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Figure 4.2: Key components in a message queue

Producer sends messages to a message queue.

Consumer subscribes to a queue and consumes the subscribed messages.

« Message queuc is a service in the middle that decouples the producers from the con-
sumers, allowing each of them to operate and scale independently.

Both producer and consumer are clients in the client/server model, while the message
queue is the server. The clients and servers communicate over the network.

Messaging models

The most popular messaging models are point-to-point and publish-subscribe.
Point-to-point

This model is commonly found in traditional message queues. In a point-to-point mode],
a message is sent to a queue and consumed by one and only one consumer. There can
be multiple consumers waiting to consume messages in the queue, but each message can

only be consumed by a single consumer. In Figure 4.3, message A is only consumed by
consumer 1.

Message A Consumer 1 —|

Message A

Message Queue

S T

Consumer 2

Figure 4.3: Point-to-point model

Once the consumer acknowledges that a message is consumed, it is removed from the
queue. There is no data retention in the point-to-point model. In contrast, our design in-
cludes a persistence layer that keeps the messages for two weeks, which allows messages
to be repeatedly consumed.

While our design could simulate a point-to-point model, its capabilities map more natu-
rally to the publish-subscribe model.

Publish-subscribe

First, let’s introduce a new concept, the topic. Topics are the categories used to organize
messages. Each topic has a name that is unique across the entire message queue service.
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Messages are sent to and read from a specific Lopic

In the publish-subscribe model, a message is sent 1o a topic and received by the con
sumers subscribing to this topic. As shown in Figure 4.4, message A 18 ¢ onsumed by both
consumer 1 and consumer 2

|

v ,

Message A Consumer

Message A
e __Meséage Queue I'./___,,.-
Producer I HHHH
000000~
““"‘-\.
e
[ ™
Message A Consumer 2

Figure 4.4: Publish-subscribe model

Our distributed message queue supports both models. The publish-subscribe model is
implemented by topics, and the point-to-point model can be simulated by the concept of
the consumer group, which will be introduced in the consumer group section.

Topics, partitions, and brokers

As mentioned earlier, messages are persisted by topics. What if the data volume in a
topic is too large for a single server to handle?

One approach to solve this problem is called partition (sharding). As Figure 4.5 shows,
we divide a topic into partitions and deliver messages evenly across partitions. Think
of a partition as a small subset of the messages for a topic. Partitions are evenly dis-
tributed across the servers in the message queue cluster. These servers that hold parti-
tions are called brokers. The distribution of partitions among brokers is the key element
to support high scalability. We can scale the topic capacity by expanding the number of
partitions.

K | | |‘ | Partition-1

— ___E ! !_i |L—_j |——-“lr. Topic-A l__—_”_—_:ﬁ e

Figure 4.5: Partitions

Each topic partition operates in the form of a queue with the FIFO (first in, first out) mech-
anism. This means we can keep the order of messages inside a partition. The position of
a message in the partition is called an offset.

When a message is sent by a producer, it is actually sent to one of the partitions for
the topic. Each message has an optional message key (for example, a user’s ID), and all
messages for the same message key are sent to the same partition. If the message key is
absent, the message is randomly sent to one of the partitions.
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When a consumer subscribes to a topic, it pulls data from one or more of these partition,
When there are multiple consumers subscribing to a topic, each consumer is respongipj,
for a subset of the partitions for the topic. The consumers form a consumer group (o,
a topic.

The message queue cluster with brokers and partitions is l‘(‘]ll‘(‘.‘;(‘]llt'll in Figure 4.6,

Brokers
|l
| |

1
b1, subscribe -

Consumers
|

Producers — a. produce —»

~ b2. consume —»|

Figure 4.6: Message queue cluster

Consumer group

As mentioned earlier, we need to support both point-to-point and subscribe-publish mod-
els. A consumer group is a set of consumers, working together to consume messages
from topics.

Consumers can be organized into groups. Each consumer group can subscribe to multiple
topics and maintain its own consuming offsets. For example, we can group consumers
by use cases, one group for billing and the other for accounting.

The instances in the same group can consume traffic in parallel, as in Figure 4.7.

« Consumer group 1 subscribes to topic A.
« Consumer group 2 subscribes to both topics A and B.

. Topic A is subscribed by both consumer groups-1 and group-2, which means the
same message is consumed by multiple consumers. This pattern supports the sub-
scribe/publish model.

" Consumer group-1

Partition-1 [| ;' W' — " Consumer-1

TOpiC'A ._—:_':“'."': =1 |
Partition-2 | ‘ | [ | :

S ) Consumer group-2 |
” RINIBIRIB SRR
Topic-B Partition-1 | i |' | !1_ ‘ ” ‘ ‘ i |

| Consumer-4
Figure 4.7: Consumer groups

However, there is one problem. Reading data in parallel improves the throughput, but
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the consumption order of messages in the same partition cannot be guaranteed. For
example, if Consumer-1 and Consumer-2 both read from Partition-1, we will not be able
to guarantee the message consumption order in Partition-1.

The good news is we can fix this by adding a constraint, that a single partition can only
be consumed by one consumer in the same group. If the number of consumers of a group
is larger than the number of partitions of a topic, some consumers will not get data from
this topic. For example, in Figure 4.7, Consumer-3 in Consumer group-2 cannot consume
messages from topic B because it is consumed by Consumer-4 in the same consumer
group, already.

With this constraint, if we put all consumers in the same consumer group, then mes-
sages in the same partition are consumed by only one consumer, which is equivalent to
the point-to-point model. Since a partition is the smallest storage unit, we can allocate
enough partitions in advance to avoid the need to dynamically increase the number of
partitions. To handle high scale, we just need to add consumers.
High-level architecture
Figure 4.8 shows the updated high-level design.

{ Metadata-st-ora.g.e ! :- - _'___- T

A Coordination

o service '

A

Brokers h
f
Data storage |

3 | Consumers .
Producers ST —— | ————  (Consumer groups) '

State storage _ ES——. ||

Figure 4.8: High-level design

Clients

+ Producer: pushes messages to specific topics.

« Consumer group: subscribes to topics and consumes messages.
Core service and storage

« Broker: holds multiple partitions. A partition holds a subset of messages for a topic.
« Storage:

o Data storage: messages are persisted in data storage in partitions.

Step 2 - Propose High-level Design and Get Buy-in | 97



o Stale storage: consumer slales are 111:111;1g(*['l by stale storage.
o Metadata storage: configuration and properties of topics arc persisted in meg,.
data storage.
« Coordination service:
o Service discovery: which brokers are alive.
o Leader election: one of the brokers is selected as the active controller. There i

only one active controller in the cluster. The active controller is responsible fo
assigning partitions.

o Apache ZooKeeper [2] or eted [3] are commonly used to elect a controller,

Step 3 - Design Deep Dive

To achieve high throughput while satisfying the high data retention requirement, we
made three important design choices, which we explain in detail now.

« We chose an on-disk data structure that takes advantage of the 5 ol I Sag:
cess performance of rotational disks and the aggressive disk caching strategy of mod-
ern operating systems.

+ We designed the message data structure to allow a message tO- be Passed fr-om ‘the
producer to the queue and finally to the consumer, with no modifications. ’I.I'us minj-
mizes the need for copying which is very expensive in a high volume and high traffic
system.

« We designed the system to favor batching. Small I/O is an enemy of high through-
put. So, wherever possible, our design encourages batching. The producers send
messages in batches. The message queue persists messages in even larger batches.
The consumers fetch messages in batches when possible, too.

Data storage

Now let’s explore the options to persist messages in more detail. In order to find the best
choice, let’s consider the traffic pattern of a message queuc.

« Write-heavy, read-heavy.

- No update or delete operations. As a side note, a traditional message queue dﬁoes not
persist messages unless the queue falls behind, in which case there will be “delete”
operations when the queue catches up. What we are talking about here is the per-
sistence of a data streaming platform.

» Predominantly sequential read/write access.

Option 1: Database

The first option is to use a database.

» Relational database: create a topic table and write messages to the table as rows.
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« NoSQL database: create a collection as a topic and wrile messages as documents.

Databases can handle the storage requirement, buf they are not ideal because it is hard
to design a database that supports both write-heavy and read-heavy access patterns at
a large scale. The database solution does not fit our specific data usage patterns very

well.

This means a database is not the best choice and could become a bottleneck of the sys
lem.

Option 2: Write-ahead log (WAL)

The second option is write-ahead log (WAL). WAL is just a plain file where new entries
are appended to an append-only log. WAL is used in many systems, such as the redo log
in MySQL [4] and the WAL in ZooKeeper.

We recommend persisting messages as WAL log files on disk. WAL has a pure sequential
read/write access pattern. The disk performance of sequential access is very good [5].
Also, rotational disks have large capacity and they are pretty affordable.

As shown in Figure 4.9, a new message is appended to the tail of a partition, with a
monotonically increasing offset. The easiest option is to use the line number of the log
file as the offset. However, a file cannot grow infinitely, so it is a good idea to divide it
into segments.

With segments, new messages are appended only to the active segment file. When the
active segment reaches a certain size, a new active segment is created to receive new
messages, and the currently active segment becomes inactive, like the rest of the non-
active segments. Non-active segments only serve read requests. Old non-active segment
files can be truncated if they exceed the retention or capacity limit.

1st record Next record written

Topic-A Partition-1 a1 2|8|4|8(86/{7

Figure 4.9: Append new messages

Segment files of the same partition are organized in a folder named Partition-{:parti
tion_id}. The structure is shown in Figure 4.10.
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Figure 4.10: Data segment file distribution in topic partitions

A note on disk performance

To meet the high data retention requirement, our design relies heavily on disk drives t,
hold a large amount of data. There is a common misconception that rotational disks are
slow, but this is really only the case for random access. For our workload, as long as we
design our on-disk data structure to take advantage of the sequential access pattern, the
modern disk drives in a RAID configuration (i.e., with disks striped together for higher
performance) could comfortably achieve several hundred MB/sec of read and write speed,
This is more than enough for our needs, and the cost structure is favorable.

