is classifiable and the adjustment can be automated. In this case, we
know the cause of the mismatch, how to fix it, and it is cost-effective to write a
program to automate the adjustment. Engineers can automate both the mismatch
classification and adjustment.

2. The mismatch is classifiable, but we are unable to automate the adjustment. In this
case, we know the cause of the mismatch and how to fix it, but the cost of writing an
auto adjustment program is too high. The mismatch is put into a job queue and the
finance team fixes the mismatch manually.

Step 3 - Design Deep Dive | 327

i The mismatch is unclassifiable. In this case, we do not know how the mismatch
happens. The mismatch is put into a special job queue. The finance team investigates
1l manually.

Handling payment processing delays

As discussed previously, an end-to-end payment request flows through many compo-
nents and involves both internal and external parties. While in most cases a payment
request would complete in seconds, there are situations where a payment request would
stall and sometimes take hours or days before it is completed or rejected. Here are some
examples where a payment request could take longer than usual:

« The PSP deems a payment request high risk and requires a human to review it.

» A credil card requires extra protection like 3D Secure Authentication [13] which
requires extra details from a card holder to verify a purchase.

The payment service must be able to handle these payment requests that take a long
time to process, If the buy page is hosted by an external PSP, which is quite common

these days, the PSP would handle these long-running payment requests in the following
ways:

« The PSP would return a pending status to our client. Our client would display that to

the user. Our client would also provide a page for the customer to check the current
payment status.

« The PSP tracks the pending payment on our behalf, and notifies the payment service
of any status update via the webhook the payment service registered with the PSP.

When the payment request is finally completed, the PSP calls the registered webhook
mentioned above. The payment service updates its internal system and completes the
shipment to the customer.

Alternatively, instead of updating the payment service via a webhook, some PSP would
pul the burden on the payment service to poll the PSP for status updates on any pending
payment requests.

Communication among internal services

There are two types of communication patterns that internal services use to communi-
cate: synchronous vs asynchronous. Both are explained below.

Synchronous communication

Synchronous communication like HT TP works well for small-scale systems, but its short-
comings become obvious as the scale increases. It creates a long request and response
cycle that depends on many services. The drawbacks of this approach are:

- Low performance. If any one of the services in the chain doesn't perform well, the
whole system is impacted.

328 | Chapter 11. Payment System

it

+ Poor failure isolation. If PSPs or any other services fail, the client will no longer
receive a response.

+ Tight coupling. The request sender needs to know the recipient.

+ Hard to scale. Without using a queue to act as a buffer, it’s not easy to scale the
system to support a sudden increase in traffic.

Asynchronous communication

Asynchronous communication can be divided into two categories:

« Single receiver: each request (message) is processed by one receiver or service. It’s
usually implemented via a shared message queue. The message queue can have mul-
tiple subscribers, but once a message is processed, it gets removed from the queue.
Let’s take a look at a concrete example. In Figure 11.7, service A and service B both
subscribe to a shared message queue. When m1 and m2 are consumed by service A

and service B respectively, both messages are removed from the queue as shown in
Figure 11.8.

Service A

(BEE]EI

md m3 m2 mi

Service B

Figure 11.7: Message queue

Service A

m4 m3

m2

Service B

Figure 11.8: Single receiver for each message

« Multiple receivers: each request (message) is processed by multiple receivers or ser-
vices. Kafka works well here. When consumers receive messages, they are not re-
moved from Kafka. The same message can be processed by different services. This
model maps well to the payment system, as the same request might trigger multiple
side effects such as sending push notifications, updating financial reporting, ana-

Step 3 - Design Deep Dive | 329

; ; s Davrmp .
Iytics, etc. An example is illustrated in Figure 11.9. Payment events are published

to Kafka and consumed by different services such as the payment system, analyticg

service, and billing service.

' Payment
System

-

, Pl
@5 i e S e O | —[~Im1—»{ Analytics

md m3 m2 mi 1

Billing

Figure 11.9: Multiple receivers for the same message

Generally speaking, synchronous communication is simpler in design, but it doesn’t al-
low services to be autonomous. As the dependency graph grows, the overall performance
suffers. Asynchronous communication trades design simplicity and consistency for scal-
ability and failure resilience. For a large-scale payment system with complex business
logic and a large number of third-party dependencies, asynchronous communication is
a better choice.

Handling failed payments

Every payment system has to handle failed transactions. Reliability and fault toler-
ance are key requirements. We review some of the techniques for tackling those chal-
lenges.

Tracking payment state

Having a definitive payment state at any stage of the payment cycle is crucial. Whenever
a failure happens, we can determine the current state of a payment transaction and decide

whether a retry or refund is needed. The payment state can be persisted in an append-
only database table.

Retry queue and dead letter queue

To gracefully handle failures, we utilize the retry queue and dead letter queue, as shown
in Figure 11.10.

« Retry queue: retryable errors such as transient errors are routed to a retry queue.

+ Dead letter queue [14]: if a message fails repeatedly, it eventually lands in the dead
letter queue. A dead letter queue is useful for debugging and isolating problematic
messages for inspection to determine why they were not processed successfully.

330 | Chapter 11. Payment System

|

_______ —

(3a) Yes

Payment — Retryable?
System

y Retry Queue terr

1a) Yes

Failure

No

__ Rﬁetmbm?
\\-_. / o'/

et Dead Letter Queue
Failyre

Database

Figure 11.10: Handle failed payments

1. Check whether the failure is retryable.
(a) Retryable failures are routed to a retry queue.
(b) For non-retryable failures such as invalid input, errors are stored in a database.

2. The payment system consumes events from the retry queue and retries failed pay-
ment transactions.

3. If the payment transaction fails again:

(a) If the retry count doesn’t exceed the threshold, the event is routed to the retry
queue.

(b) If the retry count exceeds the threshold, the event is put in the dead letter queue.
Those failed events might need to be investigated.

If you are interested in a real-world example of using those queues, take a look at Uber’s

payment system that utilizes Kafka to meet the reliability and fault-tolerance require-
ments [15].

Exactly-once delivery

One of the most serious problems a payment system can have is to double charge a cus-
tomer. It is important to guarantee in our design that the payment system executes a
payment order exactly-once [16].

At first glance, exactly-once delivery seems very hard to tackle, but if we divide the prob-
lem into two parts, it is much easier to solve. Mathematically, an operation is executed
exactly-once if:

1. It is executed at-least-once.

2. At the same time, it is executed at-most-once.

We will explain how to implement at-least-once using retry, and at-most-once using
idempotency check.

Step 3 - Design Deep Dive | 331

Retry

Occasionally, we need to retry a payment transaction due to network errors or timeout.
Retry provides the at-least-once guarantee. For example, as shown in Figure 11.11, where
the client tries to make a $10 payment, but the payment request keeps failing due to a
poor network connection. In this example, the network eventually recovered and the
request succeeded at the fourth attempt.

™ | bég_mem
‘ie'i | System
—— P S %
- b Payment failed

— Pay $10 ————————»

Retry |
LR ¥ Payment failed
Retry Pay $10 ———
- ' Payment failed
Ret Royspl——————
Y e Payment succeeded

Figure 11.11: Retry

Deciding the appropriate time intervals between retries is important. Here are a few
common retry strategies.

« Immediate retry: client immediately resends a request.

« Fixed intervals: wait a fixed amount of time between the time of the failed payment
and a new retry attempt.

« Incremental intervals: client waits for a short time for the first retry, and then incre-
mentally increases the time for subsequent retries.

« Exponential backoff [17]: double the waiting time between retries after each failed
retry. For example, when a request fails for the first time, we retry after 1 second; if
it fails a second time, we wait 2 seconds before the next retry; if it fails a third time,
we wait 4 seconds before another retry.

« Cancel: the client can cancel the request. This is a common practice when the failure
is permanent or repeated requests are unlikely to be successful.

Determining the appropriate retry strategy is difficult. There is no “one size fits all” solu-
tion. As a general guideline, use exponential backoff if the network issue is unlikely to be
resolved in a short amount of time. Overly aggressive retry strategies waste computing

332 | Chapter 11. Payment System

resources and can cause service overload. A good practice is to provide an error code
with a Retry-After header.

A potential problem of retrying is double payments. Let us take a look at two scenar-

108

Scenario 1 The payment system integrates with PSP using a hosted payment page, and
the client clicks the pay button twice.

Scenario 2: The payment 1s successfully processed by the PSP, but the response fails to
reach our payment system due to network errors. The user clicks the “pay” button again
or the client retries the payment,

In order 10 avoid double payment, the payment has to be executed at-most-once. This
at-most-once guarantee is also called idempotency.

Idempotency

Idempotency is key to ensuring the at-most-once guarantee. According to Wikipedia,
“idempotence is the property of certain operations in mathematics and computer science
whereby they can be applied multiple times without changing the result beyond the ini-
tial application” [18]. From an API standpoint, idempotency means clients can make the
same call repeatedly and produce the same result.

For communication between clients (web and mobile applications) and servers, an idem-
potency key is usually a unique value that is generated by the client and expires after
a certain period of time. A UUID is commonly used as an idempotency key and it is
recommended by many tech companies such as Stripe [19] and PayPal [20]. To per-

form an idempotent payment request, an idempotency key is added to the HT TP header:
<idempotency-key: key_value>.

Now that we understand the basics of idempotency, let’s take a look at how it helps to
solve the double payment issues mentioned above,

Scenario 1: what if a customer clicks the “pay” button quickly twice?

In Figure 11.12, when a user clicks “pay,” an idempotency key is sent to the payment
system as part of the HTTP request. In an e-commerce website, the idempotency key is
usually the ID of the shopping cart right before the checkout,

For the second request, it’s treated as a retry because the payment system has already
seen the idempotency key. When we include a previously specified idempotency key

in the request header, the payment system returns the latest status of the previous re-
quest.

-Step 3 - Design Deep Dive | 333

POST {idempotency-key: UUID)

— : oy 1
{ Client Payment

System |

First request T ———

" Charge succeeded

[]
_ POST {idempotency-key: UUID} '

~Sih :
{ Client / Payment }
. i | System

e . .
Retry e = e Servor has
= . already seen the
Return previous message !dsmpgiency key

1}
I
Do nol process !
! the request again !

I

Figure 11.12: Idempotency

If multiple concurrent requests are detected with the same idempotency key, only one
request is processed and the others receive the 429 Too Many Requests status code.

To support idempotency, we can use the database’s unique key constraint. For example,
the primary key of the database table is served as the idempotency key. Here is how it
works:

1. When the payment syslem receives a payment, it tries to insert a row into the
database table.

2. A successful insertion means we have not seen this payment request before.

3. If the insertion fails because the same primary key already exists, it means we have
seen this payment request before. The second request will not be processed.

Scenario 2: The payment is successfully processed by the PSP, but the response
fails to reach our payment system due to network errors. Then the user clicks the
“pay” button again.

As shown in Figure 11.4 (step 2 and step 3), the payment service sends the PSP a nonce
and the PSP returns a corresponding token. The nonce uniquely represents the payment
order, and the token uniquely maps to the nonce. Therefore, the token uniquely maps to
the payment order.

When the user clicks the “pay” button again, the payment order is the same, so the token
sent to the PSP is the same. Because the token is used as the idempotency key on the
PSP side, it is able to identify the double payment and return the status of the previous
execution.

Consistency

Several stateful services are called in a payment execution:

334 | Chapter 11. Payment System

1. The payment service keeps payment-related data such as nonce, token, payment or-
der, execution status, etc.

2. The ledger keeps all accounting data.

3. The wallet keeps the account balance of the merchant.

4 The PSP keeps the payment execulion status,

5. Data might be replicated among different database replicas to increase reliability.

In a distributed environment, the communication between any two services can fail, caus-
ing data inconsistency. Let's take a look at some techniques to resolve data inconsistency

in a payment system.

To maintain data consistency between internal services, ensuring exactly-once process-
ing is very important.

To maintain data consistency between the internal service and external service (PSP), we
usually rely on idempotency and reconciliation, If the external service supports idempo-
tency, we should use the same idempotency key for payment retry operations. Even if
an external service supports idempotent APIs, reconciliation is still needed because we
shouldn’t assume the external system is always right.

If data is replicated, replication lag could cause inconsistent data between the primary
database and the replicas. There are generally two options to solve this:

1. Serve both reads and writes from the primary database only. This approach is easy
to set up, but the obvious drawback is scalability. Replicas are used to ensure data
reliability, but they don’t serve any traffic, which wastes resources.

2. Ensure all replicas are always in-sync. We could use consensus algorithms such
as Paxos [21] and Raft [22], or use consensus-based distributed databases such as
YugabyteDB [23] or CockroachDB [24].

Payment security

Payment security is very important. In the final part of this system design, we briefly
cover a few techniques for combating cyberattacks and card thefts.

Step 3 - Design Deep Dive | 335

‘ ' Problem | Solution
—_— — + S _—
Request/response eavesdropping Use HTTPS

N Enforce encryption and integrity

t

Data tampering Horing
moniloring

|

|I Man-in-the-middle attack | Use SSL with certificate])il]ll_i-l;f-f _

f Database replication across multi-

‘ Data loss ple regions and take snapshots of
data

L B —
I . 3 . 5 .

Distributed denial-of-service attack o s
b Rate limiting and firewall [25]

| (DDoS)
| - Tokenization. Instead of using real
| Card theft card numbers, tokens are stored
| - and used for payment
PCI DSS is an information secu-
PCI compliance rity standard for organizations that

handle branded credit cards
Address verification, card verifica-
Fraud tion value (CVV), user behavior
analysis, etc. [26] [27]

Table 11.6: Payment security

Step 4 - Wrap Up

In this chapter, we investigated the pay-in flow and pay-out flow. We went into great
depth about retry, idempotency, and consistency. Payment error handling and security
are also covered at the end of the chapter.

A payment system is extremely complex. Even though we have covered many topics,
there are still more worth mentioning. The following is a representative but not an ex-
haustive list of relevant topics.

« Monitoring. Monitoring key metrics is a critical part of any modern application.
With extensive monitoring, we can answer questions like “What is the average accep-
tance rate for a specific payment method?”, “What is the CPU usage of our servers?”,
etc. We can create and display those metrics on a dashboard.

« Alerting. When something abnormal occurs, it is important to alert on-call develop-
ers so they respond promptly.

« Debugging tools. “Why does a payment fail?” is a common question. To make
debugging easier for engineers and customer support, it is important to develop
tools that allow staff to review the transaction status, processing server history, PSP
records, etc. of a payment transaction.

. Currency exchange. Currency exchange is an important consideration when design-
ing a payment system for an international user base.

. Geography. Different regions might have completely different sets of payment meth-

336 | Chapter 11. Payment System

ods
» Cash payment. Cash payment is very common in India, Brazil, and some other coun-
tries. Uber [28] and Airbnb [29] wrote detailed engincering blogs about how they

handled cash-based payment.

» Google/Apple pay integration. Please read [30] if interested.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

Step 4 - Wrap Up | 337

Chapter Summary

— pay-in flow

~ functional req -<

— pay-oul flow

reliability: handle failed payments
non-functional req <
reconciliation

step 1

estimation 10 TPS

payment service
payment executor
payment service provider
pay-in flow

card scheme
ledger

step 2 &
wallet

PSP integration
reconciliation
handling payment processing delays

pay-out flow third-party service

Payment Service

communication among internal services

keep payment safe
step 3 .
handle failed payments <

retry queue and dead letter queue

retry
exactly-once delivery <
idempotency

consistency

payment security

step 4 wrap up

338 | Chapter 11. Payment System

Reference Material

(1] Payment system. https://en.wikipedia.org/wiki/Payment_system.
(2] AML/CFT. https://en.wikipedia.org/wiki/Money_laundering.

(3] Card scheme. https://en.wikipedia.org/wiki/Card_scheme.

[4] 1SO 4217. https://en.wikipedia.org/wiki/ISO_4217.

(5] Stripe API Reference. https://stripe.com/docs/api.

[6] Double-entry bookkeeping. https://en.wikipedia.org/wiki/Double-entry_bookkee
ping.

[7] Books, an immutable double-entry accounting database service. https://developer.

squareup.com/blog/books-an-immutable-double-entry-accounting-database-serv
ice/.

[8] Payment Card Industry Data Security Standard. https://en.wikipedia.org/wiki/Pa
yment_Card_Industry_Data_Security_Standard.

[9] Tipalti. https://tipalti.com/.
[10] Nonce. https://en.wikipedia.org/wiki/Cryptographic_nonce.
[11] Webhooks. https://stripe.com/docs/webhooks.

(12] Customize your success page. https://stripe.com/docs/payments/checkout/custom
-success-page.

(13] 3D Secure. https://en.wikipedia.org/wiki/3-D_Secure.

[14] Kafka Connect Deep Dive - Error Handling and Dead Letter Queues. https://www.
confluent.io/blog/kafka-connect-deep-dive-error-handling-dead-letter- queues/.

[15] Reliable Processing in a Streaming Payment System. https://www.youtube.com/wa
tch?v=5TDSrn7w1xEO&listzPLLEUtpSeGr'?DszWGUpiSiGSd_Wg]e-KJ.

[16] Chain Services with Exactly-Once Guarantees. https://www.confluent.io/blog/ch
ain-services-exactly-guarantees/.

[17] Exponential backoff. https://en.wikipedia.org/wiki/Exponential backoff.

(18] Idempotence. https://en.wikipedia.org/wiki/ldempotence.

[19] Stripe idempotent requests. https://stripe.com/docs/api/idempotent_requests.

[20] Idempotency. https://developer.paypal.com/docs/platforms/develop/idempotency/.
[21] Paxos. https://en.wikipedia.org/wiki/Paxos_(computer_science).

(22] Raft. https://raft.github.io/.

[23] YogabyteDB. https://www.yugabyte.com/.

Reference Material | 339

[24] Cockroachdb. https://www.cockroachlabs.com/.

[25] What is DDoS attack. hltps:fwaw.clol1dﬂm'e.cmn/learning!ddosr’what-is-a-ddos-
attack/.
[26] How Payment Gateways Can Detect and Prevent Online Fraud. https://www.char

gebee.com/blog/optimize-online-billing-stop-online-fraud/.