Also, a modern operating system caches disk data in main memory very aggressively, so
much so that it would happily use all available free memory to cache disk data. The WAL
takes advantage of the heavy OS disk caching, too, as we descr ibed above.

Message data structure

The data structure of a message is key to high throughput. It defines the contract between
the producers, message queue, and consumers. Our design achieves high performance
by eliminating unnecessary data copying while the messages are in transit from the pro-
ducers to the queue and finally to the consumers. If any parts of the system disagree on
this contract, messages will need to be mutated which involves expensive copying. It

could seriously hurt the performance of the system.

Below is a sample schema of the message data structure:

' Field Name | Data Ty_pe |
key | bytel]
value ! byte[]
|topic | string |
| partition integer 1I
- offset long
| t_i;lestamp_' | long
| size integer |
K?Fc_ -_‘;'_ - inl(‘gci' [

Table 4.1: Data schema of a message
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Message key

The key of the message is used to determine the partition of the message. If the key
is not defined, the partition is randomly chosen. Otherwise, the partition is chosen by
hash(key) % numPartitions. If we need more flexibility, the producer can define its own
mapping algorithm to choose partitions. Please note that the key is not equivalent to the
partition number.

The key can be a string or a number. It usually carries some business information. The
partition number is a concept in the message queue, which should not be explicitly ex-
posed to clients.

With a proper mapping algorithm, if the number of partitions changes, messages can still
be evenly sent to all the partitions.
Message value

The message value is the payload of a message. It can be plain text or a compressed
binary block.

Reminder

The key and value of a message are different from the key-value pair in a key-value
(KV) store. In the KV store, keys are unique, and we can find the value by key. In
a message, keys do not need to be unique. Sometimes they are not even mandatory,
and we don’t need to find a value by key.

Other fields of a message
+ Topic: the name of the topic that the message belongs to.
« Partition: the ID of the partition that the message belongs to.

Offset: the position of the message in the partition. We can find a message via the
combination of three fields: topic, partition, offset.

Timestamp: the timestamp of when this message is stored.

« Size: the size of this message.

CRC: Cyclic redundancy check (CRC) is used to ensure the integrity of raw data.

To support additional features, some optional fields can be added on demand. For exam-
ple, messages can be filtered by tags, if tags are part of the optional fields.

Batching

Batching is pervasive in this design. We batch messages in the producer, the consumer,
and the message queue itself. Batching is critical to the performance of the system. In
this section, we focus primarily on batching in the message queue. We discuss batching
for producer and consumer in more detail, shortly.

Batching is critical to improving performance because:
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So far we've covered the main disk storage subsystem and its associated on-disk 4

) , . TOK day
ciructure. Now. let's switch gears and discuss the producer and consumer flows T A
we will come back and finish the deep dive into the rest of the message queue, 1

Producer flow
If a producer wants to send messages to a partition, which broker should it connegy ,
. e : ; 0
The first option is to introduce a routing layer. All messages sent to the routing laye T
routed to the “correct” broker. If the brokers are replicated, the “correct” broker i lhE
. . i iR
Jeader replica. We will cover replication later.

Producer

> 4 - —
opic-A , Topic-A 1U]
Partition-1 _____B ‘ Partition-1 D__[h JD I
‘__ ____Broker—1 ____5 | .E'Zoﬂliei _|

Figure 4.11: Routing layer

As shown in Figure 4.11, the producer tries to send messages to Partition-1 of Topic-
A.

1. The producer sends messages to the routing layer.

2. The routing layer reads the replica distribution plan’ from the metadata storage and
caches it locally. When a message arrives, it routes the message to the leader replica
of Partition-1, which is stored in Broker-1.

"The distribution of replicas for each partition is called a replica distribution plan
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3. The leader replica receives the message and follower replicas pull data from the
leader.

4. When “enough” replicas have synchronized the message, the leader commits the data
(persisted on disk). which means the data can be consumed. Then it responds to the

producer.

You might be wondering why we neced both leader and follower replicas. The reason
is fault tolerance. We dive deep into this process in the “In-sync replicas” section on

page 1 13.

This approach works, but it has a few drawbacks:

. A new routing layer means additional network latency caused by overhead and ad-
ditional network hops.

. Request batching is one of the big drivers of efficiency. This design doesn’t take that
into consideration.

Figure 4.12 shows the improved design.

Pl’OdUCBI’

Buﬁer
|

Floutlng

Topic-A Topic-a [ 11T
Partition-1 Partition-1 || | | ||
Broker-1 Broker-2

Figure 4.12: Producer with buffer and routing

The routing layer is wrapped into the producer and a buffer component is added to the
producer. Both can be installed in the producer as part of the producer client library. This

change brings several benefits:

. Fewer network hops mean lower latency.
« Producers can have their own logic to determine which partition the message should
be sent to.

. Batching buffers messages in memory and sends out larger batches in a single re-
quest. This increases throughput.

The choice of the batch size is a classic tradeoff between throughput and latency (Figure
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4.13). With a large batch size, the throughput increases but latency is higher, due
a longer wait time to accumulate the batch. With a small batch size, requests g, S

sooner so the latency is lower, but throughput suffers, Producers can tune the batch, Sive
based on use cases.

nt

Latency
High 4
_¥ Batch size
—» Throughput
Low High
Figure 4.13: The choice of the batch size
Consumer flow

The consumer specifies its offset in a partition and receives back a chunk of events be-
ginning from that position. An example is shown in Figure 4.14.

consumer 1:
last consumed offset = 6
| Consumer 1
| Cansumer 1 consumed
ol |l g lels il ! &8 100 12 180 W as
e Consumer 2 consumed .T - S "

consumer 2:
last consumed offset = 13

Figure 4.14: Consumer flow

Push vs pull

An important question to answer is whether brokers should push data to consumers, or
if consumers should pull data from the brokers.

Push model

Pros:
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« Low latency. The broker can push messages to the consumer immediately upon re-
ceiving them.

Cons:

« I the rate of consumption falls below the rate of production, consumers could be
overwhelmed.

« Ttis difficult to deal with consumers with diverse processing power because the bro-
kers control the rate at which data is transferred.

Pull model

Pros:

« Consumers control the consumption rate. We can have one set of consumers process
messages in real-time and another set of consumers process messages in batch mode.

« If the rate of consumption falls below the rate of production, we can scale out the
consumers, or simply catch up when it can.

- The pull model is more suitable for batch processing. In the push model, the broker
has no knowledge of whether consumers will be able to process messages immedi-
ately. If the broker sends one message at a time to the consumer and the consumer
is backed up, new messages will end up waiting in the buffer. A pull model pulls
all available messages after the consumer’s current position in the log (or up to the
configurable max size). It is suitable for aggressive batching of data.

Cons:

« When there is no message in the broker, a consumer might still keep pulling data,
wasting resources. To overcome this issue, many message queues support long
polling mode, which allows pulls to wait a specified amount of time for new messages

[6].

Based on these considerations, most message queues choose the pull model.

Figure 4.15 shows the workflow of the consumer pull model.
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Figure 4.18: New consumer joins

1. Initially, only Consumer A is in the group. It consumes all the partitions and keep;
the heartbeat with the coordinator.

2. Consumer B sends a request to join the group.

3. The coordinator knows it's time to rebalance, so it notifies all the consumers in the
group in a passive way. When Consumer A’s heartbeat is received by the coordinator

it asks Consumer A to rejoin the group.

4. Once all the consumers have rejoined the group, the coordinator chooses one of they
as the leader and informs all the consumers about the election result.

5. The leader consumer generates the partition dispatch plan and sends it to the cooy-
dinator. Follower consumers ask the coordinator about the partition dispatch plan,

6. Consumers start consuming messages from newly assigned partitions.

Figure 4.19 shows the flow when an existing Consumer A leaves the group.
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Figure 4.19: Existing consumer leaves

1. Consumer A and B are in the same consumer group.
2. Consumer A needs to be shut down, so it requests to leave the group.

3. The coordinator knows it’s time to rebalance. When Consumer B's heartbeat is re-
ceived by the coordinator, it asks Consumer B to rejoin the group.

4. The remaining steps are the same as the ones shown in Figure 4.18.

Figure 4.20 shows the flow when an existing Consumer A crashes.

Step 3 - Design Deep Dive | 109



Consumer A Coordinator Bome
. ‘ONSumar g
:-— —— 1a. Heartbeat (I'm A in the group) ——— ,..'

\@————— 1b. Heartbeat acked .
1 1
) 4—— 1a. Heartbeal (I'm B In the group)
. : . |
' 2. No heartbeat from consumer A. L T — I
; Consumer A seems ! RGNS =t
. to be lost. Need to rebalance ! |
i
- 3a. Heartbeat (I'm B in the group) ———

|
|
|
|
.
|
|

o =
|

Consumer A

| |

/]

Coordinato

_ 3b, Hearlbeat (Sery B, group needs
to rebalance. Please rejoin)

l

<+— 4a. JoinGroup (I'm B. | want to join group) ——!

4b. JoinGroup (B joins the group successfully.
You are the leader. Group members: B) "

7
. S

«—— 5. SyncGroup (partition dispatch plan) ———

6. SyncGroup (B should
consume partition 1, 2, 3, 4)

_—

Figure 4.20: Existing consumer crashes

1. Consumer A and B keep heartbeats with the coordinator.

2. Consumer A crashes, so there is no heartbeat sent from Consumer A to the coordina-
tor. Since the coordinator doesn’t get any heartbeat signal within a specified amount

of time from Consumer A, it marks the consumer as dead.

3. The coordinator triggers the rebalance process.

4. The following steps are the same as the ones in the previous scenario.

Now that we finished the detour on producer and consumer flows, let’s come back and

finish the deep dive on the rest of the message queue broker.

State storage

In the message queue broker, the state storage stores:

. The mapping between partitions and consumers.

. The last consumed offsets of consumer groups for each partition. As shown in Figure
4.21, the last consumed offset for consumer group-1 is 6 and the offset for consumer

group-2 is 13.
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Figure 4.21: Last consumed offset of consumer groups

For example, as shown in Figure 4.21, a consumer in group-1 consumes messages from
the partition in sequence and commits the consumed offset 6. This means all the messages
before and at offset 6 are already consumed. If the consumer crashes, another new con-
sumer in the same group will resume consumption by reading the last consumed offset
from the state storage.

The data access patterns for consumer states are:

« Frequent read and write operations but the volume is not high.
« Data is updated frequently and is rarely deleted.
+ Random read and write operations.

« Data consistency is important.

Lots of storage solutions can be used for storing the consumer state data. Considering the
data consistency and fast read/write requirements, a KV store like ZooKeeper is a great
choice. Kafka has moved the offset storage from ZooKeeper to Kafka brokers. Interested
readers can read the reference material [8] to learn more.

Metadata storage

The metadata storage stores the configuration and properties of topics, including a num-
ber of partitions, retention period, and distribution of replicas.

Metadata does not change frequently and the data volume is small, but it has a high
consistency requirement. ZooKeeper is a good choice for storing metadata.

ZooKeeper

By reading previous sections, you probably have already sensed that ZooKeeper is
very helpful for designing a distributed message queue. If you are not familiar with
it, ZooKeeper is an essential service for distributed systems offering a hierarchical
key-value store. It is commonly used to provide a distributed configuration service,
synchronization service, and naming registry [2].

ZooKeeper is used to simplify our design as shown in Figure 4.22.
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Figure 4.22: ZooKeeper

Let’s briefly go over the change.

» Metadata and state storage are moved to ZooKeeper.
« The broker now only needs to maintain the data storage for messages.

» ZooKeeper helps with the leader election of the broker cluster.

Replication

In distributed systems, hardware issues are common and cannot be ignore'd. Data gey
lost when a disk is damaged or fails permanently. Replication is the classic solution g
achieve high availability.

As in Figure 4.23, each partition has 3 replicas, distributed across different broke,
nodes.

For each partition, the highlighted replicas are the leaders and the others are followers
Producers only send messages to the leader replica. The follower replicas keep pulling
new messages from the leader. Once messages are synchronized to enough replicas, the
leader returns an acknowledgment to the producer. We will go into detail about how t,
define “enough” in the In-sync Replicas section on page 113.

o ﬂ-\
Topic-A : Topic-A ‘ Topic-A
Partition- 1 Partition-1 Partition -1
Topic-A Topic -A Topic-A s
Partition. 2 Parntition- 2 Partition-2
Topic-B Tope-8 Topic-8
Partition- 1 Partition- 1 Partition-1
Broker-1 Broker 2 Brokar 3 Brokaer ¢

Figure 4.23: Replication
The distribution of replicas for each partition is called a replica distribution plan. For
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l\-_\-'r_n"p[(‘. the r(-*p]j(‘;] distribution ]‘ll;'!ll mn I"if.{m-p 4.23 can he described as:

« Partition-1 of Topic-A: 3 replicas, leader in Broker-1. followers in Broker-2 and 3;
« Partition-2 of Topic-A: 3 replicas, leader in Broker-2. followers in PBroker-3 and 4;

» Partition-1 of Topic-B: 3 replicas, leader in Broker-3. followers in Broker-4 and 1.

Who makes the replica distribution plan? It works as follows; with the help of the coor
dination service, one of the broker nodes is elected as the leader. It generates the replica
distribution plan and persists the plan in metadata storage. All the brokers now can work
according to the plan.

If you are interested in knowing more about replications, check out “Chapter 5. Replica-
tion” of the book “Design Data-Intensive Applications” [9].

In-sync replicas

We mentioned that messages are persisted in multiple partitions to avoid single node
failure, and each partition has multiple replicas. Messages are only written to the leader,
and followers synchronize data from the leader. One problem we need to solve is keeping
them in sync.

In-sync replicas (ISR) refer to replicas that are “in-sync” with the leader. The defi-
nition of “in-sync” depends on the topic configuration. For example, if the value of
replica.lag.max.messages is 4, it means that as long as the follower is behind the leader
by no more than 3 messages, it will not be removed from ISR [10]. The leader is an ISR
by default.

Let’s use an example as shown in Figure 4.24 to shows how ISR works.

« The committed offset in the leader replica is 13. Two new messages are written to
the leader, but not committed yet. Committed offset means that all messages before
and at this offset are already synchronized to all the replicas in ISR.

+ Replica-2 and replica-3 have fully caught up with the leader, so they are in ISR and
can fetch new messages.

« Replica-4 did not fully catch up with the leader within the configured lag time, so it
is not in ISR. When it catches up again, it can be added to ISR.
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Figure 4.24: How ISR works

Why do we need ISR? The reason is that ISR reflects the trade-off between performance
and durability. If producers don’t want to lose any messages, the safest way to do that i
to ensure all replicas are already in sync before sending an acknowledgment. But asloy
replica will cause the whole partition to become slow or unavailable.

Now that we've discussed ISR, let’s take a look at acknowledgment settings. Producers
can choose to receive acknowledgments until the k& number of ISRs has received the
message, where k is configurable.

ACK=all
Figure 4.25 illustrates the case with ACK=all. With ACK=all, the producer gets an ACK

when all ISRs have received the message. This means it takes a longer time to send 3

message because we need to wait for the slowest ISR, but it gives the strongest message
durability.
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Figure 4.25: ACK=all
ACK=1

With ACK=1, the producer receives an ACK once the leader persists the message. The
latency is improved by not waiting for data synchronization. If the leader fails immedi-
ately after a message is acknowledged but before it is replicated by follower nodes, then

the message is lost. This setting is suitable for low latency systems where occasional data
loss is acceptable.
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Figure 4.26: ACK=1
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Figure 4.27: ACK=0

Configurable ACK allows us to trade durability for performance.

Now let’s look at the consumer side. The easiest setup is to let consumers connect to 3
leader replica to consume messages.

You might be wondering if the leader replica would be overwhelmed by this design ang
why messages are not read from ISRs. The reasons are:

Design and operational simplicity.

Since messages in one partition are dispatched to only one consumer within a con-
sumer group, this limits the number of connections to the leader replica.

The number of connections to the leader replicas is usually not large as long as a
topic is not super hot.

If a topic is hot, we can scale by expanding the number of partitions and consumers

In some scenarios, reading from the leader replica might not be the best option. For
example, if a consumer is located in a different data center from the leader replica, the
read performance suffers. In this case, it is worthwhile to enable consumers to read
from the closest ISRs. Interested readers can check out the reference material about this

[11].

ISR is very important. How does it determine if a replica is ISR or not? Usually, the leader
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for every partition tracks the ISR list by computing the lag of every replica from itself. |f
you are interested in detailed algorithms, you can find (he implementations in reference
materials [12] [13].
Scalability
By now we have made great progress designing the distributed message queue system.
In the next step, let’s evaluate the scalability of different system components:

+ Producers

« Consumers

+ Brokers

Partitions

Producer

The producer is conceptually much simpler than the consumer because it doesn’t need
group coordination. The scalability of producers can easily be achieved by adding or
removing producer instances.

Consumer

Consumer groups are isolated from each other, so it is easy to add or remove a consumer
group. Inside a consumer group, the rebalancing mechanism helps to handle the cases
where a consumer gets added or removed, or when it crashes. With consumer groups
and the rebalance mechanism, the scalability and fault tolerance of consumers can be
achieved.

Broker

Before discussing scalability on the broker side, let’s first consider the failure recovery of
brokers.
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Figure 4.28: Broker node crashes

Let’s use an example in Figure 4.28 to explain how failure recovery works.

1. Assume there are 4 brokers and the partition (replica) distribution plan is shown
below:

. Partition-1 of topic A: replicas in Broker-1 (leader), 2, and 3.
. Partition-2 of topic A: replicas in Broker-2 (leader), 3, and 4.
. Partition-1 of topic B: replicas in Broker-3 (leader), 4, and 1.

2. Broker-3 crashes, which means all the partitions on the node are lost. The partition
distribution plan is changed to:

. Partition-1 of topic A: replicas in Broker-1 (leader) and 2.
« Partition-2 of topic A: replicas in Broker-2 (leader) and 4.
. Partition-1 of topic B: replicas in Broker-4 and 1.
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S

3. The broker controller detects Broker-3 i down
bution plan for the remaining broker nodes:

and generates a new partition distri-

» Partition-1 of topic A: replicas in Broker-1 (leader), 2, and 4 (new).
« Partition-2 of topic A: replicas in Broker-2 (leader), 4, and 1 (new).
« Partition-1 of topic B: replicas in Broker-4 (leader), 1, and 2 (new).

4. The new replicas work as followers and catch up with the leader.
To make the broker fault-tolerant, here are additional considerations:

« The minimum number of ISRs specifies how many replicas the producer must receive
before a message is considered to be successfully committed. The higher the number,
the safer. But on the other hand, we need to balance latency and safety.

- If all replicas of a partition are in the same broker node, then we cannot tolerate the
failure of this node. It is also a waste of resources to replicate data in the same node.
Therefore, replicas should not be in the same node.

- Ifall the replicas of a partition crash, the data for that partition is lost forever. When
choosing the number of replicas and replica locations, there’s a trade-off between
data safety, resource cost, and latency. It is safer to distribute replicas across data
centers, but this will incur much more latency and cost, to synchronize data between
replicas. As a workaround, data mirroring can help to copy data across data centers,
but this is out of scope. The reference material [14] covers this topic.