[27] Advanced Technologies for Detectin g and Preventing Fraud at Uber. https:;’/c-ng,ub
er.com/advanced-technologies-detecting-preventing-fraud-uber/.

(28] Re-Architecting Cash and Digital Wallet Payments for India with Uber Engineering.
https://eng.uber.com/india-payments/.

[29] Scaling Airbnb’s Payment Platform. https://medium.com/airbnb-engineering/scal
ing-airbnbs-payment-platform-43ebfc99b324.

[30] Payments Integration at Uber: A Case Study - Gergely Orosz. https://www.youtub
e.com/watch?v=y00CE5BOSRA.

340 | Chapter 11. Payment System

:

ﬂ

12 Digital Wallet

Pavment platforms usually provide a digital wallet service to clients. so they can store
monev in the wallet and spend it later. For example, you can add money to your digital
wallet from vour bank card and when you buy products online, you are given the option
to pay using the money in your wallet. Figure 12.1 shows this process.

sk | | g | B

Figure 12.1: Digital wallet

Spending money is not the only feature that the digital wallet provides. For a payment
platform like PayPal. we can directly transfer money to somebody else’s wallet on the
same payment platform. Compared with the bank-to-bank transfer, direct transfer be-
tween digital wallets is faster. and most importantly, it usually does not charge an extra
fee. Figure 12.2 shows a cross-wallet balance transfer operation.

i
i
{

Payment Platform

|

| Digital waliet Digital wallet

Figure 12.2: Cross-wallet balance transfer

5_ilppose we are asked to design the backend of a digital wallet application that supports
‘e cross-wallet balance transfer operation. At the beginning of the interview, we will
zsk clarification questions to nail down the requirements.

Step 1 - Understand the Problem and Establish Design Scope

[341

Candidate: Should we only focus on balance transfer operations between two digilal
wallets? Do we need to worry about other fealures?

Interviewer: Lel's focus on balance transfer operations only.

Candidate: How many transactions per second (TPS) does the system need to support?
Interviewer: Let's assume 1,000,000 TPS.

Candidate: A digilal wallet has strict requirements for correctness. Can we assume
transactional guarantees [1] are sufficient?

Interviewer: That sounds good.

Candidate: Do we need to prove correctness?

Interviewer: This is a good question. Correctness is usually only verifiable after a trans-
action is complete. One way to verify is to compare our internal records with statements
from banks. The limitation of reconciliation is that it only shows discrepancies and can-
not tell how a difference was generated. Therefore, we would like to design a system with

reproducibility, meaning we could always reconstruct historical balance by replaying the
data from the very beginning,

Candidate: Can we assume the availability requirement is 99.99%
Interviewer: Sounds good.

Candidate: Do we need to take foreign exchange into consideration?
Interviewer: No, it’s out of scope.

In summary, our digital wallet needs to support the following:

« Support balance transfer operation between two digital wallets.
Support 1,000,000 TPS.
Reliability is at least 99.99%.

Support transactions.

-

Support reproducibility.

Back-of-the-envelope estimation

When we talk about TPS, we imply a transactional database will be used. Today, a rela-
tional database running on a typical data center node can support a few thousand trans-
actions per second. For example, reference [2] contains the performance benchmark
of some of the popular transactional database servers. Let’s assume a database node can
support 1,000 TPS. In order to reach 1 million TPS, we need 1,000 database nodes.

However, this calculation is slightly inaccurate. Each transfer command requires two
operations: deducting money from one account and depositing money to the other ac-
count. To support 1 million transfers per second, the system actually needs to handle up
to 2 million TPS, which means we need 2,000 nodes.

Table 12.1 shows the total number of nodes required when the “per-node TPS” (the TPS
a single node can handle) changes. Assuming hardware remains the same, the more

342 | Chapter 12. Digital Wallet

transactions a single node can handle per second, the lower the total number of nodes
e 14 A =

required, indicating lower hardware cosl. So one of our design goals is to increase the
number of transactions a single node can handle.

Per-node TPS | Node Number
100 | 20,000
1,000 2,000
10,000 200

Table 12.1: Mapping between pre-node TPS and node number

Step 2 - Propose High-level Design and Get Buy-in

In this section, we will discuss the following:

« API design
. Three high-level designs
1. Simple in-memory solution
2. Database-based distributed transaction solution

3. Event sourcing solution with reproducibility

API design

We will use the RESTful API convention. For this interview, we only need to support one
APIL:

API Detail

POST /v1/wallet/balance_transfer 'CI)':hansfer balance from one wallet to an-
er

Request parameters are:

Field Description Type
from_account The debit account string
to_account The credit account string
amount The amount of money string
currency The currency type string (ISO 4217 [3])
 transaction_id | ID used for deduplication | uuid

Sample response body:

"Status": "success"
"Transaction_id": "B1589986-2664~11ec-9621-8242ac138082"

One thing worth mentioning is that the data type of the “amount” field is “string,

Step 2 - Propose High-level Design and Get Buy-in | 343

rather than “double”. We explained the reasoning in Chapter 11 Payment System on
page 320.

In practice, many people still choose float or double representation of numbers because it
is supported by almost every programming language and database. It is a proper choice
as long as we understand the potential risk of losing precision.

In-memory sharding solution

The wallet application maintains an account balance for every user account. A good data
structure to represent this <user,balance> relationship is a map, which is also called a
hash table (map) or key-value store.

For in-memory stores, one popular choice is Redis. One Redis node is not enough to
handle 1 million TPS. We need to set up a cluster of Redis nodes and evenly distribute
user accounts among them. This process is called partitioning or sharding.

To distribute the key-value data among n. partitions, we could calculate the hash value
of the key and divide it by n. The remainder is the destination of the partition. The
pseudocode below shows the sharding process:

String accountID = "A";
Int partitionNumber = 7;
Int myPartition = accountID.hashCode() % partitionNumber;

The number of partitions and addresses of all Redis nodes can be stored in a central-
ized place. We could use ZooKeeper [4] as a highly-available configuration storage solu-

lion.

The final component of this solution is a service that handles the transfer commands. We
call it the wallet service and it has several key responsibilities.

1. Receives the transfer command

2. Validates the transfer command

3. If the command is valid, it updates the account balances for the two users involved
in the transfer. In a cluster, the account balances are likely to be in different Redis

nodes

The wallet service is stateless. It is easy to scale horizontally. Figure 12.3 shows the

in-memory solution.

344 | Chapter 12. Digital Wallet

Transfer Command Transfer Command
Q‘ﬁ O

A—$1 =B
v
Wallet Wallet .| Pariti
Service Service - alntc:wl
A: - $:1 B: + $1 EogKempe

¥
{ A: balance } { B: balance } { C: balance }
Redis Redis Redis

Figure 12.3: In-memory solution

In this example, we have 3 Redis nodes. There are three clients, A, B, and C. Their account
balances are evenly spread across these three Redis nodes. There are two wallet service
nodes in this example that handle the balance transfer requests. When one of the wallet
service nodes receives the transfer command which is to move $1 from client A to client
B, it issues two commands to two Redis nodes. For the Redis node that contains client A’s
account, the wallet service deducts $1 from the account. For client B, the wallet service
adds $1 to the account.

Candidate: In this design, account balances are spread across multiple Redis nodes.
ZooKeeper is used to maintain the sharding information. The stateless wallet service
uses the sharding information to locate the Redis nodes for the clients and updates the
account balances accordingly.

Interviewer: This design works, but it does not meet our correctness requirement. The
wallet service updates two Redis nodes for each transfer. There is no guarantee that
both updates would succeed. If, for example, the wallet service node crashes after the
first update has gone through but before the second update is done, it would result in an
incomplete transfer. The two updates need to be in a single atomic transaction.

Distributed transactions

Database sharding

How do we make the updates to two different storage nodes atomic? The first step is to
replace each Redis node with a transactional relational database node. Figure 12.4 shows
the architecture. This time, clients A, B, and C are partitioned into 3 relational databases,
rather than in 3 Redis nodes.

Step 2 - Propose High-level Design and Get Buy-in | 345

Transfer Command Transfer Command

@) O

Wallet
Service

Zookeeper

S ——

Relational Database Relational Database Relational Database

Figure 12.4: Relational database

Using transactional databases only solves part of the problem. As mentioned in the last
section, it is very likely that one transfer command will need to update two accounts
in two different databases. There is no guarantee that two update operations will be
handled at exactly the same time. If the wallet service restarted right after it updated
the first account balance, how can we make sure the second account will be updated as
well?

Distributed transaction: Two-phase commit

In a distributed system, a transaction may involve multiple processes on multiple nodes.
To make a transaction atomic, the distributed transaction might be the answer. There are
two ways to implement a distributed transaction: a low-level solution and a high-level
solution. We will examine each of them.

The low-level solution relies on the database itself. The most commonly used algorithm
is called two-phase commit (2PC). As the name implies, it has two phases, as in Figure
12.5.

Prepare Commit
i4————phase 1——————#re———phase 2 :' time

yes yes

i
i
Database A : /
._ tock A \ | \ /
] |

write data write data

Coordinator
(Wallet Service)

—a——fhaa

Database C — —O O O

locle ©

Figure 12.5: Two-phase commit (source [5])

346 | Chapter 12. Digital Wallet

i

"

Ak

| The coordinator, which in our case is the wallet service, performs read and write
operations on multiple databases as normal. As shown in Figure 12.5, both databases
A and C are locked.

When the application is about to commit the transaction, the coordinator asks all
databases to prepare the transaction.

)

3. In the second phase, the coordinator collects replies from all databases and performs
the following;:

(a) If all databases reply with a yes, the coordinator asks all databases to commit the
transaction they have received.

(b) If any database replies with a no, the coordinator asks all databases to abort the
transaction.

It is a low-level solution because the prepare step requires a special modification to the
database transaction. For example, there is an X/Open XA [6] standard that coordinates
helerogeneous databases to achieve 2PC. The biggest problem with 2PC is that it’s not
performant, as locks can be held for a very long time while waiting for a message from

the other nodes. Another issue with 2PC is that the coordinator can be a single point of
failure, as shown in Figure 12.6.

E _ . ' Prepare o

Coordinator — "1 te dala write data _ | i
(wallet Service) | i X

. ok ok |

i 1
Database A — j :

1 1

t 1

] |
Database C — :

Figure 12.6: Coordinator crashes

Distributed transaction: Try-Confirm/Cancel (TC/C)
TC/Cis a type of compensating transaction [7] that has two steps:

1. In the first phase, the coordinator asks all databases to reserve resources for the
transaction.

2 In the second phase, the coordinator collects replies from all databases:
(a) If all databases reply with yes, the coordinator asks all databases to confirm the
operation, which is the Try-Confirm process.

(b) If any database replies with no, the coordinator asks all databases to cancel the
operation, which is the Try-Cancel process.

I's important to note that the two phases in 2PC are wrapped in the same transaction,
but in TC/C each phase is a separate transaction.

Step 2 - Propose High-level Design and Get Buy-in | 347

TC/C example

It would be much easier to explain how TC/C works with a real-world example, Suppose
we want to transfer §1 from account A to account C. Table 12.2 gives a summary of how

TC/C is executed in each phase.

' Phase | Operation | A C
|___I _ Try Balance_ﬁig_c_-:' —$1 Do nothing
J 5 Confirm Do nothing | Balance change: +§1
| | Cancel Balance change: +$1 Do Nothing |

Table 12.2: TC/C example

Let’s assume the wallet service is the coordinator of the TC/C. At the beginning of the
distributed transaction, account A has $1 in its balance, and account C has $0.

First phase: Try In the Try phase, the wallet service, which acts as the coordinator,
sends two transaction commands to two databases:

1. For the database that contains account A, the coordinator starts a local transaction
that reduces the balance of A by $1.

2. For the database that contains account C, the coordinator gives it a NOP (no operation).
To make the example adaptable for other scenarios, let’s assume the coordinator
sends to this database a NOP command. The database does nothing for NOP commands
and always replies to the coordinator with a success message.

The Try phase is shown in Figure 12.7. The thick line indicates that a lock is held by the
transaction.

First Phase

Coordinator

{Wallet Service) UPDATE balance

1
]
)
]
b SET amount=amount-1 Donea
| Try: A-§1 WHERE account= ‘A’ r? 2
|
I
Database A — \ u!' : /J—u >
: A=% A=S0
i NOP lock A unlock A/ Done
]
: A
Database C — NOP - >
i c80 o C=%0
i

Figure 12.7: Try phase

Second phase: Confirm If both databases reply yes, the wallet service starts the next
Confirm phase.

Account A’s balance has already been updated in the first phase. The wallet service does
not need to change its balance here. However, account C has not yet received its $1 from
account A in the first phase. In the Confirm phase, the wallet service has to add $1 to
account C’s balance.

348 | Chapter 12. Digital Wallet

The Confirm process is shown in Figure 12.8.

E First Phase Second Phase: Confirm i
Coordinator : . \
(Wwallat Service) ! /}/

UPDATE balance
; SET amount=amount-1 v Done
Tv:A-$1 \MERe account='a*

I
1
I
]
|
, i
a ! NOP / Done '
] L}
' x . ' N —4 '
Datahase A _f_ O ! | L NOP i
: \ Al 7 Ao / | \ AS$0 A= |
) 1 E 1 1
: NOP lock A unlock A/ pone E Confirm: C+$1 :.
I ! H
Database C —) NOP ,’{ : | ' -
) C=50 c%0 : cto | ¢ o i
] 1
' ' lock C unlock A |

UPDATE balance
SET amount=amount+l
WHERE account="C"

Figure 12.8: Confirm phase

Second phase: Cancel What if the first Try phase fails? In the example above we have
assumed the NOP operation on account C always succeeds, although in practice it may fail.
For example, account C might be an illegal account, and the regulator has mandated that

no money can flow into or out of this account. In this case, the distributed transaction
must be canceled and we have to clean up.

Because the balance of account A has already been updated in the transaction in the Try
phase, it is impossible for the wallet service to cancel a completed transaction. What it

can do is to start another transaction that reverts the effect of the transaction in the Try
phase, which is to add $1 back to account A.

Because account C was not updated in the Try phase, the wallet service just needs to
send a NOP operation to account C’s database.

The Cancel process is shown in Figure 12.9.

First Phase Second Phase: Cancel

Coordinator
(Waiet Service)

UPDATE balance
SET amount=amount+]
Cancel: A+§1 WHERE account="A* ' Done

UPDATE balance
Try: A-81 SET amount=amount-1 < Dane

\’\ WHERE account='A’
] i | /-/

A B w7 " ¥ ok s vl
! i Y .]
' NOP lock A unlock A X roina NP lock C unlock A/ Done
| A RS d |
Database C NOP > NOP —
i c=s0 & co80 c%0 = ¢ |
1
1 i

Figure 12.9: Cancel phase

Comparison between 2PC and TC/C

Table 12.3 shows that there are many similarities between 2PC and TC/C, but there are
dso differences. In 2PC, all local transactions are not done (still locked) when the second
phase starts, while in TC/C, all local transactions are done (unlocked) when the second
phase starts. In other words, the second phase of 2PC is about completing an unfinished

Step 2 - Propose High-level Design and Get Buy-in | 349

transaction, such as an abort or commit, while in TC/C, the second phase is about using
a reverse opcralinn to offset the pr(‘vinus transaction result when an error occurs. The
following table summarizes their differences.

| | First Phase | Second Phase: success | Second Phase: fail
I~ 4‘— = — ————— . — S
| Local transactions are | Commit all local | Cancel all local
2PC | "
! transactions
i

| not done yet { transactions t o
Reverse the side effect of |

the already committed

transaction, or called

|r__ - Il All local transactions
|' TC/C | are completed. either
| committed or

Execute new local
transactions if
needed

‘_ﬁ-‘

L o canceled

“undo”

Table 12.3: 2PC v.s. TC/C

TC/C is also called a distributed transaction by compensation. It is a high-level solution
because the compensation, also called the “undo.” is implemented in the business logic.
The advantage of this approach is that it is database-agnostic. As long as a database
supports transactions, TC/C will work. The disadvantage is that we have to manage the
details and handle the complexity of the distributed transactions in the business logic at
the application layer.

Phase status table

We still have not yet answered the question asked earlier; what if the wallet service
restarts in the middle of TC/C? When it restarts, all previous operation history might be
lost, and the system may not know how to recover.

The solution is simple. We can store the progress of a TC/C as phase status in a transac-
tional database. The phase status includes at least the following information.

+ The ID and content of a distributed transaction.

« The status of the Try phase for each database. The status could be not sent yet, has
been sent, and response received.

» The name of the second phase. It could be Confirm or Cancel. It could be calculated
using the result of the Try phase.

« The status of the second phase.

« An out-of-order flag (explained soon in the section “out-of-order Execution”).

Where should we put the phase status tables? Usually, we store the phase status in the
database that contains the wallet account from which money is deducted. The updated
architecture diagram is shown in Figure 12.10.

350 | Chapter 12. Digital Wallet

]

i

Y

1]

ti

Transfer Command Transfer Command

Partition
Info

Zookeeper

Figure 12.10: Phase status table

Unbalanced state
Have you noticed that by the end of the Try phase, $1 is missing (Figure 12.11)?

Assuming everything goes well, by the end of the Try phase, $1 is deducted from account
A and account C remains unchanged. The sum of account balances in A and C will be
$0, which is less than at the beginning of the TC/C. It violates a fundamental rule of
accounting that the sum should remain the same after a transaction.

The good news is that the transactional guarantee is still maintained by TC/C. TC/C com-
prises several independent local transactions. Because TC/C is driven by application, the
application itself is able to see the intermediate result between these local transactions.
On the other hand, the database transaction or 2PC version of the distributed transaction
was maintained by databases that are invisible to high-level applications.

There are always data discrepancies during the execution of distributed transactions. The
discrepancies might be transparent to us because lower-level systems such as databases

aready fixed the discrepancies. If not, we have to handle it ourselves (for example,
TC/C).

The unbalanced state is shown in Figure 12.11.

Step 2 - Propose High-level Design and Get Buy-in | 351

First Phase : Second Phase: Confirm

]
'
]
1 ! |
. [l]
Coordinator —+Q— })_ " .
(Wallet Service) UPDATE balance ! :
} " SET amounte=amount -1 Dona) !
' \TW n{ WHERE account=*A" ' NOP :
L} 1
Database A —— —Q—'— -3 . - :
| A=51} 4 A=%0 ' A=t0 ;
[} \]
[=] / i ,]
! NI ‘\F lock A unlock A Dona : Confirm: C+$1 / Done I,
\ ! .
| ! .
Database C '-—:——-——323 NOP ;r{ H M______,_ "
\ C=80 o ff H G804 E.\ , Cu$1 4
: ' i
| ' i
\ / ockC yppate batance UMOKA
SET amount=amount+1
/ WHERE accounts="C’
Before TCG start; A+C=$1 After first P"ﬂ-“e' After second phase: A+C=1§1

e .
Money loss: $1 Unbalahced state Maney recovery: $1

Figure 12.11: Unbalanced state

Valid operation orders

There are three choices for the Try phase:

Try phase choices | Account A | Account C
Choice 1 —-§1 NOP
Choice 2 NOP +$1
Choice 3 —-$1 +81

Table 12.4: Try phase choices

All three choices look plausible, but some are not valid.

For choice 2, if the Try phase on account C is successful, but has failed on account A (NOP),
the wallet service needs to enter the Cancel phase. There is a chance that somebody else
may jump in and move the $1 away from account C. Later when the wallet service tries
to deduct $1 from account C, it finds nothing is left, which violates the transactional
guarantee of a distributed transaction.

For choice 3, if $1 is deducted from account A and added to account C concurrently, it
introduces lots of complications. For example, $1 is added to account C, but it fails to
deduct the money from account A. What should we do in this case?

Therefore, choice 2 and choice 3 are flawed choices and only choice 1 is valid.
Out-of-order execution

One side effect of TC/C is the out-of-order execution. It will be much easier to explain
using an example.

We reuse the above example which transfers $1 from account A to account C. As Figure
12.12 shows, in the Try phase, the operation against account A fails and it returns a failure
to the wallet service, which then enters the Cancel phase and sends the cancel operation
to both account A and account C.

Let’s assume that the database that handles account C has some network issues and it

352 | Chapter 12. Digital Wallet

i

-

Y

PET TN RNESE

receives the Cancel instruction before the Try instruction. In this case, there is nothing
to cancel.

The out-of-order execution is shown in Figure 12.12,

First Phase Second Phase: Cancel

|
H

)

|

" :
'

'

]

Cancel !

L]

1

1

¥

L)

Try

Out-of-order: (el operation arrived before |1 operation

Coordinator
(Wallpt Service)

-

]
]
1
'
]
]
'
|
|
]
[}
]

Database A

-

Database C

Figure 12.12: Out-of-order execution

To handle out-of-order operations, each node is allowed to Cancel a TC/C without receiv-
ing a Try instruction, by enhancing the existing logic with the following updates:

» The out-of-order Cancel operation leaves a flag in the database indicating that it has
seen a Cancel operation, but it has not seen a Try operation yet.

+ The Try operation is enhanced so it always checks whether there is an out-of-order
flag, and it returns a failure if there is.

This is why we added an out-of-order flag to the phase status table in the “Phase Status
Table” section.

Distributed transaction: Saga
Linear order execution

There is another popular distributed transaction solution called Saga [8]. Saga is the
de-facto standard in a microservice architecture. The idea of Saga is simple:

1. All operations are ordered in a sequence. Each operation is an independent transac-
tion on its own database.

2. Operations are executed from the first to the last. When one operation has finished,
the next operation is triggered.

3. When an operation has failed, the entire process starts to roll back from the current
operation to the first operation in reverse order, using compensating transactions.
So if a distributed transaction has n operations, we need to prepare 2n operations:
n operations for the normal case and another n for the compensating transaction
during rollback.

Itis easier to understand this by using an example. Figure 12.13 shows the Saga workflow
to transfer $1 from account A to account C. The top horizontal line shows the normal

Step 2 - Propose High-level Design and Get Buy-in | 353

order of execution. The two vertical lines show what the system should do when there
is an error. When il encounters an error, the transfer operations are rolled back and the
client receives an error message. As we mentioned in the “Valid operation orders” section
on page 352, we have to put the deduction operation before the addition operation,

Start () > A-$1 —» C+81 »() Success
| i
Error Error
- o
A+$1 C-$1

A+8$1

Error

®

Error

Figure 12.13: Saga workflow
How do we coordinate the operations? There are two ways to do it:

1. Choreography. In a microservice architecture, all the services involved in the Saga
distributed transaction do their jobs by subscribing to other services’ events. So it is
fully decentralized coordination.

2. Orchestration. A single coordinator instructs all services to do their jobs in the cor-
rect order.

The choice of which coordination model to use is determined by the business needs and
goals. The challenge of the choreography solution is that services communicate in a fully
asynchronous way, so each service has to maintain an internal state machine in order to
understand what to do when other services emit an event. It can become hard to manage
when there are many services. The orchestration solution handles complexity well, so it
is usually the preferred solution in a digital wallet system.

Comparison between TC/C and Saga

TC/C and Saga are both application-level distributed transactions. Table 12.5 summarizes
their similarities and differences.

354 | Chapter 12. Digital Wallet

e ___4|'_ 'I_‘(-"".C - Saga
_ Compensating action | In Cancel phase | __In rollback phase
" Central coqydinal_ion _‘_l’eg__ Yes (orchestration mode)
"~ Operation execution -
any linear
order
Parallel execution R '___"_“
oxods Yes No (linear execution)
possibility
uld see the partial
C.O . p Yes Yes
inconsistent status
" Application or database < o
PP T Application Application

Table 12.5: TC/C vs Saga

Which one should we use in practice? The answer depends on the latency requirement.
As Table 12.5 shows, operations in Saga have to be executed in linear order, but it is pos-
sible to execute them in parallel in TC/C. So the decision depends on a few factors:

1. If there is no latency requirement, or there are very few services, such as our money
transfer example, we can choose either of them. If we want to go with the trend in
microservice architecture, choose Saga.

2. Ifthe system is latency-sensitive and contains many services/operations, TC/C might
be a better option.

Candidate: To make the balance transfer transactional, we replace Redis with a rela-
tional database, and use TC/C or Saga to implement distributed transactions.
Interviewer: Great work! The distributed transaction solution works, but there might
be cases where it doesn’t work well. For example, users might enter the wrong operations
at the application level. In this case, the money we specified might be incorrect. We need
away to trace back the root cause of the issue and audit all account operations. How can
we do this?

Event sourcing

Background

In real life, a digital wallet provider may be audited. These external auditors might ask
some challenging questions, for example:

1. Do we know the account balance at any given time?
2. How do we know the historical and current account balances are correct?

3. How do we prove that the system logic is correct after a code change?

One design philosophy that systematically answers those questions is event sourcing,
which is a technique developed in Domain-Driven Design (DDD) [9].

Step 2 - Propose High-level Design and Get Buy-in | 355

Definition

There are four important terms in evenl sourcing.

1. Command
2. Event
3. State

4. State machine

Command

A command is the intended action from the outside world, For example, if we want to
transfer $1 from client A to client C, this money transfer request is a command.

In event sourcing, it is very important that everything has an order. So commands are
usually put into a FIFO (first in, first out) queue.

Event

Command is an intention and not a fact because some commands may be invalid and
cannot be fulfilled. For example, the transfer operation will fail if the account balance
becomes negative after the transfer.

A command must be validated before we do anything about it. Once the command passes
the validation, it is valid and must be fulfilled. The result of the fulfillment is called an

event.

There are two major differences between command and event.

1. Events must be executed because they represent a validated fact. In practice, we
usually use the past tense for an event. If the command is “transfer $1 from A to C”,
the corresponding event would be “transferred $1 from A to C”.

2. Commands may contain randomness or I/O, but events must be deterministic. Events
represent historical facts.

There are two important properties of the event generation process.

1. One command may generate any number of events. It could generate zero or more
events.

2. Event generation may contain randomness, meaning it is not guaranteed that a com-
mand always generates the same event(s). The event generation may contain external
I/O or random numbers. We will revisit this property in more detail near the end of
the chapter.

The order of events must follow the order of commands. So events are stored in a FIFO
queue, as well.

356 | Chapter 12. Digital Wallet

E

LA mwm ww—

State

State is what will be changed when an event is applied. In the wallet system, state is the
halances of all client accounts, which can be represented with a map data structure. The
kev is the account name or ID, and the value is the account balance. Key-value stores are
ugimll.\' used to store the map data structure. The relational database can also be viewed
2 2 key-value store, where keys are primary keys and values are table rows.

State machine

A state machine drives the event sourcing process. It has two major functions.

1 Validate commands and generate events.

2 Apply event to update state.

Event sourcing requires the behavior of the state machine to be deterministic. Therefore,
the state machine itself should never contain any randomness. For example, it should
never read anything random from the outside using I/O, or use any random numbers.
When it applies an event to a state, it should always generate the same result.

Figure 12.14 shows the static view of event sourcing architecture. The state machine is
responsible for converting the command to an event and for applying the event. Because

state machine has two primary functions, we usually draw two state machines, one for
validating commands and the other for applying events.

State State
Machins Machine

Command Validate —»{ Event

Figure 12.14: Static view of event sourcing

['we add the time dimension, Figure 12.15 shows the dynamic view of event sourcing.
The system keeps receiving commands and processing them, one by one.

Step 2 - Propose High-level Design and Get Buy-in | 357

e () 4 T —* Command
N '
/ Validate
S B
. - — —* Event
O—) = ; —— State
Time

Figure 12.15: Dynamic view of event sourcing

Wallet service example

For the wallet service, the commands are balance transfer requests. These commands are
put into a FIFO queue. One popular choice for the command queue is Kafka [10]. The
command queue is shown in Figure 12.16.

A -§1=Cl—in— |A-$1-C| [A-$1-B| | A-$1- D}— out —»O

Command Queue
Kafka

Figure 12.16: Command queue

Let us assume the state (the account balance) is stored in a relational database. The state
machine examines each command one by one in FIFO order. For each command, it checks
whether the account has a sufficient balance. If yes, the state machine generates an event
for each account. For example, if the command is “A — $§1 — C”, the state machine
generates two events: “A:—$1” and “C:+$1".

Figure 12.17 shows how the state machine works in 5 steps.

. Read commands from the command queue.
. Read balance state from the database.
. Validate the command. If it is valid, generate two events for each of the accounts.

. Read the next event.

N o W D =

. Apply the event by updating the balance in the database.

358 | Chapter 12. Digital Wallet

1o

Command Queue

Client—>{ A -$1- C— in —» A-$1-C tf—&hg A-$1= D

_ Yy
A -$1 C:+%1 A -$1 || B:+$1
Event Queue \ (® Update
(® Read

Apply

- =~ "Events
State
Machine

Figure 12.17: How state machine works

Reproducibility

The most important advantage that event sourcing has over other architectures is repro-
ducibility.

In the distributed transaction solutions mentioned earlier, a wallet service saves the up-
dated account balance (the state) into the database. It is difficult to know why the account
balance was changed. Meanwhile, historical balance information is lost during the up-
date operation. In the event sourcing design, all changes are saved first as immutable
history. The database is only used as an updated view of what balance looks like at any
given point in time.

We could always reconstruct historical balance states by replaying the events from the
very beginning. Because the event list is immutable and the state machine logic is de-

lerministic, it is guaranteed that the historical states generated from each replay are the
same.

Figure 12.18 shows how to reproduce the states of the wallet service by replaying the
events.

Step 2 - Propose High-level Design and Get Buy-in | 359

Command Queue A-$1+ C ‘ A -$1» B‘ ‘A -$1- D

TT L
f L.
! \

T
A

T
i

|

]]
| [' |
| [
] |
I
|

[]
\
, Y ¥ A Y X
Event Queue A -$1 C:+$1 A -$1 B:+%1 A -$1 D:+%$1

Historical State Historical State Historical State

Figure 12.18: Reproduce states

Reproducibility helps us answer the difficult questions that the auditors ask at the begin-
ning of the section. We repeat the questions here.

1. Do we know the account balance at any given time?

2. How do we know the historical and current account balances are correct?

3. How do we prove the system logic is correct after a code change?
For the first question, we could answer it by replaying events from the start, up to the
point in time where we would like to know the account balance.

For the second question, we could verify the correctness of the account balance by recal-
culating it from the event list.

For the third question, we can run different versions of the code against the events and
verify that their results are identical.

Because of the audit capability, event sourcing is often chosen as the de facto solution for
the wallet service.

Command-query responsibility segregation (CQRS)

So far, we have designed the wallet service to move money from one account to another
cfficiently. However, the client still does not know what the account balance is. There
needs to be a way to publish state (balance information) so the client, which is outside
of the event sourcing framework, can know what the state is.

Intuitively, we can create a read-only copy of the database (historical state) and share

360 | Chapter 12. Digital Wallet

it with the outside world. Event sourcing answers this question in a slightly different

way.
gather than publishing the state (balance information), event sourcing publishes all the
events. The external world could rebuild any customized state itself, This design philos-
ophy is called CQRS [11].

In CORS, there is one state machine responsible for the write parl of the state, but there
can be many read-only state machines, which are responsible for building views of the
«tates. Those views could be used for queries,

These read-only state machines can derive different state representations from the event
queue. For example, clients may want to know their balances and a read-only state ma-
chine could save state in a database to serve the balance query. Another state machine
could build state for a specific time period to help investigate issues like possible double
charges. The state information is an audit trail that could help to reconcile the financial

records.

The read-only state machines lag behind to some extent, but will always catch up. The
architecture design is eventually consistent.

Figure 12.19 shows a classic CQRS architecture.

Write Path

Command Queue

Client —— A-$1= Cl—~in —» | A-$1-¢C ‘A $1.] PR

7

T

. N |
1}

c:
D:
I
i i X
i P ®Read f
¢ : i @Upda‘lo
r : t |‘
] ;)
]

ﬁﬂﬁ, ATl T 1/@“”"

Event Queue 3
Ly
'\
Publish Events
query :
Read Path '
~a
Query
Service
Historical State

Figure 12.19: CQRS architecture

Step 2 - Propose High-level Design and Get Buy-in | 361

Candidate: In this design, we use event sourcing architecture to make the whole system
reproducible. All valid business records are saved in an immultable event queue which
could be used for correctness verification.

Interviewer: Thal's greal. Bul the event sourcing architecture you proposed only han-
dles one event at a time and it needs to communicate with several external systems. Can
we make it faster?

Step 3 - Design Deep Dive

In this section, we dive deep into techniques for achieving high performance, reliability,
and scalability.

High-performance event sourcing

In the earlier example, we used Kafka as the command and event store, and the database
as a state store. Let's explore some optimizations.

File-based command and event list

The first optimization is to save commands and events to a local disk, rather than to
a remote store like Kafka. This avoids transit time across the network. The event list
uses an append-only data structure. Appending is a sequential write operation, which is
generally very fast. It works well even for magnetic hard drives because the operating
system is heavily optimized for sequential reads and writes. According to this article [12],
sequential disk access can be faster than random memory access in some cases.

The second optimization is to cache recent commands and events in memory. As we
explained before, we process commands and events right after they are persisted. We may
cache them in memory to save the time of loading them back from the local disk.

We are going to explore some implementation details. A technique called mmap [13] is
great for implementing the optimizations mentioned previously. Mmap can write to a
local disk and cache recent content in memory at the same time. It maps a disk file to
memory as an array. The operating system caches certain sections of the file in memory
to accelerate the read and write operations. For append-only file operations, it is almost
guaranteed that all data are saved in memory, which is very fast.

Figure 12.20 shows the file-based command and event storage.

362 | Chapter 12. Digital Wallet

@

a

—
r Command List —>O—~ Event List

v _1'
mmap mmap
Command Event
File File
disk

Figure 12.20: File-based command and event storage

File-based state

Inthe previous design, state (balance information) is stored in a relational database. In a

production environment, a database usually runs in a stand-alone server that can only be
accessed through networks. Similar to the optimizations we did for command and event,
state information can be saved to the local disk. as well.

More specifically, we can use SQLite [14], which is a file-based local relational database
oruse RocksDB [15]. which is a local file-based key-value store.

RocksDB is chosen because it uses a log-structured merge-tree (LSM), which is optimized
for write operations. To improve read performance, the most recent data is cached.

Figure 12.21 shows the file-based solution for command, event, and state.

Step 3 - Design Deep Dive | 363

S B S S —
memory
,F Command List f —»(: -~} »’ Event List
|8 =g '\T“' . _‘_ E—
:*—_- RocksDA
. S!ale[Lr\ mamory
. s T cache
e — L
mmap mmap
o — |
Command RocksDB Event
File File File
dislk

Figure 12.21: File-based solution for command, event, and state

Snapshot

Once everything is file-based, let us consider how to accelerate the reproducibility pro-
cess. When we first introduced reproducibility, the state machine had to process events
from the very beginning, every time. What we could optimize is to periodically stop the
state machine and save the current state into a file. This is called a snapshot.

A snapshot is an immutable view of a historical state. Once a snapshot is saved, the state
machine does not have to restart from the very beginning anymore. It can read data from
a snapshot, verify where it left off, and resume processing from there.

For financial applications such as wallet service, the finance team often requires a snap-
shot to be taken at 00:00 so they can verify all transactions that happened during that
day. When we first introduced CQRS of event sourcing, the solution was to set up a read-
only state machine that reads from the beginning until the specified time is met. With
snapshots, a read-only state machine only needs to load one snapshot that contains the

data.

A snapshot is a giant binary file and a common solution is to save it in an object storage
solution, such as HDFS [16].

Figure 12.22 shows the file-based event sourcing architecture, When everything is file-
based, the system can fully utilize the maximum I/O throughput of the computer hard-

ware.