Now let’s get back to discussing the scalability of brokers. The simplest solution would
be to redistribute the replicas when broker nodes are added or removed.

However, there is a better approach. The broker controller can temporarily allow more
replicas in the system than the number of replicas in the config file. When the newly
added broker catches up, we can remove the ones that are no longer needed. Let’s use
an example as shown in Figure 4.29 to understand the approach.
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Figure 4.29: Add new broker node

1. The initial setup: 3 brokers, 2 partitions, and 3 replicas for each partition.

2. New Broker-4 is added. Assume the broker controller changes the replica distribu-
tion of Partition-2 to the broker (2, 3, 4). The new replica in Broker-4 starts to copy
data from leader Broker-2. Now the number of replicas for Partition-2 is temporarily
more than 3.

3. After the replica in Broker-4 catches up, the redundant partition in Broker-1 is grace-
fully removed.

By following this process, data loss while adding brokers can be avoided. A similar pro-
cess can be applied to remove brokers safely.

Partition

For various operational reasons, such as scaling the topic, throughput tuning, balancing
availability/ throughput, etc., we may change the number of partitions. When the num-
ber of partitions changes, the producer will be notified after it communicates with any

broker, and the consumer will trigger consumer rebalancing, Therefore, it is safe for both
the producer and consumer.

Now let’s consider the data storage layer when the number of partitions changes. As in
Figure 4.30, we have added a partition to the topic.
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Figure 4.30: Partition increase

+ Persisted messages are still in the old partitions, so there's no data migration.

« After the new partition (partition-3) is added, new messages will be persisted in all
3 partitions.

So it is straightforward to scale the topic by increasing partitions.
Decrease the number of partitions

Decreasing partitions is more complicated, as illustrated in Figure 4.31.

partition-2 "l “IU | partition-2

partition-3 l Il

Figure 4.31: Partition decrease

« Partition-3 is decommissioned so new messages are only received by the remaining
partitions (partition-1 and partition-2).

« The decommissioned partition (partition-3) cannot be removed immediately because
data might be currently consumed by consumers for a certain amount of time. Only
after the configured retention period passes, data can be truncated and storage space
is freed up. Reducing partitions is not a shortcut to reclaiming data space.

« During this transitional period (while partition-3 is decommissioned), producers only
send messages to the remaining 2 partitions, but consumers can still consume from
all 3 partitions. After the retention period of the decommissioned partition expires,
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consumer groups need rebalancing,

Data delivery semantics
Now that we understand the different components of a distributed message queye ey’
discuss different delivery semantics: al-most once, at-least once, and exactly once, ‘

At-most once

As the name suggests, at-most once means a message will be delivered not more than,
once. Messages may be lost but are not redelivered. This is how at-most once delivery
works at the high level.

« The producer sends a message asynchronously to a topic without waiting for 5,
acknowledgment (ACK=0). If message delivery fails, there is no retry.

- Consumer fetches the message and commits the offset before the data is processeq
If the consumer crashes just after offset commit, the message will not be r.
consumed.

- -Méséage Queu_e. |
| H |  — may lose msg —*
1l !

o —

Producer — may losemsg — 1]/ ][ | Consumer

| i

Figure 4.32: At-most once

It is suitable for use cases like monitoring metrics, where a small amount of data loss is
acceptable.

At-least once

With this data delivery semantic, it’s acceptable to deliver a message more than once, but
no message should be lost. Here is how it works at a high level.

« Producer sends a message synchronously or asynchronously with a response call-
back, setting ACK=1 or ACK=all, to make sure messages are delivered to the broker
If the message delivery fails or timeouts, the producer will keep retrying.

« Consumer fetches the message and commits the offset only after the data is success-
fully processed. If the consumer fails to process the message. it will re-consume the
message so there won't be data loss. On the other hand. if a consumer processes the
message but fails to commit the offset to the broker, the message will be re-consumed
when the consumer restarts, resulting in duplicates.

« A message might be delivered more than once to the brokers and consumers.
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Figure 4.33: At-least once

Use cases: With at-least once, messages won'l be lost but the same message might be
delivered multiple times. While not ideal from a user perspeclive, at-least once delivery
semantics are usually good enough for use cases where data duplication is not a big issue
or deduplication is possible on the consumer side. For example, with a unique key in each
message, a message can be rejected when writing duplicate data to the database.

Exactly once

Exactly once is the most difficult delivery semantic to implement. It is friendly to users,
but it has a high cost for the system’s performance and complexity.

' Message queue |

! guaranteed MR o guarantesd | Consumer
once | 1[ I‘ “ i ”i once |

L ..'._'._.'. — | l

Producer

Figure 4.34: Exactly once

Use cases: Financial-related use cases (payment, trading, accounting, etc.). Exactly once
is especially important when duplication is not acceptable and the downstream service
or third party doesn’t support idempotency.

Advanced features

In this section, we talk briefly about some advanced features, such as message filtering,
delayed messages, and scheduled messages.

Message filtering

A topic is a logical abstraction that contains messages of the same type. However, some
consumer groups may only want to consume messages of certain subtypes. For example,
the ordering system sends all the activities about the order to a topic, but the payment
system only cares about messages related to checkout and refund.

One option is to build a dedicated topic for the payment system and another topic for the
ordering system. This method is simple, but it might raise some concerns.

« What if other systems ask for different subtypes of messages? Do we need to build
dedicated topics for every single consumer request?

« Itis a waste of resources to save the same messages on different topics.

+ The producer needs to change every time a new consumer requirement comes, as the
producer and consumer are now tightly coupled.

Therefore, we need to resolve this requirement using a different approach. Luckily, mes-
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sage filtering comes to the rescue.

A naive solution for message filtering is that the consumer fetches the fu [ set of me S5agey
and filters out unnecessary messages during processing time. This approach is fleyip).
but introduces unnecessary traffic that will affect system performance.

A better solution is to filter messages on the broker side so that consumers will only g
messages they care about. Implementing this requires some careful consideration. If day,
filtering requires data decryption or deserialization, it will degrade the performance o
the brokers. Additionally, if messages contain sensitive data, they should not be readab,

in the message queue.

Therefore, the filtering logic in the broker should not extract the message payload. J;
is better to put data used for filtering into the metadata of a message, which can b
efficiently read by the broker. For example, we can attach a tag to each message. With
a message lag, a broker can filter messages in that dimension. If more tags are attached.
the messages can be filtered in multiple dimensions. Therefore, a list of tags can suppory
most of the filtering requirements. To support more complex logic such as mathematica]
formulae, the broker will need a grammar parser or a script executor, which might be tog
heavyweight for the message queue.

With tags attached to each message, a consumer can subscribe to messages based on
the specified tag, as shown in Figure 4.35. Interested readers can refer to the reference
material [15].

| R IB W Bl IRl B ' «—— Subscribe with tags —__ > -
& .

- :_: . \\ |

fetch messages

Consumer

Figure 4.35: Message filtering by tags

Delayed messages & scheduled messages

Sometimes you want to delay the delivery of messages to a consumer for a specified
period of time. For example, an order should be closed if not paid within 30 minutes after
the order is created. A delayed verification message (check if the payment is completed) is
sent immediately but is delivered to the consumer 30 munutes later. When the consumer
receives the message, it checks the payment status. If the payment is not completed. the
order will be closed. Otherwise, the message will be ignored

Different from sending instant messages. we can send delayed messages to temporary
storage on the broker side instead of to the topics immediately, and then deliver them to
the topics when time’s up. The high-level design for this 1s shown in Figure 4.36
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Figure 4.36: Delayed messages

Core components of the system include the temporary storage and the timing func-
tion.

« The temporary storage can be one or more special message topics.

+ The timing function is out of scope, but here are 2 popular solutions:

o Dedicated delay queues with predefined delay levels [16]. For example, Rock-
etMQ doesn’t support delayed messages with arbitrary time precision, but de-
layed messages with specific levels are supported. Message delay levels are 1s,
5s, 10s, 30s, 1m, 2m, 3m, 4m, 6m, 8m, 9m, 10m, 20m, 30m, 1h, and 2h.

o Hierarchical time wheel [17].

A scheduled message means a message should be delivered to the consumer at the sched-
uled time. The overall design is very similar to delayed messages.

Step 4 - Wrap Up

In this chapter, we have presented the design of a distributed message queue with some
advanced features commonly found in data streaming platforms. If there is extra time at
the end of the interview, here are some additional talking points:

« Protocol: it defines rules, syntax, and APIs on how to exchange information and
transfer data between different nodes. In a distributed message queue, the protocol
should be able to:

o Cover all the activities such as production, consumption, heartbeat, etc.
o Effectively transport data with large volumes.
o Verify the integrity and correctness of the data.

Some popular protocols include Advanced Message Queuing Protocol (AMQP) [18]
and Kafka protocol [19].
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+» Retry consumption. If some messages cannol be consumed suceesstully ;
. , : "i-‘.
to retry the operation. In order not to block incoming messages, how can we Pl !
4 X . " . . ) . L '

the operation after a certain time period? One idea is to send Tailed MeSSageg
hl b [1 R
A

dedicated relry topic, so they can be consumed later.

« Historical data archive. Assume there is a time-based or capacity-based log retent,
mechanism. If a consumer needs to replay some historical messages that are Fl|r[-;“;n
truncated, how can we do it? One possible solution is to use storage systemg With
large capacities, such as HDFS [20] or object storage, to store historical data,

Congratulations on getting this far! Now give yourself a pat on the back. Good job!
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m
5 Metrics Monitoring and Alerting Sys-

tem

In this chapter, we explore the design of a scalable metrics monitoring and alerting sys-
tem. A well-designed monitoring and alerting system plays a key role in providing clear
visibility into the health of the infrastructure to ensure high availability and reliabil-

ity.
Figure 5.1 shows some of the most popular metrics monitoring and alerting services in
the marketplace. In this chapter, we design a similar service that can be used internally

by a large company.

n DATADOG () influs @ _N- ag 10S’

O A 5 .