364 | Chapter 12. Digital Wallet

wal

(]

a 1 .
Cormrare L ST - --\:\ - Poee | =t A Mg | B Fument | mt ."‘%\' oy

i - ot oivy Rimte Na i i
- v it eagaivad
4,
— = e e i d v
== o o
5 \ Soagain | OO0 (N 2 l\‘\j
— A . ! ™
Cormrmans RocssDS vt i Sl | A QN 08 M u.\]
e = Fie -. .
amA L SweeNa | N0OON DY M mj
| Object Store

Figure 12.22: Snapshot

Candidate: We could refactor the design of event sourcing so the command list, event
Iist. state. and snapshot are all saved in files. Fvent sourcing architecture processes the

event list in a linear manner. which fits well into the design of hard disks and operating
system cache.

Interviewer: The performance of the local file-based solution is better than the system
thal requires accessing data from remote Kafka and databases. However, there is another
problem: because data is saved on a local disk. a server is now stateful and becomes a
single point of failure. How do we improve the reliability of the system?

Reliable high-performance event sourcing

Belore we explain the solution. let’s examine the parts of the system that need the relia-
bility guarantee.

Reliability analysis

Conceptually, everything a node does is around two concepts; data and computation. As
long as data is durable. it’s easy to recover the computational result by running the same
code on another node. This means we only need to worry about the reliability of data

because if data is lost, it is lost forever. The reliability of the system is mostly about the
reliability of the data.

There are four types of data in our system.
l. File-based command
2. File-based event

3. File-based state
i State snapshot

Let us take a close look at how to ensure the reliability of each type of data.

Step 3 - Design Deep Dive | 365

State and snapshot can always be regencrated by replaying the event list. To improve
the reliability of state and snapshol, we just need to ensure the event list has strong
reliability.

Now let us examine command. On the face of it, event is generated from command. We
might think providing a strong reliability guarantee for command should be sufficient.
This seems to be correct at first glance, but it misses something important. Event gener-
ation is not guaranteed to be deterministic, and also it may contain random factors such
as random numbers, external /0, ete. So command cannot guarantee reproducibility of

events.

Now it's time to take a close look at event. Event represents historical facts that introduce
changes to the state (account balance). Event is immutable and can be used to rebuild
the state.

From this analysis, we conclude that event data is the only one that requires a high-

reliability guarantee. We will explain how to achieve this in the next section.

Consensus

To provide high reliability, we need to replicate the event list across multiple nodes. Dur-
ing the replication process, we have to guarantee the following properties.

1. No data loss.

2. The relative order of data within a log file remains the same across nodes.

To achieve those guarantees, consensus-based replication is a good fit. The consensus
algorithm makes sure that multiple nodes reach a consensus on what the event list is.
Let’s use the Raft [17] consensus algorithm as an example.

The Raft algorithm guarantees that as long as more than half of the nodes are online, the
append-only lists on them have the same data. For example, if we have 5 nodes and use
the Raft algorithm to synchronize their data, as long as at least 3 (more than %) of the
nodes are up as Figure 12.23 shows, the system can still work properly as a whole:

O O O QO Q

Up Up Up Down Down

Figure 12.23: Raft

A node can have three different roles in the Raft algorithm.

1. Leader
2. Candidate
3. Follower
We can find the implementation of the Raft algorithm in the Raft paper. We will only

cover the high level concepts here and not go into detail. In Raft, at most one node is
the leader of the cluster and the remaining nodes are followers. The leader is respon-

366 | Chapter 12. Digital Wallet

sible for receiving external commands and replicating data reliably across nodes in the
cluster.
with the Raft algorithm, the system is reliable as long as the majorily of the nodes are

gpcrational. For example. if there are 3 nodes in the cluster, it could tolerate the failure
of 1 node, and if there are 5 nodes, it can tolerate the failure of 2 nodes.

Reliable solution

with replication, there won’t be a single point of failure in our file-based event sourcing
architecture. Let’s take a look at the implementation details. Figure 12.24 shows the
event sourcing architecture with the reliability guarantee.

Follower

[] : » Commands *O—’
- |

': — -
; Raft -

1
A J

Follower Events ——O—.@

~

Raft Node Gmp\“'— ________ -

Write

o

Figure 12.24: Raft node group

InFigure 12.24, we set up 3 event sourcing nodes. These nodes use the Raft algorithm to
synchronize the event list reliably.

The leader takes incoming command requests from external users, converts them into

events, and appends events into the local event list. The Raft algorithm replicates newly
added events to the followers.

All nodes, including the followers, process the event list and update the state. The Raft al-
gorithm ensures the leader and followers have the same event lists, while event sourcing
suarantees all states are the same, as long as the event lists are the same.

Areliable system needs to handle failures gracefully, so let's explore how node crashes
are handled.

If the leader crashes, the Raft algorithm automatically selects a new leader from the
remaining healthy nodes. This newly elected leader takes responsibility for accepting

Step 3 - Design Deep Dive | 367

commands from external users. It is guaranteed that the cluster as a whole can provide

continued service when a node goes down.

When the leader crashes, it is possible that the crash happens before the command list
is converted to events. In this case, the client would notice the issue either by a timeout
or by receiving an error response. The client needs to resend the same command to the
newly elected leader.

In contrast. follower crashes are much easier to handle. If a follower crashes, requests
sent to it will fail. Raft handles failures by retrying indefinitely until the crashed node is
restarted or a new one replaces it.

Candidate: In this design, we use the Raft consensus algorithm to replicate the event
list across multiple nodes. The leader receives commands and replicates events to other

nodes.
Interviewer: Yes, the system is more reliable and fault-tolerant. However, in order to

handle 1 million TPS, one server is not enough. How can we make the system more

scalable?

Distributed event sourcing

In the previous section, we explained how to implement a reliable high-performance
event sourcing architecture. It solves the reliability issue, but it has two limita-
tions.

1. When a digital wallet is updated, we want to receive the updated result immediately.
But in the CQRS design, the request/response flow can be slow. This is because a
client doesn’t know exactly when a digital wallet is updated and the client may need

to rely on periodic polling.
2. The capacity of a single Raft group is limited. At a certain scale, we need to shard
the data and implement distributed transactions.

Let’s take a look at how those two problems are solved.

Pull vs push

In the pull model, an external user periodically polls execution status from the read-only
state machine. This model is not real-time and may overload the wallet service if the

polling frequency is set too high. Figure 12.25 shows the pulling model.

368 | Chapter 12. Digital Wallet

4l

Periodically query for the Iatest status

N

! Follower Events —’-O—‘@ : .O_.@

1)
)
=+

Q
)

\

-
*' = -

Raft

*_

Follower Events —'O—“@

~

° Command 40—« —'O—-@
R s Events
- ’

Raft Node Grouph“" ----------- J

e T S S S S

\d
A
z
o
a

S R

Write

Figure 12.25: Periodical pulling

The naive pull model can be improved by adding a reverse proxy [18] between the ex-
temal user and the event sourcing node. In this design, the external user sends a com-
mand to the reverse proxy, which forwards the command to event sourcing nodes and
periodically polls the execution status. This design simplifies the client logic, but the
communication is still not real-time.

figure 12.26 shows the pull model with a reverse proxy added.

Step 3 - Design Deep Dive | 3629

Periodically query for the latest status 1

[o~ [00 _;,Q@;

. e = = :
Response Raft S '
;_{' . _;’ﬁ . °! Commands '-O =| Events —ho—-@ E'O b@*
S0 - e 7|
Command | . Hilall :'
|
|

Reverse | L
Proxy | Follower Events —O———Ej

Raft Node Group ="~~~ --

Y \

54— Write

Figure 12.26: Pull model with reverse proxy

Once we have the reverse proxy, we could make the response faster by modifying the
read-only state machine. As we mentioned earlier, the read-only state machine could
have its own behavior. For example, one behavior could be that the read-only state ma-
chine pushes execution status back to the reverse proxy, as soon as it receives the event.
This will give the user a feeling of real-time response.

Figure 12.27 shows the push-based model.

370 | Chapter 12. Digital Wallet

Push the latest status to reverse proxy in real-time

;

T B ety

L
-
-

5
g

A

At _ v
z_ ,9—, Commands »>O—p Events —DO—‘@
' |
: ."_ -—

[
e mmm———————

:

Proxy: 1 Follower Events —’O—@

<

Raft Node Group ~~====="""""

§
1

Y

o

Write

Figure 12.27: Push model

Distributed transaction

Once synchronous execution is adopted for every event sourcing node group, we can

reuse the distributed transaction solution, TC/C or Saga. Assume we partition the data
by dividing the hash value of keys by 2.

Figure 12.28 shows the updated design.

Step 3 - Design Deep Dive | 371

Push the latest atatus to reverae proxy in real-time

Reverse
Proxy ' Follower Events

: . o :

ol : ; B == =

L) H —

i A +| Commands -*O--r Events -—-O—c

: | commanas]
Response : ; ’ |

! Follower Events -——*O—-@

Raft Node Group =~~~ =

Command

- b Write >
Y/

............................... feinlioommdY e e

® . ., TCC/saga
_— _.] Coordinator
&

Partition 2 (account C)

Follower Events ﬂﬁ

| 4

Commands L-D-O—P Events —bo—ﬁ

— T
Raft '
v :'
Follower Events -—bo—vﬁ b 'O—’@

. -

Raft Node Group ~=~=~=="""" ’

- Write -

Figure 12.28: Final design

Let’s take a look at how the money transfer works in the final distributed event sourcing
architecture. To make it easier to understand, we use the Saga distributed transaction
model and only explain the happy path without any rollback.

The money transfer operation contains 2 distributed operations: A:—$1 and C:+$1. The
Saga coordinator coordinates the execution as shown in Figure 12.29:

372 | Chapter 12. Digital Wallet

User A sends a distributed transaction to the Saga coordinator. It contains two op-

crations: A:—$1 and C:+§1.
Saga coordinator creates a record in the phase status table to trace the status of a

transaction.

Saga coordinator examines the order of operations and determines that it needs to
handle A:—$1 first. The coordinator sends A:—$1 as a command to Partition 1, which
contains account A's information.

_partition 1's Raft leader receives the A—$1 command and stores it in the command

list. It then validates the command. If it is valid, it is converted into an event. The
Raft consensus algorithm is used to synchronize data across different nodes. The
event (deducting $1 from A’s account balance) is executed after synchronization is
complete.

After the event is synchronized, the event sourcing framework of Partition 1 syn-

chronizes the data to the read path using CQRS. The read path reconstructs the state
and the status of execution.

. The read path of Partition 1 pushes the status back to the caller of the event sourcing

framework, which is the Saga coordinator.

. Saga coordinator receives the success status from Partition 1.

. The Saga coordinator creates a record, indicating the operation in Partition 1 is suc-

cessful, in the phase status table,

. Because the first operation succeeds, the Saga coordinator executes the second op-

eration, which is C:+8$1. The coordinator sends C:+$1 as a command to Partition 2
which contains account C’s information.

. Partition 2’s Raft leader receives the C:+$1 command and saves it to the command

list. If it is valid, it is converted into an event. The Raft consensus algorithm is used to
synchronize data across different nodes. The event (add $1 to C’s account) is executed
after synchronization is complete.

. After the event is synchronized, the event sourcing framework of Partition 2 syn-

chronizes the data to the read path using CQRS. The read path reconstructs the state
and the status of execution.

. The read path of Partition 2 pushes the status back to the caller of the event sourcing

framework, which is the Saga coordinator.

. The Saga coordinator receives the success status from Partition 2.

. The Saga coordinator creates a record, indicating the operation in Partition 2 is suc-

cessful in the phase status table.

. At this time, all operations succeed and the distributed transaction is completed. The

Saga coordinator responds to its caller with the result.

Step 3 - Design Deep Dive | 373

"6) Push the latest status to reverse proxy in real-time

@Push the latest status to reverse proxy in real-time

|
i
] |
! Pl
. - ! P
Reverse | ’~~ —— i i ‘
Proxy ! Follower ’ Events ’- "&)' "(_] ; U "'r __‘T)
| s = i— 18
| ‘ (4)Raft) ,_ i '
X B ~ . == — E = b | 2
%! {4) l*‘ Commands |- O »| Events __.O_,..r T :Q. ,[” R !
L0 S () Raft (5) ! P
Response /[, | S o = — | P
Follower Events —b(_)——’{_ﬁ L O '[_l '
@ i i b — 7| P
Command | Raft Node Group "~~~ ; P
. ;- = ——— Write ——— ——i—— Reag ——m
(1) ' - ' i O
N Yy / | :
. : Partition 1 (account A) i

@ .| TCCisaga T e

- Coordinator e e B e S S O R S e e B
i\ i Partition 2 {account C) :
QEK@» l \'- : ' ' ! E
iy 1y ¢ : Do
= : |) : ; b
| ® § i | =
s | Command i : P
Stalus \ v ! ' (O
Table \ H l: i ;
R @ \ ‘ ' Follower | Events —-O——Ej : O—’@ : :
Response \: : = T o
\ ; i S e]] !
\ ! Raft o EE ¥ } 1
v b] (10) Re | »
Nl ¥ i o
15210+ commanas |-+ evens | —(O—| | O~
b B == 15 ' 1
P ! T = _— H ' !
‘SN (10) Raft 1) ; bl
e ' ! | '] -
Reverse | ' L] : R
Pog 41 Follower Events m ¢ O——@ ol
! ! Raft Node Group ~~~"~=~~ = ; ;
| | 2
! 51 Write —L‘-E‘ Read |: :'

Figure 12.29: Final design in a numbered sequence

Step 4 - Wrap Up

In this chapter, we designed a wallet service that is capable of processing over 1 million
payment commands per second. After a back-of-the-envelope estimation, we concluded
that a few thousand nodes are required to support such a load.

In the first design, a solution using in-memory key-value stores like Redis is proposed.
The problem with this design is that data isn’t durable.

374 | Chapter 12. Digital Wallet

In the second design, the in-memory cache is replaced by transactional databases. T
support multiple nodes, different transactional protocols such as 2PC, TC/C, and Saga
are proposed. The main issue with transaction-based solutions is that we cannot conduct
a data audit casily.

Next, event sourcing is introduced. We first implemented event sourcing using an exter-
nal database and queue, but it’s not performant. We improved performance by storing
command, event, and state in a local node.

A single node means a single point of failure. To increase the system reliability, we use
the Raft consensus algorithm to replicate the event list onto multiple nodes.

The last enhancement we made was to adopt the CQRS feature of event sourcing. We
added a reverse proxy to change the asynchronous event sourcing framework to a syn-
chronous one for external users. The TC/C or Saga protocol is used to coordinate Com-
mand executions across multiple node groups.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

Step 4 - Wrap Up | 375

Chapter Summary

money transfer be-

functional req ‘ b
tween two accounts

step 1 1 million TPS

reliability 99.99%

non-functional req :
support transactions

support reproducibility

api design wallet/balance_transfer K
in-memory sharding solution
database sharding | |
Digital Wallet step 2 2 phase commit
. try-confirm cancel f
out-of-order execution :‘
event sourcing

high-performance event sourcing

step 3 reliable event sourcing

pull vs push :
distributed event sourcing -<
distributed transaction =

wrap up

step 4

376 | Chapter 12. Digital Wallet

Reference Material

[1] Transactional guarantees. https://docs.oracle.com/cd/E17275 01/html/programme
r_reference/rep_trans.html.

[2] TPC-E Top Price/Performance Results. hitp://tpc.org/tpee/results/tpce _price_per
{ results5.asp’resulltype=all.

[3] 1SO 4217 CURRENCY CODES. https://en.wikipedia.org/wiki/ISO_4217.

[4) Apache ZooKeeper. htlps:h’znnkeeper.apache.org/‘

'5] Martin Kleppmann. Designing Data-Intensive Applications. O'Reilly Media, 2017.
(6] X/Open XA. hllps:Nen.wikipedia.orgiwiki/X/Open_XA.

(7] Compensating transaction. https:Nen.wikipedia.org/wikj/Compensating_transacti
on.

8] SAGAS, HectorGarcia-Molina. https://www.cs.cornell.edu/andru/cs711/2002fa/re
ading/sagas.pdf.

[9] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2003,

[10] Apache Kafka. https://kafka.apache.org/.
[11] CQRS. https://martinfowler.com/bliki/ CQRS.html.

[12] Comparing Random and Sequential Access in Disk and Memory. https://delivery
images.acm.org/10.1145/1570000/1563874/ jacobs3.jpg.

[13] mmap. https://man7.org/].inux/man-pagesfmanZ/mmap.z.htrrﬂ.
(14] SQLite. https://www.sglite.org/index.html.
[15] RocksDB. https://rocksdb.org/.

(16] Apache Hadoop. https://hadoop.apache.org/.
[17] Raft. https://raft.github.io/.

[18] Reverse proxy. https://en.wikipedia.org/udki/Reverse*pmxyr

Reference Material | 377

. e W e

“
13 Stock Exchange

In this chapter, we design an electronic stock exchange system.

The basic function of an exchange is to facilitate the matching of buyers and sellers ef-
ficiently. This fundamental function has not changed over time. Before the rise of com-
puting, people exchanged tangible goods by bartering and shouting at each other to get
matched. Today, orders are processed silently by supercomputers, and people trade not
only for the exchange of products, but also for speculation and arbitrage. Technology

has greatly changed the landscape of trading and exponentially boosted electronic mar-
ket trading volume.

When it comes to stock exchanges, most people think about major market players like
The New York Stock exchange (NYSE) or Nasdag, which have existed for over fifty years,
In fact, there are many other types of exchange. Some focus on vertical segmentation
of the financial industry and place special focus on technology [1], while others have an
emphasis on fairness [2]. Before diving into the design, it is important to check with the
interviewer about the scale and the important characteristics of the exchange in ques-
tion.

Just to get a taste of the kind of problem we are dealing with; NYSE is trading billions of
matches per day [3], and HKEX about 200 billion shares per day [4]. Figure 13.1 shows
the big exchanges in the “trillion-dollar club” by market capitalization.

| 379

Figure 13.1: Largest stock exchanges (Source: [5])

Step 1 - Understand the Problem and Establish Design Scope

A modern exchange is a complicated system with stringent requirements on latency,

throughput, and robustness. Before we start, let’s ask the interviewer a few questions to
clarify the requirements.

Candidate: Which securities are we going to trade? Stocks, options, or futures?
Interviewer: For simplicity, only stocks.

Candidate: Which types of order operations are supported: placing a new order, can-
celing an order, or replacing an order? Do we need to support limit order, market order,
or conditional order?

Interviewer: We need to support the following: placing a new order and canceling an
order. For the order type, we only need to consider the limit order.

Candidate: Does the system need to support after-hours trading?
Interviewer: No, we just need to support the normal trading hours.

Candidate: Could you describe the basic functions of the exchange? And the scale of
the exchange, such as how many users, how many symbols, and how many orders?

Interviewer: A client can place new limit orders or cancel them, and receive matched
trades in real-time. A client can view the real-time order book (the list of buy and sell
orders). The exchange needs to support at least tens of thousands of users trading at
the same time, and it needs to support at least 100 symbols. For the trading volume, we

should support billions of orders per day. Also, the exchange is a regulated facility, so
we need to make sure it runs risk checks.

Candidate: Could you please elaborate on risk checks?
Interviewer: Let’s just do simple risk checks. For example, a user can only trade a
maximum of 1 million shares of Apple stock in one day.

380 | Chapter 13. Stock Exchange

Candidate: 1 noticed you didn’t mention user wallet management. Is it something we
also need to consider?

nterviewer: Good catch! We need to make sure users have sufficient funds when they
place orders. If an order is waiting in the order book to be filled, the funds required for
the order need to be withheld to prevent overspending,

Non-functional requirements

after checking with the interviewer for the functional requirements, we should deter-
mine the non-functional requirements. In fact, requirements like “at least 100 symbols”
and “tens of thousands of users” tell us that the interviewer wants us to design a small-to-
medium scale exchange. On top of this, we should make sure the design can be extended
o support more symbols and users. Many interviewers focus on extensibility as an area
for follow-up questions.

Here is a list of non-functional requirements:

« Availability. At least 99.99%. Availability is crucial for exchanges. Downtime, even
seconds, can harm reputation.

+ Fault tolerance. Fault tolerance and a fast recovery mechanism are needed to limit
the impact of a production incident.

- Latency. The round-trip latency should be at the millisecond level, with a particular
focus on the 99th percentile latency. The round trip latency is measured from the
moment a market order enters the exchange to the point where the market order

returns as a filled execution. A persistently high 99th percentile latency causes a
terrible user experience for a small number of users.

« Security. The exchange should have an account management system. For legal and
compliance, the exchange performs a KYC (Know Your Client) check to verify a user’s
identity before a new account is opened. For public resources, such as web pages
containing market data, we should prevent distributed denial-of-service (DDoS) [6]
attacks.

Back-of-the-envelope estimation

Let's do some simple back-of-the-envelope calculations to understand the scale of the
system:

+ 100 symbols
- 1 billion orders per day

+ NYSE Stock exchange is open Monday through Friday from 9:30 am to 4:00 pm East-
ern Time. That’s 6.5 hours in total.

1 billion
. : ————— =n~v43,00
QFS 6.5 x 3,600 .
* Peak QPS: 5 > QPS = 215,000. The trading volume is significantly higher when the

market first opens in the morning and before it closes in the afternoon.

Step 1 - Understand the Problem and Establish Design Scope | 381

Step 2 - Propose High-Level Design and Get Buy-In

Before we dive into the high-level design, let’s briefly discuss some basic concepts and

terminology that are helpful for designing an exchange.
Business Knowledge 101
Broker

Most retail clients trade with an exchange via a broker. Some brokers whom you might
be familiar with include Charles Schwab, Robinhood, E*Trade, Fidelity, etc. These bro-
kers provide a friendly user interface for retail users to place trades and view market
data.

Institutional client

Institutional clients trade in large volumes using specialized trading software. Different
institutional clients operate with different requirements. For example, pension funds aim
for a stable income. They trade infrequently, but when they do trade, the volume is large.
They need features like order splitting to minimize the market impact [7] of their sizable
orders. Some hedge funds specialize in market making and earn income via commission
rebates. They need low latency trading abilities, so obviously they cannot simply view
market data on a web page or a mobile app, as retail clients do.

Limit order

A limit order is a buy or sell order with a fixed price. It might not find a match immedi-
ately, or it might just be partially matched.

Market order

A market order doesn’t specify a price. It is executed at the prevailing market price
immediately. A market order sacrifices cost in order to guarantee execution. It is useful
in certain fast-moving market conditions.

Market data levels

The US stock market has three tiers of price quotes: L1 (level 1), L2, and L3. L1 market
data contains the best bid price, ask price, and quantities (Figure 13.2). Bid price refers
to the highest price a buyer is willing to pay for a stock. Ask price refers to the lowest
price a seller is willing to sell the stock.

APPLE stock

Price Quantity

best ask 100.10
bestbid 100.08

Figure 13.2: Level 1 data

L2 includes more price levels than L1 (Figure 13.3).

382 | Chapter 13. Stock Exchange

AP E abhweh

LALE LR LA

vhekh o aeh 1@ 0D L1
Sell Do, | e
A (U] S

Doat ask 180 18 AL

(AT R

Deat bat 18008 o

Buy book | (LD
‘ 100,08 | N

Leoth of bRt 1RO | 600

Figure 13.3: Level 2 data

_+ shows price levels and the quened quantity at each price level (Figure 13.4),

APPLE stock
Price Quantity E
i depth of ask 188,13 100 | 200 fe——price lovals |

Sell book | 180,12 | 600 9 !
: 19011 | 909 700 400] E
| bestask 190.18 | 200[a0 nw0| 0] |
| bestbid 100.88 500 | 660 | 990 | E

Buy book | 160.87 100 706 E
100.06 | 1108 400 | 30 268] |
| depth of bid 100.05 | 509 100 ;

Figure 13.4: Level 3 data

Candlestick chart

* candlestick chart represents the stock price for a certain period of time. A typical
—=dlestick looks like this (Figure 13.5). A candlestick shows the market’s open, close,

==h and low price for a time interval. The common time intervals are one-minute, five-
=—ute, one-hour, one-day, one-week, and one-month.

Step 2 - Propose High-Level Design and Get Buy-In | 383

High - ——
Upper Shadow
Open -~ —4
|
|

Close - ~F

| Lower Shadow

|
e

Real Body

Low
Figure 13.5: A single candlestick chart

FIX

FIX protocol [8], which stands for Financial Information exchange protocol, was created
in 1991. It is a vendor-neutral communications protocol for exchanging securities trans-
action information. See below for an example of a securities transaction encoded in FIX
(8].
8=FIX.4.2 | 9=176 | 35=8 | 49=PHLX | 56=PERS |
52-28071123-85:30:00.688 | 11=ATOMNOCCC9998908 | 28=3 | 158=E | 39=E

| 55=MSFT | 167=CS | 54=1 | 38=15 | 48=2 | 44=15 | 58=PHLX EQUITY
TESTING | 59=8 | 47=C | 32=8 | 31=8 | 151=15 | 14=8 | 6=8 | 18=128 |

High-level design

Now that we have some basic understanding of the key concepts, let’s take a look at the
high-level design, as shown in Figure 13.6.

Market Data
Publisher
i

|

|
Aggregated !
Risk Check)

@i
|
]
1
|
|
|
l I
!]
E : (f‘f) C;E) !
| i !
: Order Manager Matching Engine | |
s I 5 [P 2 e ol g ey g e
19 13 AWy j«(12— | wallet | [+0D =10~ | Order Book :'

Roblinhood, '
Goldman -
Sachs, etc
|
—({r= Critical Path ;
—{uir » Market Data Flow —
—&)= Reporting Flow DB .
orders, executions Stock Exchange

Figure 13.6: High-level design

384 | Chapter 13. Stock Exchange

- —

Let's trace the life of an order through various components in the diagram to sec how
the pieces fit together.

First, we follow the order through the trading flow. This is the critical path with stricl
Jatency requirements. Everything has to happen fast in the flow:

Step 1: A client places an order via the broker's web or mobile app.

Step 2: The broker sends the order to the exchange.

Step 3: The order enters the exchange through the client gateway. The client gateway
performs basic gatekeeping functions such as input validation, rate limiting, authentica-
tion, normalization, etc. The client gateway then forwards the order to the order man-
ager.

Step 4 ~ 5: The order manager performs risk checks based on rules set by the risk man-
ager.

Step 6: After passing risk checks, the order manager verifies there are sufficient funds in
the wallet for the order.

Step 7 ~ 9: The order is sent to the matching engine. When a match is found, the match-
ing engine emits two executions (also called fills), with one each for the buy and sell
sides. To guarantee that matching results are deterministic when replayed, both orders
and executions are sequenced in the sequencer (more on the sequencer later).

Step 10 ~ 14: The executions are returned to the client.

Next, we follow the market data flow and trace the order executions from the matching
engine to the broker via the data service.

Step M1: The matching engine generates a stream of executions (fills) as matches are
made. The stream is sent to the market data publisher.

Step M2: The market data publisher constructs the candlestick charts and the order books
as market data from the stream of executions and orders. It then sends market data to
the data service.

Step M3: The market data is saved to specialized storage for real-time analytics. Brokers
connect to the data service to obtain timely market data. Brokers relay market data to
their clients.

Lastly, we examine the reporting flow.

Step R1~R2 (reporting flow): The reporter collects all the necessary reporting fields (e.g.
client_id, price, quantity, order_type, filled_quantity, remaining_quantity) from or-
ders and executions, and writes the consolidated records to the database.

Note that the trading flow (steps 1 to 14) is on the critical path, while the market data
flow and reporting flow are not. They have different latency requirements.

Now let's examine each of the three flows in more detail.

Step 2 - Propose High-Level Design and Get Buy-In | 385

Trading flow
The trading flow is on the critical path of the exchange. Everything must happen fast.
The heart of the trading flow is the matching engine. Let's go over that first.

Matching engine

The matching engine is also called the cross engine. Here are the primary responsibilities
of the matching engine:

1. Maintain the order book for each symbol. An order book is a list of buy and sell
orders for a symbol. We explain the construction of an order book in the Data models
section later.

8o

Match buy and sell orders. A match results in two executions (one from the buy side
and the other from the sell side). The matching function must be fast and accurate.

3. Distribute the execution stream as market data.

A highly available matching engine implementation must be able to produce matches
in a deterministic order. That is, given a known sequence of orders as an input, the
matching engine must produce the same sequence of executions (fills) as an output when
the sequence is replayed. This determinism is a foundation of high availability which we
will discuss at length in the deep dive section.

Sequencer

The sequencer is the key component that makes the matching engine deterministic. It
stamps every incoming order with a sequence ID before it is processed by the match-
ing engine. It also stamps every pair of executions (fills) completed by the matching
engine with sequence IDs. In other words, the sequencer has an inbound and an out-
bound instance, with each maintaining its own sequences. The sequence generated by
each sequencer must be sequential numbers, so that any missing numbers can be easily
detected. See Figure 13.7 for details.

Inbound Sequencer

Order Manager Match Engine

/
W W

Outbound Sequencer

Figure 13.7: Inbound and outbound sequencers

The incoming orders and outgoing executions are stamped with sequence IDs for these
reasons:

1. Timeliness and fairness
2. Fast recovery / replay

3. Exactly-once guarantee

386 | Chapter 13. Stock Exchange

i

he sequeencer does not only generate sequence IDs, It also functions as a message queue
There s one to send messages (incoming orders) to the matching engine, and another one
o wnd messages (executions) back to the order manager. It is also an event store for the
seders and executions. It is similar to having two Kafka event streams connected to the
setching engine. one for incoming orders and the other for outgoing executions. In fact,
we could have used Kafka if its latency was lower and more predictable. We discuss how
M sequencer is implemented in a low-latency exchange environment in the deep dive

rhon

Order manager

The order manager receives orders on one end and receives executions on the other. It
manages the orders’ states. Let's look at it closely.

The order manager receives inbound orders from the client gateway and performs the
tollowing:

. It sends the order for risk checks. Our requirements for risk checking are simple. For
example, we verify that a user’s trade volume is below $1M a day.

. It checks the order against the user’s wallet and verifies that there are sufficient funds
to cover the trade. The wallet was discussed at length in the “Digital Wallet” chapter
on page 341. Refer to that chapter for an implementation that would work in the
exchange.

. It sends the order to the sequencer where the order is stamped with a sequence ID.
The sequenced order is then processed by the matching engine. There are many
atiributes in a new order, but there is no need to send all the attributes to the matching
engine. To reduce the size of the message in data transmission, the order manager
only sends the necessary attributes.

On the other end, the order manager receives executions from the matching engine via
the sequencer. The order manager returns the executions for the filled orders to the
brokers via the client gateway.

The order manager should be fast, efficient, and accurate. It maintains the current states
for the orders. In fact, the challenge of managing the various state transitions is the
major source of complexity for the order manager. There can be tens of thousands of
cases involved in a real exchange system. Event sourcing [9] is perfect for the design of
an order manager. We discuss an event sourcing design in the deep dive section.

Client gateway

The client gateway is the gatekeeper for the exchange. It receives orders placed by clients
and routes them to the order manager. The gateway provides the following functions as
shown in Figure 13.8.

Step 2 - Propose High-Level Design and Get Buy-In | 387

Gateway

[A][vaidaton |

[Rate Limit] [Nnrmalizalion} :

i [FIXT Support w

Figure 13.8: Client gateway components

The client gateway is on the critical path and is latency-sensitive. It should stay
lightweight. It passes orders to the correct destinations as quickly as possible. The
functions above, while critical, must be completed as quickly as possible. It is a design
trade-off to decide what functionality to put in the client gateway, and what to leave out.
As a general guideline, we should leave complicated functions to the matching engine
and risk check.

There are different types of client gateways for retail and institutional clients. The main
considerations are latency, transaction volume, and security requirements. For instance,
institutions like the market makers provide a large portion of liquidity for the exchange.
They require very low latency. Figure 13.9 shows different client gateway connections
to an exchange. An extreme example is the colocation (colo) engine. It is the trading
engine software running on some servers rented by the broker in the exchange’s data
center. The latency is literally the time it takes for light to travel from the colocated
server to the exchange server [10].

Exchange
Exchange | App/Web
Website/App HTTP Gateway M~
Sharded
Services
AP Gatoway |
Broker/Dealer > (FI)UNzr?- \g%
></'
™
Other API ;
Lisds Colo Engine
Figure 13.9: Client gateway
Market data flow

The market data publisher (MDP) receives executions from the matching engine and
builds the order books and candlestick charts from the stream of executions. The or-
der books and candlestick charts, which we discuss in the Data Models section later, are
collectively called market data. The market data is sent to the data service where they
are made available to subscribers. Figure 13.10 shows an implementation of MDP and
how it fits with the other components in the market data flow.

388 | Chapter 13. Stock Exchange

. -

MDP

Order
book

Order
book

—
i Matching Orders, matched results —» Candlestick
Engine__ Charts

Order
book

J

Persistence

Y

Data Service

Figure 13.10: Market Data Publisher

Reporting flow

One essential part of the exchange is reporting. The reporter is not on the trading critical
path. but it is a critical part of the system. It provides trading history, tax reporting,
compliance reporting, settlements, etc. Efficiency and latency are critical for the trading

flow. but the reporter is less sensitive to latency. Accuracy and compliance are key factors
for the reporter.

It 1s common practice to piece attributes together from both incoming orders and outgo-
ing executions. An incoming new order contains order details, and outgoing execution
usually only contains order ID, price, quantity, and execution status. The reporter merges
the attributes from both sources for the reports. Figure 13.11 shows how the components
in the reporting flow fit together.

Step 2 - Propose High-Level Design and Get Buy-In | 389

orders [
| Order %] Matching
| Manager vl Manager
L | fills/rejects
Reporter

| ENP»\'OrdwRPq ; :anOr(imAck Fill

’ W A T] W |
Request Response :
R e S St |

.

ExecutionReport

/ \

{ i~ Seﬂ!em_ent& Books & 3
L Clearing Records

Reporting

Figure 13.11: Reporter

A sharp reader might notice that the section order of “Step 2 - Propose High-Level Design
and Get Buy-In” looks a little different than other chapters. In this chapter, the API design
and data models sections come after the high-level design. The sections are arranged this
way because these other sections require some concepts that were introduced in the
high-level design.

API Design
Now that we understand the high-level design, let’s take a look at the API design.

Clients interact with the stock exchange via the brokers to place orders, view executions,
view market data, download historical data for analysis, etc. We use the RESTful con-
ventions for the API below to specify the interface between the brokers and the client
gateway. Refer to the “Data models” section on page 393 for the resources mentioned
below.

Note that the RESTful API might not satisfy the latency requirements of institutional
clients like hedge funds. The specialized software built for these institutions likely uses
a different protocol, but no matter what it is, the basic functionality mentioned below

390 | Chapter 13. Stock Exchange

needs to be supported.

Order
ppsT /v1/order

This endpoint places an order. It requires authentication.

parameters

symbol: the stock symbol. String

cide: buy or sell. String

price: the price of the limit order. Long

orderType: limit or market (note we only support limit orders in our design). String
quantity: the quantity of the order. Long

Response

Body:

id: the ID of the order. Long

creationTime: the system creation time of the order. Long
filledQuantity: the quantity that has been successfully executed. Long
remainingQuantity: the quantity still to be executed. Long

status: new/canceled/filled. String

rest of the attributes are the same as the input parameters
Code:

200: successful

40x: parameter error/access denied/unauthorized
500: server error

Execution

GET /v1/execution?symbol={:symbol}&orderId={:orderId}&startTime={:startTime}&
endTime={:endTime}

This endpoint queries execution info. It requires authentication.