Prometheus MUNIN Grafana

Figure 5.1: Popular metrics monitoring and alerting services

Step 1 - Understand the Problem and Establish Design Scope

A metrics monitoring and alerting system can mean many different things to different
companics, so it is essential to nail down the cxact requirements first with the interviewer.
For example, you do not want to design a system that focuses on logs such as web server
error or access logs if the interviewer has only infrastructure metrics in mind.

Let’s first fully understand the problem and establish the scope of the design before diving
into the details.
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Candidate: Who are we building the system for? Are we building an in-hoy,
for a large corporation like Facebook or Google, or are we designing a Saa$ scry;
Datadog [1]. Splunk [2], etc? |

Interviewer: That's a great question.

Yile
m

Ce bk,

We are building it for internal use only,

v ]( \.’(.l

usage data of the operating system, such as CPU load, memory usage, and disk SPac,
congsum tion. They can also be high-level concepts such as reunSts per second of ,
service Er the' running server count of a web pool. Business metrics are not in the Scope

of this design. o | |
he infrastructure we are momtoring with this systep,

. n L3 t .
Candidate: What is the scale of i pools, and 100 machines -

Interviewer: 100 million daily active users,
pool.

42
Candidate: How long should we keep the data’ |
Interviewer: Let's assume we want 1 year retention.

’ =3 l— L)
Candidate: May we reduce the resolution of the metrics data fof ling 1;::' ]S (:-:ai?‘.
Interviewer: That's a great question. We would like to be fable to (’;E!pt ioh fO);» " dned
data for 7 days. After 7 days, you may roll them up to 1 nnfl{iltcnl”fso u ays.
After 30 days, you may further roll themup ata 1 hour resolution.

Candidate: What are the supported alert channels? ints).
Interviewer: Email, phone, PagerDuty [3]. o webhooks (HTTP endpo!

i s log?
Candidate: Do we need to collect logs, such as error log or acces K
Interviewer: No.

Candidate: Do we need to support distributed system tracing’
Interviewer: No.

High-level requirements and assumptions

Now you have finished gathering requirements from the interviewe
scope of the design. The requirements are:

r and have a clear

« The infrastructure being monitored is large-scale.
o 100 million daily active users

o Assume we have 1.000 server pools, 100 machines per pool. 1(K) metrnics per
machine = ~ 10 million metrics

o 1 year data retention

o Data retention policy: raw form for 7 days, | minute resolution for 30 days. |
hour resolution for 1 year.

« A variety of metrics can be monitored, for example:

o CPU usage
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o Request count
o Memory usage

o Message count in message queues

Non-functional requirements
« Scalability. The system should be scalable to accommodate growing mel rics and alert
volume.

- Low latency. The system needs to have low query latency for dashboards and alerts,
« Reliability. The system should be highly reliable to avoid missing critical alerts.

« Flexibility. Technology keeps changing, so the pipeline should be flexible enough to
easily integrate new technologies in the future.

Which requirements are out of scope?

« Log monitoring. The Elasticsearch, Logstash, Kibana (ELK) stack is very popular for
collecting and monitoring logs [4].

« Distributed system tracing [5] [6]. Distributed tracing refers to a tracing solution
that tracks service requests as they flow through distributed systems. It collects data
as requests go from one service to another.

Step 2 - Propose High-level Design and Get Buy-in

In this section, we discuss some fundamentals of building the system, the data model,
and the high-level design.

Fundamentals

A metrics monitoring and alerting system generally contains five components, as illus-
trated in Figure 5.2.

 Data collection: collect metric data from different sources.
+ Data transmission: transfer data from sources to the metrics monitoring system.
« Data storage: organize and store incoming data.

Alerting: analyze incoming data, detect anomalies, and generate alerts. The system
must be able to send alerts to different communication channels.

-

Visualization: present data in graphs, charts, etc. Engineers are better at identifying
patterns, trends, or problems when data is presented visually, so we need visualiza-
tion functionality.
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- 1. Data collection

2. Data transmission

Metrics mon
itoring and
alerting system

— 3, Data storage

4. Alerting

(¥}

Visualization

Figure 5.2: Five components of the system
Data model
Metrics data is usually recorded as a

associated timestamps. The series itsel
tionally by a set of labels.

ime series that contains a set of values with thei
: . . . 'ir
f can be uniquely identified by its name, ang ap

Let’s take a look at two examples.

Example 1:

What is the CPU load on production server instance 1631 at 20:087

0.313

18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22000 22:30 23:00 23:30 00:00 00:30

Figure 5.3: Popular metrics monitoring and alerting services

The data point highlighted in Figure 5.3 can be represented by Table 5.1.

metric_name | cpu.load

labels host:i631,env:prod
timestamp 1613707265

value 0.29

Table 5.1: The data point represented by a table

In this example, the time series is represented by the metric name, the labels
(host:i631,env:prod), and a single point value at a specific time.
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gxample 2:

. v AT » CP At _ _
what is the average CPU load across all web servers in the us-wes! region for the last 10
minutes? ¢ onceptually, we would pull up somelthing like this from storage where the
melric name is CPU.load and the region label is us-west:

cpuU. load host=webserverB1,region=us-west 1613707265 50
CPU. load host=webserverB1,region=us-west 1613707265 67
cpU.load host=webserver82,region=us-west 1613707265 43
cpU.load host=webserverB2,region=us-west 1613707265 53

cpU.1load host=webserver81,region=us-west 1613787265 76
cPU.load host=webserver81,region=us-west 1613787265 83

The average CPU load could be computed by averaging the values at the end of each
line. The format of the lines in the above example is called the line protocol. It is a
common input format for many monitoring software in the market. Prometheus [7] and

OpenTSDB [8] are two examples.
Every time series consists of the following [9]:

 Name Type

A metric name String

A set of tags/labels List of <key:value> pairs

An array of values and their . .
An array of <value, timestamp> pairs

timestamps
Table 5.2: Time series

Data access pattern
In Figure 5.4, each label on the y-axis represents a time series (uniquely identified by the

names and labels) while the x-axis represents time.
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Figure 5.4: Data access pattern
ime-seri ata points written
The write load is heavy. As you can see, there can be many fflme sen”es d . :: -
at any moment. As we mentioned in the “High-level requirements sec ]
about 10 million operational metrics are written per day, and man
at high frequency, so the traffic is undoubtedly write-heavy.

At the same time, the read load is spiky. Both visualization and ale
queries to the database, and depending on the access patterns of the
the read volume could be bursty.

y metrics are collected

rting services send
graphs and alerts,

In other words, the system is under constant heavy write load, while the read load is
spiky.

Data storage system

The data storage system is the heart of the design. It's not recommended to build your

own storage system or use a general-purpose storage system (for example, MySQL [10])
for this job.

A general-purpose database, in theory, could support time-series data, but il would re-
quire expert-level tuning to make it work at our scale. Specifically, a relational database 1s
not optimized for operations you would commonly perform against time-series data. For
example, computing the moving average in a rolling time window requires complicated
SQL that is difficult to read (there is an example of this in the deep dive section). Be-
sides, to support tagging/labeling data, we need to add an index for each tag. Moreover,
a general-purpose relational database does not perform well under constant heavy write

load. At our scale, we would need to expend significant effort in tuning the database,
and even then, it might not perform well.
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How about NoSQL? In theory. a few NoSQI. databases on the market could handle time
series data effectively. For example, Cassandra and Bigtable [11] can both be used for
time series data. [However, this would require deep knowledge of the internal workings
of each NoSQL to devise a scalable schema for effectively storing and querying time-
series data. With industrial-scale time-series databases readily available, using a general-
purpose NoSQL database is not appealing,

There are many storage systems available that are optimized for time-series data. The
optimization lets us use far fewer servers to handle the same volume of data. Many of
these databases also have custom query interfaces specially designed for the analysis of
time-series data that are much easier to use than SQL. Some even provide features to
manage data retention and data aggregation. Here are a few examples of time-series
databases.

OpenTSDB is a distributed time-series database, but since it is based on Hadoop and
HBase, running a Hadoop/HBase cluster adds complexity. Twitter uses MetricsDB [12],
and Amazon offers Timestream as a lime-series database [13]. According to DB-engines
[14]. the two most popular time-series databases are InfluxDB [15] and Prometheus,
which are designed to store large volumes of time-series data and quickly perform real-
time analysis on that data. Both of them primarily rely on an in-memory cache and
on-disk storage. And they both handle durability and performance quite well. As shown
in Figure 5.5, an InfluxDB with 8 cores and 32GB RAM can handle over 250,000 writes
per second.

Writes per Queries* per
second second
2-4 cores 2-4GB 500 < 5,000 <5 <100.000
8-32 500-
4- < <25 < 1,000,000
6 cores cB 1000 < 250,000
8+ cores 32+ GB 1000+ > 250 000 >25 >1.000,000

Figure 5.5: InfluxDb benchmarking

Since a time-series database is a specialized database, you are not expected to understand
the internals in an interview unless you explicitly mentioned it in your resume. For the
purpose of an interview, it's important to understand the metrics data are time-series
in nature and we can select time-series databases such as InfluxDB for storage to store
them.

Another feature of a strong time-series database is efficient aggregation and analysis of
a large amount of time-series data by labels, also known as tags in some databases. For
example, InfluxDB builds indexes on labels to facilitate the fast lookup of time-series
by labels [15]. It provides clear best-practice guidelines on how to use labels, without
overloading the database The key 15 to make sure each label is of low cardinality (having
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a small set of possible values). This fe

ature is critical for visualization, and it w,,
' { |-||—|

a lot of effort to build this with a general-purpose database.

High-level design
5.0.
!

The high-level design diagram is shown in Figure
.