Parameters

symbol: the stock symbol. String

orderId: the ID of the order. Optional. String
startTime: query start time in epoch [11]. Long
endTime: query end time in epoch. Long

Response

BOd)’:

Step 2 - Propose High-Level Design and Get Buy-In | 391

execulions: array with each vx<111htn1ft}qrn;u-{:rr;ﬂlrﬂ\nlrﬁllvh\“ﬂ. \rriy
id: the TD of the execution. | oy
orderId: the ID of the order. 1.on
symbol: the stock symbol. S
side: buy or sell. Shin
price: the price of the execution. L.on
orderType: limit or markel. Stimg
guantity: the filled quantity. Long
Code:
200: successful
40x: parameter error/not found/access denied/unauthorized
500: server error

Order book
GET /v1/marketdata/orderBook/L2?symbol={:symbol}&depth={:depth}

This endpoint queries L2 order book information for a symbol with designated
depth.
Parameters

symbol: the stock symbol. String

depth: order book depth per side. Ini
startTime: query start time in epoch. Long
endTime: query end time in epoch. Long

Response
Body:

bids: array with price and size. Array
asks: array with price and size Array

Code:

200: successful
40x: parameter error/not found/access denied/unauthorized
500: server error

Historical prices (candlestick charts)

GET /v1/marketdata/candles?symbol={:symbol}&resolution={:resolution}&startTime
{:startTime}&endTime={:endTime}

This endpoint queries candlestick chart data (see candlestick chart in data models section)
for a symbol given a time range and resolution.

Parameters

392 | Chapter 13. Stock Exchange

=

@ B v

e My

symbol: the stock symbol. String
resolution: window length of the candlestick chart in seconds. l.ong

startTime: start time of the window in epoch. Long
endTime: end time of the window in epoch. Long

Response

Body:
candles: array with each candlestick data (attributes listed below). Array
open: open price of each candlestick. Double
close: close price of each candlestick. Double
high: high price of each candlestick. Double
low: low price of each candlestick. Double

Code:
200: successful

40x: parameter error/not found/access denied/unauthorized
500: server error

Data models

There are three main types of data in the stock exchange. Let’s explore them one by
one.

« Product, order, and execution
« QOrder book

« Candlestick chart

Product, order, execution

A product describes the attributes of a traded symbol, like product type, trading symbol,
Ul display symbol, settlement currency, lot size, tick size, etc. This data doesn’t change
frequently. It is primarily used for Ul display. The data can be stored in any database and
1s highly cacheable.

An order represents the inbound instruction for a buy or sell order. An execution repre-
sents the outbound matched result. An execution is also called a fill. Not every order has
an execution. The output of the matching engine contains two executions, representing
the buy and sell sides of a matched order.

See Figure 13.12 for the logical model diagram that shows the relationships between the
three entities. Note it is not a database schema.

Step 2 - Propose High-Level Design and Gef E;uy-ln | 393

B Order | , Execution |
[F— 1 | {
| + orderiD: UUID |+ execID: UUID |
4 product|D: int | + orderlD: UUID
‘ + price: long + price: long
+ quantity: long 4 quantity: long
| + side: Side | + side: Side
+ orderStatus: OrderStatus | + orderStatus: OrderStatus
‘ + orderType: OrderType | g + orderType: OrderType
| + timelnForce: TimelnForce |- > + symbol: long
| + symbol: long ‘ + userlD: long
| + userlD: long ' + feeCurrency: Currency
+ clientOrderlD: string + feeRale: long
+ broker: string + feeAmount: long
|+ accountlD: long + accountlD: long
| + entryTime: long + execStatus: ExecStatus
| + transactionTime: long + transactionTime: long

1

N/

[Product

|
L
|
|

+ productiD: int

+ symbol: type

+ lotSize: int

+ tickSize: decimal

+ quoteCurrency: Currency
+ settleCurrency: Currency
+ description: string

+ field: type

Figure 13.12: Product, order, execution

Orders and executions are the most important data in the exchange. We encounter them
in all three flows mentioned in the high-level design, in slightly different forms.

« In the critical trading path, orders and executions are not stored in a database. To
achieve high performance, this path executes trades in memory and leverages hard
disk or shared memory to persist and share orders and executions. Specifically, or-
ders and executions are stored in the sequencer for fast recovery, and data is archived
after the market closes. We discuss an efficient implementation of the sequencer in
the deep dive section.

« The reporter writes orders and executions to the database for reporting use cases like
reconciliation and tax reporting.

394 | Chapter 13. Stock Exchange

Executions are forwarded to the market data processor to reconstruct the order book
and candlestick chart data. We discuss these data types next.

Order book o

An order book is a list of buy and sell orders for a specific security or financial instrument,
organized by price level [12] [13]. It is a key data structure in the matching engine for
fast order matching. An efficient data structure for an order book must satisfy these
requirements:

. Constant lookup time. Operation includes: getting volume at a price level or between
price levels.

. Tast add/cancel/execute operations, preferably O(1) time complexity. Operations
include: placing a new order, canceling an order, and matching an order.

-

Fast update. Operation: replacing an order.
Query best bid/ask.

Iterate through price levels.

Let's walk through an example order execution against an order book, as illustrated in
Figure 13.13.

APPLE stock

depth of ask 100.13 100 | 200
100.12 600 | 900

100.11 900 | 760
bestask 100.10 | 20y 400

Sell book

| bestbid 100.08 500 |/ oq0
Buy book ! 100.07 100/ 708/

100.66 /| 1109 | 40q)

depth of bid 160.05 500 | 160

Buy 2700 shares: 2700 - [200] - [409] - = =0

Figure 13.13: Limit order book illustrated

In the example above, there is a large market buy order for 2,700 shares of Apple. The
buy order matches all the sell orders in the best ask queue and the first sell order in the

100.11 price queue. After fulfilling this large order, the bid/ask spread widens, and the
price increases by one level (best ask is 100.11 now).

The following code snippet shows an implementation of the order book.

Step 2 - Propose High-Level Design and Get Buy-In | 395

class Pricelevel {
private Price limitPrice;
private long totalVolume;
private List<0Order> orders;

}
class Book<Side> {

private Side side;

private Map<Price, | elevel> limitMap;
}
class UrderBook {

private Book<Buy> buyBook;

private Book<Sell> sellBook;

private Pricelevel bestBid;

private Pricelevel bestOffer;

private Map<OrderID, (Order> orderMap;
}

Does the code meet all the design requirements stated above? For example, when
adding/canceling a limit order, is the time complexity O(1)? The answer is no since we
are using a plain list here (private List<Order> orders). To have a more efficient order
book, change the data structure of “orders” to a doubly-linked list so that the deletion
type of operation (cancel and match) is also O(1). Let’s review how we achieve O(1)
time complexity for these operations:

1. Placing a new order means adding a new Order to the tail of the Pricelevel. This is
O(1) time complexity for a doubly-linked list.

2. Matching an order means deleting an Order from the head of the PriceLevel. This is
O(1) time complexity for a doubly-linked list.

3. Canceling an order means deleting an Order from the OrderBook. We leverage the
helper data structure Map<OrderID, Order> orderMap in the OrderBook to find the
Order to cancel in O(1) time. Once the order is found, if the “orders” list was a
singly-linked list, the code would have to traverse the entire list to locate the previous
pointer in order to delete the order. That would have taken O(n) time. Since the listis
now doubly-linked, the order itself has a pointer to the previous order, which allows
the code to delete the order without traversing the entire order list.

Figure 13.14 explains how these three operations work.

396 | Chapter 13. Stock Exchange

|umElooh

| leﬂnhhpd’rin, PriceLevel> limitMap

[bafore = nul
T afer N
e

afer

}_hﬂ 1E!J o7
[vale |

before
after

‘price = 100,08

{ Buy order s matched and
sremaved from the PriceLevel

all

Koy = 100.06

value

1quantity = 500 @
g bdnios e .
hand
betore = null before
after — after
Ordar Ordar
quantity =_5{_K.l_ quantity = 600
DoubleLinkedList<Order> erders
before = null before -
after \ after
Order Order
quantity = 100 quantity = 700
before = null |-
after
" Order
quantity = 1100

balorn
after = nuil
Ordar
quantity = 900
!
before i IPlacing a new buy order |
after = null : : :
Order ,_.: - price = 100.07 '
quantity =200 | ! iquanity =200 Q !
before before
after »| after = null
Qrder Order
quantity = 300 guantity = 200

RashMap<DrderID, Order> orderMap

Figure 13.14: Place, match, and cancel an order in O(1)

Gancal an order

Dﬂce 100.06

S:ap 1. Find the Order in orderMap via OrderlD

- Step 1 -1 quantny 400

'S1ep 2. Remowve the Order elemant from the PriceLevel |

See the reference material for more details [14].

It is worth noting that the order book data structure is also heavily used in the market
data processor to reconstruct the L1, L2, and L3 data from the streams of executions

generated by the matching engine.

Candlestick chart

Candlestick chart is another key data structure (alongside order book) in the market data
processor to produce market data.

We model this with a Candlestick class and a CandlestickChart class. When the inter-

val for the candlestick has elapsed, a new Candlestick class is instantiated for the next

interval and added to the linked list in the CandleStickChart instance.
class Candlestick {

private
private
private
private
private
private

long
long
long
long
long
long

openPrice;
closePrice;
highPrice;
lowPrice;
volume;
timestamp;

Step 2 - Propose High-Level Design and Get Buy-In | 397

interval;

}

Tracking price history in candlestick charts for many symbols at many time intervals
consumes a lot of memory. How can we optimize it? Here are two ways:

1. Use pre-allocated ring buflers to hold sticks to reduce the number of new object
allocations.
2. Limit the number of sticks in the memory and persist the rest to disk.

We will examine the optimizations in the “Market data publisher” section in deep dive
on page 4009.

The market data is usually persisted in an in-memory columnar database (for example,
KDB [15]) for real-time analytics. After the market is closed, data is persisted in a his-
torical database.

Step 3 - Design Deep Dive

Now that we understand how an exchange works at a high level, let’s investigate how a
modern exchange has evolved to become what it is today. What does a modern exchange
look like? The answer might surprise a lot of readers. Some large exchanges run almost

everything on a single gigantic server. While it might sound extreme, we can learn many
good lessons from it.

Let’s dive in.
Performance

As discussed in the non-functional requirements, latency is very important for an
exchange. Not only does the average latency need to be low, but the overall latency

must also be stable. A good measure for the level of stability is the 99th percentile
latency.

Latency can be broken down into its components as shown in the formula below:

Latency = Z executionTimeAlongCriticalPath
There are two ways to reduce latency:

1. Decrease the number of tasks on the critical path.
2. Shorten the time spent on each task:

a. By reducing or eliminating network and disk usage

b. By reducing execution time for each task

398 | Chapter 13. Stock Exchange _

Let's review the first point. As shown in the high-level design, the critical trading path
ot :
includes the following:

gateway — order manager — sequencer — matching engine

The critical path only contains the necessary components, even logging is removed from
the critical path to achieve low latency.

Now let’s look at the second point. In the high-level design, the components (-)n thé critl;
ical path run on individual servers connected over the nel‘work. The muljd tr|ll:j nelwor-‘
latency is about 500 microseconds. When there are multiple components al Lomr'nuriu

cating over the network on the critical path, the total network latency adds. up to snr:g cte-
digit milliseconds. In addition, the sequencer is an event store that persists even l-s o
disk. Even assuming an efficient design that leverages the performm‘]c.e advantage of se-
quential writes, the latency of disk access still measures in tens of milliseconds. To learn
more about network and disk access latency, see “Latency Numbers Every Programmer

Should Know” [16].

Accounting for both network and disk access latency, the total end-to-end latency adds
up to tens of milliseconds. While this number was respectable in the early days of the
exchange, it is no longer sufficient as exchanges compete for ultra-low latency.

To stay ahead of the competition, exchanges over time evolve their design to reduce the
end-tc;-end latency on the critical path to tens of microseconds, primarily by exploring
options to reduce or eliminate network and disk access latency. A time-tested design
eliminates the network hops by putting everything on the same server. When all com-
ponents are on the same server, they can communicate via mmap [17] as an event store
(more on this later).

Figure 13.15 shows a low-latency design with all the components on a single
server:

One Single Server

Order Manager Matching Engine M;msf?::a
Application Loop Application Loop Application Loop

[A 'y

4 J] 7y

JF _ 1
Reporter [Aggregatﬂ Position

Risk Check Keeper

Figure 13.15: A low latency single server exchange design

Step 3 - Design Deep Dive | 399

There are a few interesting design decisions that are worth a closer look at.

Let's first focus on the application loops in the diagram above. An application loop is
an interesting concept. 1t keeps polling for tasks to execute in a while loop and is the
primary task execution mechanism. To meet the strict latency budget, only the most
mission-critical tasks should be processed by the application loop. Its goal is to reduce
the execution time for each component and to guarantee a highly predictable execution
time (i.e.. alow 99th percentile latency). Each box in the diagram represents a component.
A component is a process on the server. To maximize CPU efficiency, each application
loop (think of it as the main processing loop) is single-threaded, and the thread is pinned

to a fixed CPU core. Using the order manager as an example, it looks like the following
diagram (Figure 13.16).

orders
¢ Order Manager
Input Thread/Netloop |
dispatch
E E Order State
| Application L_—update
| Loop i
! Thread h
! E pinto CPU 1 0|7
-------------- T 16
dispatch 205
3|4
Output Thread/Netloop
|
T
orders

'

Figure 13.16: Application loop thread in Order Manager

In this diagram, the application loop for the order manager is pinned to CPU 1. The
benefits of pinning the application loop to the CPU are substantial:

1. No context switch [18]. CPU 1 is fully allocated to the order manager’s application
loop.
2. No locks and therefore no lock contention, since there is only one thread that updates
states.
Both of these contribute to a low 99th percentile latency.

The tradeoff of CPU pinning is that it makes coding more complicated. Engineers need
to carefully analyze the time each task takes to keep it from occupying the application
loop thread for too long, as it can potentially block subsequent tasks.

Next, let’s focus our attention on the long rectangle labeled “mmap” at the center of

400 | Chapter 13. Stock Exchange

.3

figure 13.15. “mmap” refers to a POSIX-compliant UNIX system call named mmap(2) that
maps a file into the memory of a process.

map(2) provides a mechanism for high-performance sharing of memory between pro-
cesses. The performance advantage is compounded when the backing file is in /dev/shm.
/dev/shm is a memory-backed file system. When mmap(2) is done over a file in /dev/shm,
the access to the shared memory does not result in any disk access at all.

Modern exchanges take advantage of this to eliminate as much disk access from the
critical path as possible. mmap(2) is used in the server to implement a message bus over
which the components on the critical path communicate. The communication pathway
has no network or disk access, and sending a message on this mmap message bus takes
sub-microsecond. By leveraging mmap to build an event store, coupled with the event

sourcing design paradigm which we will discuss next, modern exchanges can build low-
latency microservices inside a server.

Event sourcing

We discussed event sourcing in the “Digital Wallet” chapter on page 341. Please refer to
that chapter for an in-depth review of event sourcing,

The concept of event sourcing is not hard to understand. In a traditional application,
slates are persisted in a database. When something goes wrong, it is hard to trace the

source of the issue. The database only keeps the current states, and there are no records
of the events that have led to the current states.

In event sourcing, instead of storing the current states, it keeps an immutable log of all

state-changing events. These events are the golden source of truth. See Figure 13.17 for
a comparison.

OrderFilledEvent
Order V1 Order V2
New Filled
Order Event
Version | OrderStatus Event Sequence Event Type
Vi New 100 NewOrderEvent
V2 Filled 101 OrderFilledEvent
Non Event Sourcing Event Sourcing

Figure 13.17: Non-event sourcing vs event sourcing

On the left is a classic database schema. It keeps track of the order status for an order, but
it does not contain any information about how an order arrives at the current state. On
the right is the event sourcing counterpart. It tracks all the events that change the order
states, and it can recover order states by replaying all the events in sequence.

Figure 13.18 shows an event sourcing design using the mmap event store as a message
bus. This looks very much like the Pub-Sub model in Kafka. In fact, if there is no stricl

Step 3 - Design Deep Dive | 401

latency requirement, Kafka could be used.

External | Trading Matching Engine
Domain | Domain
(FIX) (SBE) Order Manager

‘: Order State Matching
\ Core
.I |
; " Send to
' Validate,
| update state ["'°""9
! App loop
! .
{ Gateway Full events

— X ’ Event Slore Event Store
i Client Client Market Data
Jf X Publisher
: | NewOrderEvent) T
: Ll R \ OrderFilledEvent Events
] v ¥ |
Event Store (mmap)
E Sequence
.: Event type
! anE Events
i encoded
f payload
i | Event store entry
{o rmmre e Trading Domain (SBE)

¥ Reporting Domain
Reporter (Your choice)
Order
Manager

Figure 13.18: An event sourcing design

In the diagram, the external domain communicates with the trading domain using FIX
that we introduced in the Business Knowledge 101 section on page 382.

« The gateway transforms FIX to “FIX over Simple Binary Encoding” (SBE) for fast
and compact encoding and sends each order as a NewOrderEvent via the Event Store
Client in a pre-defined format (see event store entry in the diagram).

« The order manager (embedded in the matching engine) receives the NewOrderEvent
from the event store, validates it, and adds it to its internal order states. The order is
then sent to the matching core.

« If the order gets matched, an OrderfilledEvent is generated and sent to the event
store.

402 | Chapter 13. Stock Exchange

« Other components such as the market data processa Al Hhw vt ber sinboe e g
the event store and process those events aceontingly

.I]“s d(ﬁsig" h‘"l‘\\'s 'ht. hl‘“h lt‘\Tl lh‘"““" ‘*l‘\w‘\l\ " ‘\”' “"\'v IR (AR ||’l||“ﬂ““|‘“.~ 'Il l“l‘l!l
it work more efficiently in the event sourcing paradipm

The first difference is the onder manager The onder manager hecames verable iy
that is embedded in different compoanents 1t makes sense for this dexipny hecaie the
states of the orders are important for multiple components, Having a centiatized arde
manager for other components to update or query the onder states wonhd It Inteney,
especially if those components are not on the eritical trading path, as s the case o the
reporter in the diagram. Although cach component maintains the arder states by fwell,
with event sourcing the states are guaranteed 1o be identical and replavable.