Metrics Collector —{ ,,/i:;ﬂ;ewice
Time series DB

Ernail

______,_/" o = " Taxt Ml_\»\--__-.qn |
Alerting System
S ] —— paony
send Queries -H'“-hx o ——
= e
/L_._ HTTPS Endpoin-..qu

J Metrics Source

. Metrics source. This can be application Servers, SQL databas

etc.

database.

by labels.

Metrics collector. It gathers metrics data and writes d

Time-series database. This stores metrics data as tim

custom query interface for analyzing
data. It maintains indexes on labels to facilitate the fast lookup

Query service. The query service makes it easy to query
the time-series database. This should be a very thin wrapper i
time-series database. It could also be entirely replaced by the time-series da

Send Queries

Visualization
System

Figure 5.6: High-level design

es, message queues,
ata into the time-series

e series. It usually provides a
and summarizing a large amount of time-series
of time-series data

and retrieve data from

f we choose a good
tabase’s

own query interface.
ions.

-

Alerting system. This sends alert notifications to various alerting destinat

Visualization system. This shows metrics in the form of various graphs/chaf ts.

Step 3 - Design Deep Dive
In a system design interview, candidates are expected to dive deep into a few key com-
ponents or flows. In this section, we investigate the following topics in detail:

«+ Metrics collection
. Scaling the metrics transmission pipeline
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« Query service
« Storage layer
+ Alerting system

«» Visualization system

Metrics collection

For metrics collection like counters or CPU usage, occasional data loss is not the end of
the world. It's acceptable for clients to fire and forget. Now let’s take a look at the metrics
collection flow. This part of the system is inside the dashed box (Figure 5.7).

Email
- e Text Message
Alerting System
PageDuty

' Send Queries
[ :' l HTTPS Endpoints
l Metrics Source [——— Metrics Collector ﬁﬁ@*— Query Service
e Time series DB l’—j
i Send Queries

Visualization
System

Figure 5.7: Metrics collection flow

Pull vs push models

There are two ways metrics data can be collected, pull or push. It is a routine debate as
to which one is better and there is no clear answer. Let’s take a close look.

Pull model

Figure 5.8 shows data collection with a pull model over HTTP. We have dedicated metric
collectors which pull metrics values from the running applications periodically.
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Metrics Source Service Di-scb;;e1y ‘
‘: ‘: [_eted ][ Zookeeper |
: Web Servers . g e ‘
Pull metrics

! DB Clusters el ‘

i Pull metrics

i Metrics Collector

_._———————__—l

' Pull metrics
-
Queue Clusters '

i ‘j,/PU“ mEtriCS

Cache Clusters

Figure 5.8: Pull model

In this approach, the metrics collector needs to know the complete list of service eng.
points to pull data from. One naive approach is to use a file to hold DNS/IP information
for every service endpoint on the “metric collector” servers. While the idea is simple,
this approach is hard to maintain in a large-scale environment where servers are added
or removed frequently, and we want to ensure that metric collectors don’t miss out on
collecting metrics from any new servers. The good news is that we have a reliable, scal-
able, and maintainable solution available through Service Discovery, provided by eted
[16]), ZooKeeper [17], etc., wherein services register their availability and the metrics
Cf:llector can be notified by the Service Discovery component whenever the list of ser-
vice endpoints changes.

Service d1§c0very contains configuration rules about when and where to collect metrics
as shown in Figure 5.9.

Service Discovery
[__eted ][ Zookeeper |

1 type: mysal
host: 10.10.11.1
Figure 5.9: Service discovery

Figure 5.10 explains the pull model in detail.
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Servit_:e; Disg(-wer_y ) I
[ eica ][ Zookeeper |

—

(M Discover Targets

j -

/metrics endpoint -

Figure 5.10: Pull model in detail

1. The metrics collector fetches configuration metadata of service endpoints from Ser-

vice Discovery. Metadata include pulling interval, IP addresses, timeout and retry
parameters, etc.

2. The metrics collector pulls metrics data via a pre-defined HTTP endpoint (for exam-
ple, /metrics). To expose the endpoint, a client library usually needs to be added to
the service. In Figure 5.10, the service is Web Servers.

3. Optionally, the metrics collector registers a change event notification with Service
Discovery to receive an update whenever the service endpoints change. Alterna-
tively, the metrics collector can poll for endpoint changes periodically.

At our scale, a single metrics collector will not be able to handle thousands of servers. We
must use a pool of metrics collectors to handle the demand. One common problem when
there are multiple collectors is that multiple instances might try to pull data from the

same resource and produce duplicate data. There must exist some coordination scheme
among the instances to avoid this.

One potential approach is to designate each collector to a range in a consistent hash ring,
and then map every single server being monitored by its unique name in the hash ring.

This ensures one metrics source server is handled by one collector only. Let’s take a look
at an example.

As shown in Figure 5.11, there are four collectors and six metrics source servers. Fach

collector is responsible for collecting metrics from a distinct set of servers. Collector 2 is
responsible for collecting metnics from Server 1 and Server 5.
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Collector # is responsible for servers in this range

/t“ )’_—Q :
[ \ \ Collector 2
Collector 1 \ ! /

|
()
kv\.I gs—d/
\. -~ /o
— \ L GBS
’ r k/ :

Figure 5.11: Consistent hashing

Push model

[. S’,] Servey 1

( 52

’ " Servar
(31) = Server 5
(“> - Server 4
(fﬁ) = Server

(50) - sarverg

As shown in Figure 5.12, in a push model various metrics SOUrces. such as web servers
database servers, etc., directly send metrics to the metrics collector.

Web Servers :

DB Clusters :

; Push metncs
: Push metrics
Push metrnics
Cache Clusters

Figure 5.12: Push model

Metrics Collector

In a push model, a collection agent is commonly installed on every server being moni-
tored. A collection agent is a piece of long-running software that collects metrics from
the services running on the server and pushes those metrics periodically to the metrics
collector. The collection agent may also aggregate metrics (especially a simple counter)

locally, before sending them to metric collectors.
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Aggregation is an eflective way to reduce the volume of data sent to the metrics collector.
If the push traflic is high and the metrics collector rejects the push wilh an error, 1!11“ agent
could keep a small buffer of data locally (possibly by storing them locally on disk), and
resend them later. However, if the servers are in an auto-scaling group where they are
rotated out frequently, then holding data locally (even temporarily) might result in data
loss when the metrics collector falls behind.

To prevent the metrics collector from falling behind in a push model, the metrics collec-
. » i i i N ™ .= ”

tor should be in an auto-scaling cluster with a load balancer in front of it (Figure 5.13).

The cluster should scale up and down based on the CPU load of the metric collector

SEervers.

! Metrics Source i Collection Age_nl o :

] ' 1

i i [

é ! Melrics 1 .

| | :

) : i

: S.; L Push Load » Metrics Collectors
! el Serare ¢ Metrics 2 R Messagasﬁ-’ Balancer

P l b =
i : [

I i : X

| i i

| E Metrics 3 o

i i t

| ' LA |

Figure 5.13: Load balancer

Pull or push?

So, which one is the better choice for us? Just like many things in life, there is no clear
answer. Both sides have widely adopted real-world use cases.

« Examples of pull architectures include Prometheus.
« Examples of push architectures include Amazon CloudWatch [18] and Graphite [19].

Knowing the advantages and disadvantages of each approach is more important than
picking a winner during an interview. Table 5.3 compares the pros and cons of push and
pull architectures [20] [21] [22] [23]).

Step 3 - Design Deep Dive | 143



|

. Easy debugging

Health check

Short-lived jobs

setups

Pull

The /metrics anp(_milﬁ
on application servers
used for pulling met-
rics can be used to
view metrics at any
time. You can even
do this on your laptop.
Pull wins.

If an application
server doesn’t re-
spond to the pull, you
can quickly figure
out if an application
server is down. Pull

wins.

Having servers
pulling metrics re-
quires ~ all metric
endpoints  tO be
Firewall or com- reachable. ~ This is
plicated network | potentially prob-

lematic in multiple
data center setups. It
might require a more
elaborate ~ network

infrastructure.

_‘__-______________—-———-——__.__.—-—-—-—"__—__‘—-'
Some of the batch jobs

Push

If the metrics collec-
tor doesn’t receive |
metrics, the problem
might be caused by

|
network issues. -

'1

might be short-lived
and don’t last long
enough to be pulled.
Push wins. This can
be fixed by introduc-
ing push gateways for
the pull model [24].

If the metrics collec-
tor is set up with a
load balancer and an
auto-scaling group, it
is possible to receive
data from anywhere. |
Push wins. |
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Performance

Pull methods typically
use TCP,

Push  methods  typi

cally use UDP. This
means  the  push
method provides

lower-latency  Lrans
ports of metrics. The
counterargument here
is that the effort of
establishing a TCP
connection is small
compared to sending
the metrics payload.

Data authenticity

Application servers to
collect metrics from
are defined in con-
fig files in advance.
Metrics gathered from
those servers are guar-
anteed to be authentic.

Any kind of client
can push metrics to
the metrics collector.
This can be fixed by
whitelisting  servers
from which to accept
metrics, or by requir-
ing authentication.

As mentioned above, pull vs push is a routine debate topic and there is no clear answer.
A large organization probably needs to support both, especially with the popularity of
serverless [25] these days. There might not be a way to install an agent from which to
push data in the first place.

Table 5.3: Pull vs push

Scale the metrics transmission pipeline

Metrics Source

A

Metrics Coil;:t:i’— - 4.( _:j.,___.-

Email

e

Alerting System

Send Queries

Time series DB

‘J Query Service

1_f_

| Visualization
| System
v O |

I R

o ”/,l—/v Text Message
i

PageDuty

™~
i

[

Figure 5.14: Metrics transmission pipeline
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let's zoom in on the metrics collector and time-series databases. Whether yon g the
push or pull model. the metrics collector is a cluster of servers, and the cluster PCCCive,
enormons amounts of data. For either push or pull, the metrics collector cluster is gy p
for anto-scaling. to ensure that there are an adequate number of collector instanceg »

handle the demand.