Another key difference is that the sequencer is nowhere to be seen. What happened to
it?

With the event sourcing design, we have one single event store for all messages. Note
that the event store entry contains a sequence field. This field i injected by the se-
quendcer.

There is only one sequencer for each event store. It is a bad practice to have multiple
sequencers, as theyv will fight for the right to write to the event store. Ina busy system like
an exchange, a lot of time would be wasted on lock contention. Therefore, the sequencer
is a single writer which sequences the events before sending them to the event store,
Unlike the sequencer in the high-level design which also functions as a message store,
the sequencer here only does one simple thing and is super fast. Figure 13.19 shows a
design for the sequencer in a memory-map (mmap) environment.

The sec}uencer pulls events from the ring buffer that is local to each component. For each
event. it stamps a sequence ID on the event and sends it to the event store. We can have
backup sequencers for high availability in case the primary sequencer goes down.

Step 3 - Design Deep Dive | 403

Gateway Matching 1
Engine
1 ' Write to ring buffer J
. = p
§ g . 4 rng Y
..\{\\;.ﬂpt b, \I.. [\Uﬂ"g{ L
2 i .'i\-.., ‘ .“<
Sequencer pulls data(2) /,-f'
from ring buffer) /
rd
J i
| Sequencer
ST
1

ﬁi\\ Sequencer writes to Event Store

T

ALLIbELILY

Event Store (mmap)

Figure 13.19: Sample design of Sequencer

High availability

For high availability. our design aims for 4 nines (99.99%). This means the exchange can
only have R.64 seconds of downtime per day. It requires almost immediate recovery if a
service goes down.

To achieve high availability, consider the following:

. First, identify single-point-of-failures in the exchange architecture. For example, the
failure of the matching engine could be a disaster for the exchange. Therefore, we
set up redundant instances alongside the primary instance.

« Second, detection of failure and the decision to failover to the backup instance should
be fast.

For stateless services such as the client gateway, they could easily be horizontally scaled
by adding more servers. For stateful components, such as the order manager and match-
ing engine, we need to be able to copy state data across replicas.

Figure 13.20 shows an example of how to copy data. The hot matching engine works as
the primary instance, and the warm engine receives and processes the exact same events
but does not send any event out onto the event store. When the primary goes down, the
warm instance can immediately take over as the primary and send out events. When the
warm secondary instance goes down, upon restart, it can always recover all the states
from the event store. Event sourcing is a great fit for the exchange architecture. The
inherent determinism makes state recovery easy and accurate.

404 | Chapter 13. Stock Exchange- _

-

(Hot)

/

NewOrderEvent
OrderFilledEvent

J

Event Store (mmap)

Matching Engine Matching Engine
ot

NewOrderEvent

Figure 13.20: Hot-warm matching engine

We need to design a mechanism to detect potential problems in the primary. Besides
normal monitoring of hardware and processes, we can also send heartbeats from the
matching engine. If a heartbeat is not received in time, the matching engine might be
experiencing problems.

The problem with this hot-warm design is that it only works within the boundary of a
single server. To achieve high availability, we have to extend this concept across multiple
machines or even across data centers. In this setting, an entire server is either hot or
warm, and the entire event store is replicated from the hot server to all warm replicas.
Replicating the entire event store across machines takes time. We could use reliable UDP

[19] to efficiently broadcast the event messages to all warm servers. Refer to the design
of Aeron [20] for an example.

In the next section, we discuss an improvement to the hot-warm design to achieve high
availability.

Fault tolerance

The hot-warm design above is relatively simple. It works reasonably well, but what hap-

pens if the warm instances go down as well? This is a low probability but catastrophic
event, so we should prepare for it.

This is a problem large tech companies face. They tackle it by replicating core data to data
centers in multiple cities. It mitigates the risk of a natural disaster such as an earthquake

or a large-scale power outage. To make the system fault-tolerant, we have to answer
many questions:

1. If the primary instance goes down, how and when do we decide to failover to the
backup instance?

2. How do we choose the leader among backup instances?
3. What is the recovery time needed (RTO - Recovery Time Objective)?

4. What functionalities need to be recovered (RPO - Recovery Point Objective)? Can
our system operate under degraded conditions?

Let's answer these questions one by one.

First, we have to understand what “down” really means. This is not as straightforward
as it seems. Consider these situations.

Step 3 - Design Deep Dive | 405

1. The system might send oult false alarms, which cause unnecessary failovers.

b]

2 Bups in the code might cause the primary instance to go down. The same bug could
bring down the backup instance after the failover. When all backup instances are
knocked out by the bug, the system is no longer available.

These are tough problems to solve. Here are some suggestions. When we first release a
new system, we might need to perform failovers manually. Only when we gather enough
signals and operational experience and gain more confidence in the system do we auto-
mate the failure detection process. Chaos engineering [21] is a good practice to surface
edge cases and gain operational experience faster.

Once the decision to failover is correctly made, how do we decide which server takes
over? Fortunately, this is a well-understood problem. There are many battle-tested
leader-election algorithms. We use Raft [22] as an example.

Figure 13.21 shows a Raft cluster with 5 servers with their own event stores. The current
leader sends data to all the other instances (followers). The minimum number of votes
required to perform an operation in Raft is 5 + 1, where n is the number of members in
the cluster. In this example, the minimum is % +1=3.

The following diagram (Figure 13.21) shows the followers receiving new events from the
leader over RPC. The events are saved to the follower’s own mmap event store.

Matching Engine Matching Engine
(Hot) (Warm)
NewOrderEvent T
NewOrderEvent

OrderFilledEvent

Event Store (mmap)

Event Store (mmap)

AppendEntries RPCs

j Event Store (mmap)

Event Store (mmap)

Event Store (mmap)

Figure 13.21: Event replication in Raft cluster

Let’s briefly examine the leader election process. The leader sends heartbeat messages
(kppendEnties with no content as shown in Figure 13.21) to its followers. If a follower
has not received heartbeat messages for a period of time, it triggers an election timeout
that initiates a new election. The first follower that reaches election timeout becomes a

406 | Chapter 13, Stock Exchange

qndidate. and it asks the rest of the followers to vote (RequestVote). If the first follower
:‘;;ci\'f’f“ a majority of votes, it becomes the new leader. If the first follower has a lower
ierm value than the new node. it cannot be the leader. If multiple followers become
-andidates at the same time, it is called a “split vote”. In this case, the election times out,
1;h1 a new election is initiated. See Figure 13.22 for the explanation of “term”. Time is
;11\-idf'd into arbitrary intervals in Raft to represent normal operation and election.

Term1 Term 2 Term 3 Term4 Termb
g time —»

/

/

!

Elections Normal Operation Split Vote

Figure 13.22: Raft terms (Source: [23])

Next. let’s take a look at recovery time. Recovery Time Objective (RTO) refers to the
smount of time an application can be down without causing significant damage to the
husiness. For a stock exchange, we need to achieve a second-level RTO, which definitely
requires automatic failover of services. To do this, we categorize services based on pri-
ority and define a degradation strategy to maintain a minimum service level.

Finally. we need to figure out the tolerance for data loss. Recovery Point Objective (RPO)
refers to the amount of data that can be lost before significant harm is done to the busi-
ness. i.e. the loss tolerance. In practice, this means backing up data frequently. For a
stock exchange, data loss is not acceptable, so RPO is near zero. With Raft, we have many
copies of the data. it guarantees that state consensus is achieved among cluster nodes. If
the current leader crashes, the new leader should be able to function immediately.

Matching algorithms

Let's take a slight detour and dive into the matching algorithms. The pseudo-code below
explains how matching works at a high level.

Context handleOrder(OrderBook orderBook, OrderEvent orderEvent) {
if (orderEvent.getSequenceld() != nextSequence) {
return Error(OUT_OF_ORDER, nextSequence);

}

if (!validateOrder(symbol, price, quantity)) {
return ERROR(INVALID_ORDER, orderEvent);
}

Order order = createOrderFromEvent (orderEvent);
switch (msgType):
case NEW:
return handleNew(orderBook, order);
case CANCEL:
return handleCancel (orderBook, order);
default:
return ERROR(INVALID_MSG_TYPE, msgType);

Step 3 - Design Deep Dive | 407

}

Context handleNew(OrderBook orderBook, Order order) f{
(BUY.equals(order.side)) {
return match(orderBook.sellBook, order);

} else {
' match(orderBook.buyBook, order):
}
}
Context handlelancel (OrderBook orderBook, Order order) {

' (lorderBook.orderMap.contains(order.orderId))

etur ERROR(EANNUT_CANCEL_ALREA[]Y_MATCHEU, order) ;

1
J

removeOrder (order):

setOrderStatus (order, CANCELED);

return SUEEESS(CANCEL,SUCCESS, order);
}

Context match(OrderBook book, Order order) {
Quantity leavesQuantity = order.quantity - order.matchedQuantity;
Iterator<Order> limitIter = book.limitMap.get(order.price).orders;
while (limitIter.hasNext() && leavesQuantity > @) {

Quantity matched = rnin(limitIter,next.quantity, order.quantity);
order.matchedQuantity += matched;

leavesQuantity = order.quantity - order.matchedQuantity;
remove(limitIter.next);

generateMatchedFill();

}
return SUCCESS(MATCH_SUCCESS, order);

}
The pseudocode uses the FIFO (First In First Out) matching algorithm. The order that

comes in first at a certain price level gets matched first, and the last one gets matched
last.

There are many matching algorithms. These algorithms are commonly used in futures
trading. For example, a FIFO with LMM (Lead Market Maker) algorithm allocates a cer-
tain quantity to the LMM based on a predefined ratio ahead of the FIFO queue, which the
LMM firm negotiates with the exchange for the privilege. See more matching algorithms
on the CME website [24]. The matching algorithms are used in many other scenarios. A
typical one is a dark pool [25].

Determinism

There is both functional determinism and latency determinism. We have covered func-
tional determinism in previous sections. The design choices we make, such as sequencer

and event sourcing, guarantee that if the events are replayed in the same order, the results
will be the same.

With functional determinism, the actual time when the event happens does not matter
most of the time. What matters is the order of the events. In Figure 13.23, event times-
tamps from discrete uneven dots in the time dimension are converted to continuous dots,

408 | Chapter 13. Stock Exchange

and the time spent on replay/recovery can be greatly reduced.

event 1 event 2 event 3 event 4 event 5 event 6

OO0 0—0—0—0O e

Figure 13.23: Time in event sourcing

Latency determinism means having almost the same latency through the system for each
irade. This is key to the business. There is a mathematical way to measure this: the 99th
percentile latency, or even more strictly, the 99.99th percentile latency. We can leverage
HdrHistogram [26] to calculate latency. If the 99th percentile latency is low, the exchange
offers stable performance across almost all the trades.

It is important to investigate large latency fluctuations. For example, in Java, safe points
are often the cause. The HotSpot JVM [27] Stop-the-World garbage collection is a well-
known example.

This concludes our deep dive on the critical trading path. In the remainder of this chap-
ter, we take a closer look at some of the more interesting aspects of other parts of the
exchange.

Market data publisher optimizations

Aswe can see from the matching algorithm, the L3 order book data gives us a better view
of the market. We can get free one-day candlestick data from Google Finance, but it is
expensive to get the more detailed L2/L3 order book data. Many hedge funds record the
data themselves via the exchange real-time API to build their own candlestick charts and
other charts for technical analysis.

The market data publisher (MDP) receives matched results from the matching engine and
rebuilds the order book and candlestick charts based on that. It then publishes the data
to the subscribers.

The order book rebuild is similar to the pseudocode mentioned in the matching algo-
rithms section above. MDP is a service with many levels. For example, a retail client can
only view 5 levels of L2 data by default and needs to pay extra to get 10 levels. MDP’s
memory cannot expand forever, so we need to have an upper limit on the candlesticks.
Refer to the data models section for a review of the candlestick charts. The design of the
MDP is in Figure 13.24.

Step 3 - Design Deep Dive | 409

J MDP

| Order || Order

|| book || book

l Order
| book

Ring buffer
Hold recent 100 ticks

Candlestick Charts

l Matching

W W
Engine y

‘ Orders, matched resulls —» / \ / .
4 1min J {1 hour 14 1day J

Persistence

v

‘:)ata Service

Figure 13.24: Market Data Publisher

This design utilizes ring buffers. A ring buffer, also called a circular buffer, is a fixed-
size queue with the head connected to the tail. A producer continuously produces data
and one or more consumers pull data off it. The space in a ring buffer is pre-allocated.
There is no object creation or deallocation necessary. The data structure is also lock-free.
There are other techniques to make the data structure even more efficient. For example,
padding ensures that the ring buffer’s sequence number is never in a cache line with
anything else. Refer to [28] for more detail.

Distribution fairness of market data

In stock trading, having lower latency than others is like having an oracle that can see
the future. For a regulated exchange, it is important to guarantee that all the receivers
of market data get that data at the same time. Why is this important? For example, the
MDP holds a list of data subscribers, and the order of the subscribers is decided by the
order in which they connect to the publisher, with the first one always receiving data
first. Guess what happens, then? Smart clients will fight to be the first on the list when
the market opens.

There are some ways to mitigate this. Multicast using reliable UDP is a good solution to
broadcast updates to many participants at once. The MDP could also assign a random
order when the subscriber connects to it. We look at multicast in more detail.

Multicast
Data can be transported over the internet by three different types of protocols. Let’s take
a quick look.

1. Unicast: from one source to one destination.
2. Broadcast: from one source to an entire subnetwork.

3. Multicast: from one source to a set of hosts that can be on different subnetworks.

410 | Chapter 13. Stock Exchange

Multicast is a commonly-used protocol in exchange design. By configuring several re-
ceivers in the same mullicast group, they will in theory receive data at the same time.
However, UDP is an unreliable protocol and the datag-ram might not reach all the re-
ceivers. There are solutions to handle retransmission [29].

Colocation

While we are on the subject of fairness, it is a fact that a lot of exchanges offer coloca-
tion services, which put hedge funds or brokers’ servers in the same data center as the
exchange. The latency in placing an order to the matching engine is essentially propor-
tional to the length of the cable. Colocation does not break the notion of fairness. It can
be considered as a paid-for VIP service.

Network security

An exchange usually provides some public interfaces and a DDoS attack is a real chal-
lenge. Here are a few techniques to combat DDoS:

1. Isolate public services and data from private services, so DDoS attacks don’t impact
the most important clients. In case the same data is served, we can have multiple
read-only copies to isolate problems.

[ae=]

_ Use a caching layer to store data that is infrequently updated. With good caching,
most queries won't hit databases.

3. Harden URLs against DDoS attacks. For example, with an URL like https: //my.
website.com/data?from=1238t0=456, an attacker can easily generate many differ-
ent requests by changing the query string. Instead, URLs like this work better:
https://my.website.com/data/recent. It can also be cached at the CDN layer.

4. An effective safelist/blocklist mechanism is needed. Many network gateway prod-
ucts provide this type of functionality.

5. Rate limiting is frequently used to defend against DDoS attacks.

Step 4 - Wrap Up

After reading this chapter, you may come to the conclusion that an ideal deployment
model for a big exchange is to put everything on a single gigantic server or even one
single process. Indeed, this is exactly how some exchanges are designed!

With the recent development of the cryptocurrency industry, many crypto exchanges use
cloud infrastructure to deploy their services [30]. Some decentralized finance projects are

based on the notion of AMM (Automatic Market Making) and don’t even need an order
book.

The convenience provided by the cloud ecosystem changes some of the designs and low-
ers the threshold for entering the industry. This will surely inject innovative energy into
the financial world.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

Step 4 - Wrap Up | 411

Chapter Summary

 step |

slep 2

Stock Exchange

wrap up

412 | Chapter 13. Stock Exchange

~ non-functional req <

\ sstimation <
high-level design {
{ap design
data model
performance
event sourcing
high availability
fault tolerance
matching algorithms
step 3 determinism
market data publisher optimization
fairness
multicast
colocation
network security

availability: 99.99%
fault 1olerance
millisccond-level latency
security

100 symbols

215k peak QPS

trading flow

market dala flow
reporting flow
order

execulion
order book

historical prices

product, order, execution
order book

candlestick chart

v ww——

L rww

Reference Material

[1] LMAX exchange was famous for its open-source Disruptor. https://www.lmax.com
/exchange.

[2] IEX attracts investors by “playing fair”, also is the “Flash Boys Exchange”. https:
//en.wikipedia.org/wiki/IEX.

[3] NYSE matched volume. https://www.nyse.com/markets/us-equity-volumes.

[4] HKEX daily trading volume. https://www.hkex.com.hk/Market-Data/Statistics/C
onsolidated-Reports/Securities-Statistics- Archive/Trading_Value_Volume_And_N
umber_Of Deals?sc_lang=en#select1=0.

(5] All of the World's Stock Exchanges by Size. http://money.visualcapitalist.com/all
-of-the-worlds-stock-exchanges-by-size/.

[6] Denial of service attack. https://en.wikipedia.org/wiki/Denial-of-service_attack.
[7] Market impact. https://en.wikipedia.org/wiki/Market_impact.

[8] Fix trading. https://www fixtrading.org/.

(9] Event Sourcing. https://martinfowler.com/eaaDev/EventSourcing html,

[10] CME Co-Location and Data Center Services. https://www.cmegroup.com/trading
/colocation/co-location-services.html.

[11] Epoch. https://www.epoch101.com/.

[12] Order book. https://www.investopedia.convtermslolorder—book.asp.
[13] Order book. https://en.wikipedia.org/wiki/Order book.

(14] How to Build a Fast Limit Order Book. https://bit.ly/3ngMtEO.

(15] Developing with kdb+ and the q language. https://code kx.com/q/.

[16] Latency Numbers Every Programmer Should Know. https://gist.github.com/jboner
/2841832.

[17] mmap. https://en.wikipedia.org/wiki/Memory_map.
[18] Context switch. https://bit.ly/3pva7As6.