However. there is a risk of data loss if the time-series database is unavailable. To Mitigape
i . wilbos T » E1E
this problem, we introduce a queucing component as shown in Figure 5.15.

-
_‘/- —

Tent Mnm“g" |
Alarting System L )

e { S
Sand Queries “‘R g J

= —] Aj T
(Meﬂk;s Source |—— Metrics Collector I Kafka ( Consumers -—th-—-—a;— Query Service — |

Time saries DB ' T

Sand Queries

Visualization
Systern

Figure 5.15: Add queues

In this design, the metrics collector sends metrics data to queuning systems like Kafka,
Then consumers or streaming processing services such as Apache Storm, Flink, and
Spark. process and push data to the time-series database. This approach has several ad-
vantages:

« Kafka is used as a highly reliable and scalable distributed messaging platform.
« It decouples the data collection and data processing services from each other.
. It can easily prevent data loss when the database is unavailable, by retaining the data
in Kafka.
Scale through Kafka

There are a couple of ways that we can leverage Kafka's built-in partition mechanism to
scale our system.

. Configure the number of partitions based on throughput requirements.

« Partition metrics data by metric names, so consumers can aggregate data by metrics
names.

Further partition metrics data with tags/labels.

Categorize and prioritize metrics so that important metrics can be processed first.
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i Kafka

Partition 0 (metric 1) :

Partition 1 (metric 2)

Metrics Collector ——————»

Partition 2 (metric 3)

Figure 5.16: Kafka partition

Alternative to Kafka

Maintaining a production-scale Kafka system is no small undertaking. You might get
pushback from the interviewer about this. There are large-scale monitoring ingestion
systems in use without using an intermediate queue. Facebook’s Gorilla [26] in-memory
time-series database is a prime example; it is designed to remain highly available for
writes, even when there is a partial network failure. It could be argued that such a design
is as reliable as having an intermediate queue like Kafka.

Where aggregations can happen

Metrics can be aggregated in different places; in the collection agent (on the client-side),
the ingestion pipeline (before writing to storage), and the query side (after writing to
storage). Let’s take a closer look at each of them.

Collection agent. The collection agent installed on the client-side only supports simple
aggregation logic. For example, aggregate a counter every minute before it is sent to the
metrics collector.

Ingestion pipeline. To aggregate data before writing to the storage, we usually need
stream processing engines such as Flink. The write volume will be significantly re-
duced since only the calculated result is written to the database. However, handling
late-arriving events could be a challenge and another downside is that we lose data pre-
cision and some flexibility because we no longer store the raw data.

Query side. Raw data can be aggregated over a given time period at query time. There is
no data loss with this approach, but the query speed might be slower because the query
result is computed at query time and is run against the whole dataset.
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Query service

The query service comprises a cluster of query servers, which access the time-series
databases and handle requests from the visualization or alerting systems. Having a dedi-
cated set of query servers decouples time-series databases from the clients (visualization
and alerting systems). And this gives us the flexibility to change the time-series database
or the visualization and alerting systems, whenever needed.

Cache layer

To reduce the load of the time-series database and make query service more performant,
cache servers are added to store query results, as shown in Figure 5.17.

Alerting System

PageDuty

Send Queries HTTPS Endpoints

......................

H H d Visualization
Metrics Source Metrics Collector ‘s{ Kafka O—- Consumers an'—:— Query Service "—:‘Oi:es System

Figure 5.17: Cache layer

The case against query service

There might not be a pressing need to introduce our own abstraction (a query service)
because most industrial-scale visual and alerting systems have powerful plugins to in-
terface with well-known time-series databases on the market. And with a well-chosen
time-series database, there is no need to add our own caching, either.

Time-series database query language

Most popular metrics monitoring systems like Prometheus and InfluxDB don’t use SQL
and have their own query languages. One major reason for this is that it is hard to build
SQL queries to query time-series data. For example, as mentioned here [27], computing
an exponential moving average might look like this in SQL.:
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select id,
temp,
avg(temp) over (partition by group_nr order by
time_read)
as rolling_avg
from (

select id,
temp,
time_read,
interval_group,
id - row_number() over (partition by interval_group
order
by time_read) as group_nr
from (
select id,
time_read,
“epoch"::timestamp + "908 seconds"::interval * (
extract(epoch from time_read)::int4 / 980) as interval_group,
temp
from readings
) t1
I
order by time_read;

While in Flux, a language that’s optimized for time-series analysis (used in InfluxDB), it
looks like this. As you can see, it's much easier to understand.

from(db:"telegraf")
|> range(start:-1h)
|> filter(fn: (r) => r._measurement == "foo")
|> exponentialMovingAverage(size:-10s)

Storage layer

Now let’s dive into the storage layer.

Choose a time-series database carefully

According to a research paper published by Facebook [26], at least 85% of all queries
to the operational data store were for data collected in the past 26 hours. If we use a
time-series database that harnesses this property, it could have a significant impact on
overall system performance. If you are interested in the design of the storage engine,
please refer to the design document of the InfluxDB storage engine [28].

Space optimization

As explained in high-level requirements, the amount of metric data to store is enormous.
Here are a few strategies for tackling this.

Data encoding and compression

Data encoding and compression can significantly reduce the size of data. Those features
are usually built into a good time-series database. Here is a simple example.
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Double-delta Encoding
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Figure 5.18: Data encoding

As you can see in the image above, 1610087371 and 1610087381 differ by only 10 sec-
onds, which takes only 4 bits to represent, instead of the full timestamp of 32 bits. So,
rather than storing absolute values, the delta of the values can be stored along with one
base value like: 1610087371, 10, 10, 9, 11.

Downsampling

Downsampling is the process of converting high-resolution data to low-resolution to
reduce overall disk usage. Since our data retention is 1 year, we can downsample old
data. For example, we can let engineers and data scientists define rules for different
metrics. Here is an example:

« Retention: 7 days, no sampling
- Retention: 30 days, downsample to 1 minute resolution
« Retention: 1 year, downsample to 1 hour resolution

Let’s take a look at another concrete example. It aggregates 10-second resolution data to
30-second resolution data.

| metric | timestamp hostname | metric_value
cpu 2021-10-24T19:00:00Z | host-a 10
cpu 2021-10-24T19:00:10Z | host-a 16
cpu 2021-10-24T19:00:20Z | host-a 20
cpu 2021-10-24T19:00:30Z | host-a 30
cpu 2021-10-24T19:00:40Z | host-a 20
cpu 2021-10-24T19:00:50Z | host-a 30

Table 5.4: 10-second resolution data

Rollup from 10 second resolution data to 30 second resolution data.
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_ _'Ef‘_‘i_": __ l_im(is_l'a_n_]__p | hostname | Metric value (avg)
cpu | 2021-10-24T19:00:00Z | host-a | 19 -
cpu 2021-10-24T19:00:30Z | host-a | 25 -
Table 5.5: 30-second resolution data
Cold storage

Cold storage is the storage of inactive data that is rarely used. The financial cost for cold
storage is much lower.

In a nutshell, we should probably use third-party visualization and alerting systems, in-
stead of building our own.
Alerting system

For the purpose of the interview, let’s look at the alerting system, shown in Figure 5.19
below.

—H—G}-—- Cache

Rule config files g Email
»|  Text Message
id—@——r Alert Manager Alert Consumer (7
Alert store > PageDuty
HTTPS Endpoints

Query Service

Figure 5.19: Alerting system

The alert flow works as follows:

1. Load config files to cache servers. Rules are defined as config files on the disk. YAML
[29] is a commonly used format to define rules. Here is an example of alert rules:

- name: instance_down
rules:

# Alert for any instance that is unreachable for >5
minutes.
- alert: instance_down

expr: up ==

for: 5m

labels:

severity: page

2. The alert manager fetches alert configs from the cache.
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3. Based on config rules. the alert manager calls the query service at a predefined inte
val. If the value violates the threshold, an alert event is created. The alert manag,,
is responsible for the following:

« Filter, merge, and dedupe alerts. Here is an example of merging alerts that ar,
triggered within one instance within a short amount of time (instance 1) (Figur,
5.20).

Event 1
Instance 1
disk_usage > 90%

Event 2
Instance 1 Merge —#| 1 alert on Instance 1
disk_usage > 90%

Event 3
Instance 1
disk_usage > 90%

Figure 5.20: Merge alerts

« Access control. To avoid human error and keep the system secure, it is essential

to restrict access to certain alert management operations to authorized individ-
uals only.

+ Retry. The alert manager checks alert states and ensures a notification is sent at
least once.

4. The alert store is a key-value database, such as Cassandra, that keeps the state (in-

active, pending, firing, resolved) of all alerts. It ensures a notification is sent at least
once.

5. Eligible alerts are inserted into Kafka.
6. Alert consumers pull alert events from Kafka.

7. Alert consumers process alert events from Kafka and send notifications over to dif-
ferent channels such as email, text message, PagerDuty, or HTTP endpoints.

Alerting system - build vs buy

There are many industrial-scale alerting systems available off-the-shelf, and most provide
tight integration with the popular time-series databases. Many of these alerting systems
integrate well with existing notification channels, such as email and PagerDuty. In the
real world, it is a tough call to justify building your own alerting system. In interview
settings, especially for a senior position, be ready to justify your decision.
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Visualization system

Visualization is built on top of the data layer. Metrics can be shown on the metrics dash
board over various time scales and alerts can be shown on the alerts dashboard. Figure
5.21 shows a dashboard that displays some of the metrics like the current server requests.
memory/CPU utilization, page load time, traffic, and login information [30].
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Figure 5.21: Grafana Ul

A high-quality visualization system is hard to build. The argument for using an off-
the-shelf system is very strong. For example, Grafana can be a very good system for
this purpose. It integrates well with many popular time-series databases which you can
buy.