[19] Reliable User Datagram Protocol. https://en.wikipedia.org/wiki/Reliable_User_Dat
agram_Protocol.

[20] Aeron. https://github.com/real-logic/aeron/wiki/Design-Overview.
(21] Chaos engineering. https://en.wikipedia.org/wiki/Chaos_engineering.
[22] Raft. https://raft.github.io/.

[23] Designing for Understandability: the Raft Consensus Algorithm. https://raft.githu
b.io/slides/uiuc2016.pdf.

Reference Material | 413

[24]

[25]

Supported Matching Algorithms. hitps://bit ly/3aYoCFEo.

Dark pool. https://www investopedia.com/terms/d/dark-pool.asp.

HdrHistogram: A High Dynamic Range Histogram. http://hdrhistogram.orgy/.
HotSpol (virtual machine). htps://en.wikipedia.org/wiki/HotSpot_(virtual_machi
ne).

Cache line padding. https://bit.ly/31ZTFWz.

NACK-Oriented Reliable Multicast. https://en.wikipedia.org/wiki/NACK-Oriente
d_Reliable Multicast,

AWS Coinbase Case Study. https://aws.amazon.com/solutions/case-studies/coinba

se/.

414 | Chapter 13. Stock Exchange

W

Afterword

Congratulations! You have completed this interview guide. You have accumulated skills
and knowledge with which to design complex systems. Not everyone has the discipline
to do what you have done, to learn what you have learned. Take a moment to pat yourself
on the back. Your hard work will pay off.

Landing your dream job is a long journey and requires lots of time and effort. Practice
makes perfect. Best of luck!

Thank you for buying and reading this book. Without readers like you, our work would
not exist. We hope you have enjoyed the book!

If you have comments or questions about this book, feel free to send us an email at

hi@bytebytego.com. If you notice any errors, please let us know so we can make correc-
tions for the next edition. Thank you!

Join the community

We created a members-only Discord group. It is designed for community discussions on
the following topics:

-

System design fundamentals.
« Showcasing design diagrams and getting feedback.
« Finding mock interview buddies.

« General chat with community members.

Come join us and introduce yourself to the community, today! Use the link below or
scan the QR code.

http://bit.ly/systemdiscord

Reference Material | 415

416 | Chapter 13. Stock Exchange

Index

Symbols
2PC, 221, 346, 347, 349-351

A

A" pathfinding algorithms, 64, 84

ACID, 199, 210, 219, 221, 321

ActiveMQ), 92

adjacency lists, 77

Advanced Message Queuing Protocol
125

Aeron, 405

aggregation window, 164, 176

Airbnb, 195, 201, 337

Amazon, 137, 201, 317

Amazon API Gateway, 304

Amazon Web Services, 253,303

AML/CFT, 318

AMM, 411

AMQP, 125

Apache James, 232

append-only, 362, 366

Apple, 395

Apple Pay, 315

application loop, 400

ask price, 382

asynchronous, 328

At-least once, 122

at-least once, 93, 123

at-least-once, 331

at-most once, 93, 122

at-most-once, 331

atomic commit, 167
atomic operation, 220
audit, 360

Automatic Market Making, 411
Availability Zone, 255
Availability Zones, 271
availability zones, 28
AVRO, 165

AWS, 253, 303, 304
AWS Lambda, 304
AZ, 271

B

B+ tree, 269

Backblaze, 274

base32, 12

BEAM, 55

bid price, 382

Bigtable, 137, 237, 245

Blue/green deployment, 19

brokers, 95, 96, 98, 102, 104-106, 113,
118, 120, 122

buy order, 395

C

California Consumer Privacy Act,
2

candlestick chart, 383

candlestick charts, 385, 388, 398,
409

CAP theorem, 79

Index | 417

Card schemes, 318
card verification value, 336

cartesian tiers, 9

Cassandra, 45, 70, 77, 79, 137, 152, 186,

233, 237, 245, 309

CCPA. 2,36

CDC, 218

CDN. 72-74, 76, 201, 411
Ceph, 260

change data capture, 218
Channel, 41

channel, 41-43, 46-54
channels, 41
Chaos engineering, 406
Charles Schwab, 382
checksum, 275, 276, 283, 284
checksums, 275
Choreography, 354
circular buffer, 410
click-through rate, 159
ClickHouse, 189
CloudWatch, 143
cluster, 39, 40, 51, 55
CME, 408

CockroachDB, 335
Colocation, 411

columnar database, 398
Command, 356
Command-query responsibility

segregation, 360

commission rebate, 382
compensating transaction, 347
compensation, 350
Consistent hashing, 266
consistent hashing, 49
Consumer group, 96
consumer group, 95, 96, 106
content delivery network, 201
conversion rate, 159

CQRS, 361, 364, 368, 373, 375
CRC, 101

cre, 100

Cross engine, 386

CTR, 159

418 | Chapter Index

CVR, 159
CVV, 336
Cyclic redundancy check, 101

D

DAG, 167, 170

daily active users, 290

dark pool, 408

Database constraints, 211
Datadog, 132

DAU, 37, 59, 68, 161, 290, 310, 312
DB-engines, 137

DBA, 320

DDD, 355

DDoS, 336, 381, 411

Dead letter queue, 330
Deadlocks, 212

Debezium, 218

determinism, 404

Dijkstra, 64

directed acyclic graph, 167
Discovery, 318

distributed denial-of-service, 381
distributed transaction, 181, 371
DKIM, 242

DMARC, 242

DNS, 6, 28, 227, 229

Domain name service, 227
Domain-Driven Design, 355
DomainKeys Identified Mail, 242
DoorDash, 88

double-entry, 322
double-reservation, 206
Downsampling, 150

Druid, 189

DynamoDB, 309, 310

E

E*Trade, 382
ElasticSearch, 189
Elasticsearch, 22, 133, 244
Elixir, 55

ELK, 133

equator, 10

erasure coding, 271-274, 276
Erlang, 55

ETA, 59

etcd, 48, 98, 140

even grid, 9

Event sourcing, 343, 357, 361, 365

event sourcing, 355-357, 359-362, 364,

365, 367-369, 371-373, 375,
387, 401-403

event store, 399, 406

event., 356

eventually consistent, 361

Exactly once, 123

exactly once, 93, 167, 181

exactly-once, 325, 331

exchange, 379-382, 384, 385, 387-390,
398, 399, 404, 408, 409,
411

Exponential backoff, 235, 332

F

Facebook, 132, 159, 160
fault-tolerance, 331

FC, 254

Fibre Channel, 254
Fidelity, 382

FIFO, 95, 356, 358, 408
fills, 385, 386

financial instrument, 395
First In First Out, 408
FIX, 384, 402

FIX protocol, 384

fixed window, 177
Flink, 146, 190

G

Garbage collection, 284

garbage collection, 409

GDPR, 2, 36, 247

General Data Protection Regulation,
2

Geocoding, 62

geocoding, 76, 83

geofence, 21

Geofencing, 21
geofencing, 21

geographic information systems,

62
Geohash, 7, 10-13, 22

geohash, 9, 10, 12, 13, 15, 22, 25-27,

29-31, 53, 54
Geohashing, 13, 62, 63
geohashing, 63, 72, 75
geospatial, 4, 9
geospatial databases, 7
geospatial indexing, 9
GIS, 62

Global-Local Aggregation, 187

gm:map101, 60

Gmail, 228, 241

Google, 21, 132, 160

Google Cloud, 304

Google Cloud Functions, 304
Google Design, 80

Google Finance, 409

Google Maps, 1, 22, 59, 62, 68, 70, 80, 88,

89
Google Pay, 315
Google Places API, 4
Google S2, 9, 20
Gorilla, 147
gPRC, 202
Grafana, 153
Graphite, 143
gRPC, 264

H

Hadoop, 137

hard disk drives, 253
hash ring, 49, 50, 52
hash slot, 306

hash table, 344
HBase, 137

HDD, 253

HDFS, 126, 179, 180, 364
HdrHistogram, 409
heartbeats, 107
hedge fund, 382

Index | 419

hedge funds, 409, 411
Hierarchical time wheel, 125
Hilbert curve, 20

Hive, 189

HKEX, 379

HMAC, 275

hopping window, 177
hot-warm, 405

hotspolt. 186

HolSpot JVM, 409

I

IAM, 259

Idempotency, 333

idempotency, 198, 206, 208, 320, 331,
333-336

IMAP, 226, 227, 230

immutable, 359, 362, 364, 366

In-sync Replicas, 112

In-sync replicas, 113

InfluxDB, 137, 148, 149

inode, 258, 267

Institutional client, 382

Internet Mail Access Protocol,
227

interpolation, 62

inverted index, 233

IOPS, 237, 256

1SCSI, 254

isolation, 210

ISP, 243

ISR, 113, 114, 116, 117

J

JMAP, 232

JSON, 25, 164

JSON Meta Application Protocol,
232

JWZ algorithm, 240

K

k-nearest, 1, 23

Kafka, 71, 80, 85, 92, 111, 125, 146, 147,

152, 153, 166, 167, 169, 178,

420 | Chapter Index

179, 183, 187, 188, 190, 244,
294, 329-331, 358. 362, 365,
387, 401, 402

Kappa architecture, 173, 174

KDB, 398

keep-alive, 71

Kibana, 133

Know Your Client, 381

KYC, 381

L

lambda, 173

Latitude, 61

latitude, 3, 8, 62, 75, 82, 83
LBS, 2,5, 6, 16, 30, 31

Lead Market Maker, 408
leader election, 406

Least Recently Used, 217
levels, 12

limit order, 380, 382

linked list, 47

LinkedIn, 257

LMM, 408

load balancer, 6
Location-based service, 6
location-based service, 2, 5
lock, 211

lock contention, 400, 403
lock-free, 410

Log-Structured Merge-Tree, 245
log-structured merge-tree, 363
Logstash, 133

long polling, 87, 232
longitude, 3, 8, 61, 62, 75, 82, 83
low latency, 382

LRU, 217

LSM, 245, 363

Lyft, 22, 88

M

market data publisher, 388, 409
market making, 382

market order, 381, 382
Marriott International, 195

MasterCard, 318, 324

matching engine, 385-388, 393, 395,
404, 405, 409, 411

MAU, 290, 302

MD5, 275

md5, 283

MDP, 388, 409, 410

Mercator projection, 62

meridian, 10

message store, 403

MetricsDB, 137

Microservice, 220

microservice, 201, 203, 219-221,
353-355

Microsoft, 304

Microsoft Azure Functions, 304

Microsoft Exchange, 245

Microsoft OQutlook, 227

MIME, 228

mmap, 362, 399, 401, 403, 406

mmap(2), 401

MongoDB, 22, 309

monolithic, 219

monthly active users, 290

multicast, 411

Multipurpose Internet Mail Extension
228

MX record, 227

MySQL, 4, 99, 136, 211, 216, 237, 303,
306, 309, 313

]

N

Nasdaq, 379

Netflix, 201

NewSQL, 321

NFS, 254

NOP, 348, 349, 352

NoSQL, 41, 79, 99, 137, 165, 233, 237,
240, 295, 303, 309, 312,
321

NYSE, 379, 381

O

Office365, 241

offset, 95, 100, 104, 106, 110, 111, 113,
122

OLAP, 164, 189

OpenTSDB, 135, 137

Optimistic locking, 211, 213, 214

ORC, 165

Orchestration, 354

order book, 380, 381, 386, 388, 392, 395,
397, 409

OTP, 55

Out-of-order, 353

out-of-order, 350, 352, 353

P

PagerDuty, 132, 152

Pagination, 3

Parquet, 165

Partition, 121

partition, 95, 97, 99-104, 106-108,
111-114, 116-121

Paxos, 265, 335

payload, 255

Payment Service Provider, 318

PayPal, 315, 322, 333, 341

PCI DSS, 322, 336

peer-to-peer, 37

pension fund, 382

percentile, 381, 398, 400, 409

personally identifiable information,
247

Pessimistic locking, 211

pessimistic locking, 211

PI1, 247

point of presence, 73

POP, 73, 226, 227, 229, 230

Post Office Protocol, 227

PostGIS, 7

Postgres, 7

PostgreSQL, 237

precision, 22

price level, 395

Prometheus, 135, 148

PSP, 318-327, 333-336

Pull model, 105

Index | 421

Pulsar, 92
Push model. 104
push model, 142

Q

quadrants, 16
quadtrov. Q. 16-19, 22, 23, 25-27,
31

R
RabbitMQ. 92, 93
rack. 270
Radius, 13
radius. 1-3, 6.7, 13, 15, 21, 30
Rados Gateway, 260
Raft. 265. 335. 366-368, 373, 375, 406,
407
RAID, 100
Rate limiting, 336
RDS. 295. 296
read-only, 361
Real-Time Bidding, 159
reconciliation, 327
Recovery Point Objective, 405,
407
Recovery Time Objective, 405,
407
redirect URL, 325, 326
Redis, 7, 22, 27, 28, 30, 31, 40, 45, 47, 48,
56, 217, 218, 233, 295, 297, 300,
302-306, 308, 309, 312, 313,
344, 345, 355, 374
Redis Pub/Sub, 41-43, 46-52,
54-56
Region Cover algorithm, 22
reliable UDP, 405
Reproducibility, 359, 360
RESTful, 3, 197, 231, 234, 236, 253-255,
259, 264, 304, 319, 343,
390
RESTful API, 39, 40, 45, 56
retail client, 382
Retryable failures, 331
return on investment, 177

422 | Chapter Index

reverse proxy, 369
ring buffer, 403

ring bufTers, 410

risk manager, 385
Robinhood, 382
RocketMQ, 92, 125
RocksDB, 245, 269, 363
ROI, 177

round trip latency, 381
round-robin, 106
Routing tiles, 65, 66
routing tiles, 64, 65, 77, 80, 84-86
RPC, 202

RPQO, 405, 407

RTB, 159, 160, 188
RTO, 405, 407

RTree, 9

S

52,21, 22

S3, 77, 78, 165, 179, 180, 233, 235, 237,
248, 253-256, 278

SaaS, 132

Saga, 221, 353-355, 371-373, 375

SATA, 256

search radius, 40, 41, 43, 44, 46

security, 395

segments, 99

sell order, 382, 395

Sender Policy Framework, 242

sequencer, 385-387, 394, 399, 403,
408

serializable, 210

Server-Sent Events, 87

Service Discovery, 140

session window, 177

SHAI, 275

shard, 45, 47

sharding, 24-26, 31, 45, 47, 48, 95, 205,
221, 277, 305, 310, 312, 344,
345

shortest-path, 84

Simple Mail Transfer Protocol,
227

Simple Storage Service, 253

single-point-of-failure, 404

single-threaded, 400

skip list, 297, 299

SLA. 255

sliding window, 177

SMB/CIFS, 254

SMTP, 226, 227, 229, 230,
234-236

snapshot, 188, 364

solid-state drives, 253

sorted, 297

Sorted sets, 299

Spark, 146, 190

SPF, 242

Split Distinct Aggregation, 187

split vote, 407

Splunk, 132

SQLite, 269, 363

SSD, 253

SSE, 87

SSL, 336

SSTable, 269

star schema, 172

state, 357

state machine, 354, 357-359, 361, 364
370

Statista, 241

Stop-the-World, 409

Storm, 146

Stripe, 315, 325, 333

symbol, 386

synchronous, 328

3

T

TC/C, 347-355, 371, 375
term, 407

Tight coupling, 329
TikTok. 159

Time to Live, 40
time-to-live, 217
Timestream, 137

Tinder, 21, 22

Tipalti, 323

top-k shortest paths, 84

Topic, 96

topic, 94-101, 113, 116, 118, 119,
121-123

Topics, 94

topics, 41, 95-98, 123, 124

trading hours, 380

Try-Confirm/Cancel, 347

TTL, 40, 45-47, 217

tumbling window, 177

Twitter, 137, 201

Two-phase commit, 221

two-phase commit, 346

U

Uber, 88, 201, 337
UDP, 411

UNIX, 257, 258, 401

\"

virtual private network, 202
Visa, 318, 324

VPN, 202

w
WAL, 99, 100, 268
watermark, 177
Web Mercator, 62
WebGL, 81
webhook, 325
WebSocket, 39-47, 49-56, 87, 232,
236
write sharding, 310
Write-ahead log, 99
write-ahead log, 268

X
X/Open XA, 347

Y

Yahoo Mail, 241
YAML, 151
YARN, 185
Yelp, 1, 30, 178

Index | 423

Yelp business endpoints, 4 Z

Yext, 19 ZeroMQ, 92
YouTube, 159 ZooKeeper, 48, 98, 99, 111, 112, 140, 344,
YugabyteDB. 335 345

424 | Chapter Index

Made in United States
North Haven, CT
20 September 2022

AR

4375513R00239

This book is fantastic. It is a great continuation of the first book. | strongly
rfécommend it to anyone who is studying for system design interviews.

- Sunny Patel, Software Engineering Manager at Microsoft

| was a Tech Lead at FAANG. but needed help in getting up e ulre“;;:z
unfamiliar domains. If you put in the work, this book will help you acq ks and
breadth and depth of knowledge you need for talking about bottlenec
alternatives, as expected of a Tech Lead.

- Herbert Degano, Staff Software Engineer at Coinbase

What's inside?

An insider's take on what interviewers really look for and why. .

A 4-step framework for solving any system design interview gue:tlon-
13 real system design interview questions with detailed solutions.
303 diagrams to visually explain how different systems work.

About the Authors

Alex Xu is a software engineer and author. His bo?‘k
'SystemDesignlntervw-Anlnsider’sGuideNolumeﬂ .IS
an Amazon bestseller, which has been translated into six
!anguageal-lehasmrloedatTwitter.Apple.andZynga.

Sahn Lam is a software engineer with decades of
experience in building scalable systems at high-growth
companies like Discord, Zynga, and NetApp. He has
interesting distributed systems used by millions of users.

You can connect with Alex on social media, where he shares system design
ieryiow s o |

IonN Q704 72cnAGq 40
ISBN 9781736049112

049112

"o =
20 =)

1

O