Step 4 - Wrap Up

In this chapter, we presented the design for a metrics monitoring and alerting system.
At a high level, we talked about data collection, time-series database, alerts, and visu-
alization. Then we went in-depth into some of the most important techniques/compo-
nents:

« Pull vs pull model for collecting metrics data.
« Utilize Kafka to scale the system.

« Choose the right time-series database.
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« Use downsampling to reduce data size.

« Build vs buy options for alerting and visualization systems.

We went through a few iterations to refine the design, and our final design looks lik ‘
_ 8 like
this:

Frras
_ .
S _ e rnxtlzq-,-_aﬁ‘ i
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) i Pagaiiut |
T
Sand Quertes HTTPS Engporsy
. j |____ F I.___ _ Send | Visuglzag |
Metrics Source Metrics Collector P—-( Kafka L)—* Consumers ADI Query Service = Querias S?ﬁa-;m |

— —

Timea serias DB

Cache

Figure 5.22: Final design

Congratulations on getting this far! Now give yourselfa pat on the back. Good job!
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6 Ad Click Event Aggregation

With the rise of Facebook, YouTube, TikTok, and the online media economy, digital ad-
vertising is taking an ever-bigger share of the total advertising spending. As a result,
tracking ad click events is very important. In this chapter, we explore how to design an
ad click event aggregation system at Facebook or Google scale.

Before we dive into technical design, let’s learn about the core concepts of online ad-
vertising to better understand this topic. One core benefit of online advertising is its
measurability, as quantified by real-time data.

Digital advertising has a core process called Real-Time Bidding (RTB), in which digital
advertising inventory is bought and sold. Figure 6.1 shows how the online advertising
process works.

....................................................................................................

Demand Side ! ' Supply Side

ol _ DSP E : SsP
Aty " (Demand Side Platform) | fud Exotemnge :

_____________________________________________________________________________

Figure 6.1: RTB process

The speed of the RTB process is important as it usually occurs in less than a second.

Data accuracy is also very important. Ad click event aggregation plays a critical role in
measuring the effectiveness of online advertising, which essentially impa(.:ts how much
money advertisers pay. Based on the click aggregation results, campaign managers
can control the budget or adjust bidding strategies, such as cha‘ngmg. targefred all'ldli-
ence groups, keywords, etc. The key metrics used in online advertising, mcludmgdc 1113 k
through rate (CTR) [1] and conversion rate (CVR) [2], depend on aggregated ad clic
data.

Step 1 - Understand the Problem and Establish Design Scope

. : ; row down the
The following set of questions helps to clarify requirements and nar

scope.
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Candidate: What is the format of the input data?
Interviewer: It's a log file located in different servers and the Tatest click cvepy .
appended to the end of the log file. The event has the following attributes

ar i
click_timestamp, user_id, ip, and country.

Candidate: What's the data volume?
Interviewer: 1 billion ad clicks per day and 2 million ads in total. The number of ag
click events grows 30% year-over-year.

Candidate: What are some of the most important queries to supporl”
Interviewer: The system needs to support the following 3 queries:

« Return the number of click events for a particular ad in the last A/ minutes,

« Return the top 100 most clicked ads in the past 1 minute. Both parameters should e
configurable. Aggregation occurs every minute.

« Support data filtering by ip, user_id, or country for the above two queries.

Candidate: Do we need to worry about edge cases? I can think of the following:

» There might be events that arrive later than expected.
+ There might be duplicated events.

« Different parts of the system might be down at any time, so we need Lo consider
system recovery.

Interviewer: That’s a good list. Yes, take these into consideration.

Candidate: What is the latency requirement?

Interviewer: A few minutes of end-to-end latency. Note that latency requirements
for RTB and ad click aggregation are very different. While latency for RTB is usually
less than one second due to the responsiveness requirement, a few minutes of latency is

acceptable for ad click event aggregation because it is primarily used for ad billing and
reporting.

With the information gathered above, we have both functional and non-functional re-
quirements.

Functional requirements
- Aggregate the number of clicks of ad_id in the last A/ minutes.
+ Return the top 100 most clicked ad_id every minute.
« Support aggregation filtering by different attributes.
» Dataset volume is at Facebook or Google scale (see the back-of-envelope estimation
section below for detailed system scale requirements).
Non-functional requirements
« Correctness of the aggregation result is important as the data is used for RTB and

ads billing.
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» Properly handle delayed or duplicate events,
+ Robustness. The system should be resilient to partial failures.

+ Latency requirement. End-to-end latency should be a few minutes, at most.

Back-of-the-envelope estimation

Let’s do an estimation to understand the scale of the system and the potential challenges
we will need to address.

« 1 billion DAU (Daily Active Users).
« Assume on average each user clicks 1 ad per day. That’s 1 billion ad click events per
day.
10 events
10° seconds in a day
« Assume peak ad click QPS is 5 times the average number. Peak QPS = 50,000 QPS.

+ Assume a single ad click event occupies 0.1KB storage. Daily storage requirement
is: 0.1KB x 1 billion = 100GB. The monthly storage requirement is about 3TB.

» Ad click QPS =

= 10,000

Step 2 - Propose High-level Design and Get Buy-in
In this section, we discuss query API design, data model, and high-level design.

Query API design

The purpose of the API design is to have an agreement between the client and the server.
In a consumer app, a client is usually the end-user who uses the product. In our case,
however, a client is the dashboard user (data scientist, product manager, advertiser, etc.)
who runs queries against the aggregation service.

Let’s review the functional requirements so we can better design the APIs:

« Aggregate the number of clicks of ad_id in the last A/ minutes.
« Return the top N most clicked ad_ids in the last A/ minute.
« Support aggregation filtering by different attributes.

We only need two APIs to support those three use cases because filtering (the last re-
quirement) can be supported by adding query parameters to the requests.

APl 1: Aggregate the number of clicks of ad_id in the last A/ minutes.

API Detail
Return aggregated event count for
a given ad_id

GET /v1/ads/{:ad_id}/aggregated_count

Table 6.1: API for aggregating the number of clicks

Request parameters are:
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Field

Description

lype

from Jl tart minute (default 1"-\ now minus I minute) | long
End minute (default is nnw) | long
Filt | Anidentifier for different filtering strategics. o1 B
) example, fllter - 981 ﬁllus oul non- US clicks | .
Table 6.2: Request p*nmmetms['or /v1/ads/{:ad 1(]}/anget ated_c mnt
Response:
Field - Description | Type |
b S S ——
ad_id The identifier of the ad | slnng 4
— The aggregated count between the start and end | - |
minutes ]

Table 6.3: Response for /v1/ads/{:ad_id}/aggregated_count

API 2: Return top N most clicked ad_ids in the last A/ minutes

API

Detail

GET /v1/ads/popular_ads

Table 6.4: API for /v1/ads/popular_ads

Request parameters are:

Return top N most clicked ads in the |
last M minutes

Field Description | Type
count Top N most clicked ads | HIEEET
window The aggregation window size (M) in minutes _integer
filter An identifier for different filtering strategies | long |

Table 6.5: Request parameters for /v1/ads/popular_ads

Response:
Field Description B T;)e__ |
ad_ids A list of the most clicked ads array
Table 6.6: Response for /v1/ads/popular_ads
Data model

There are two types of data in the system: raw data and aggregated data.

Raw data

Below shows what the raw data looks like in log files:

[AdClickEvent]

adé@1, 2021-61-81 00:00:81, user 1,
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Table 6.7 lists what the data fields look like in a structured way. Data is scattered on
different application servers.

ad_id click;timestamp user_id i]} cou-nt;‘y
ad@81 | 2021-01-01 00:00:01 | userl | 207.148.22.22 | USA
ad®81 | 2021-01-01 00:00:02 | userl | 207.148.22.22 | USA
“ad882 | 2021-01-01 00:00:02 | user2 | 209.153.56.11 | USA B

Table 6.7: Raw data

Aggregated data

Assume that ad click events are aggregated every minute. Table 6.8 shows the aggregated
result.

ad_id | click_minute count |
aden 202101010000 ) B}
adBa 202101010001 3

Table 6.8: Aggregated data

To support ad filtering, we add an additional field called filter_id to the table. Records
with the same ad_id and click_minute are grouped by filter_id as shown in Table 6.9,
and filters are defined in Table 6.10.

ad_id | click_minute | filter_id | count
ade@1 | 202101010000 | 0012 2
ade@1 | 202101010000 8023 3
aded1 | 202101010001 8012 1|
aded1 | 202101010001 0023 6

Table 6.9: Aggregated data with filters

filter_id | region | ip | user_id
8e12 UsS 0012 *
0013 * 0023 | 123.1.2.3

Table 6.10: Filter table

To support the query to return the top N most clicked ads in the last M minutes, the
following structure is used.
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. Wzt does the daiz look hike? [s the data relational? Is it a document or 2 blob?
. Is the workilow read-heavy. write-heavy, or both?
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Let’s examine the raw data first. Even though we don't need to query the raw data during
normal operations, it is useful for data scientists or machine learning engineers to study
user response prediction, behavioral targeting, relevance feedback, ete. [4].

As shown in the back of the envelope estimation, the average write QPS is 10,000, and
the peak QPS can be 50,000, so the system is write-heavy. On the read side, raw data is
used as backup and a source for recalculation, so in theory, the read volume is low.

Relational databases can do the job, but scaling the write can be challenging. NoSQL
databases like Cassandra and InfluxDB are more suitable because they are optimized for
write and time-range queries.

Another option is to store the data in Amazon S3 using one of the columnar data formats
like ORC [5], Parquet [6], or AVRO [7]. We could put a cap on the size of each file (say,
10GB) and the stream processor responsible for writing the raw data could handle the
file rotation when the size cap is reached. Since this setup may be unfamiliar for many,
in this design we use Cassandra as an example.

For aggregated data, it is time-series in nature and the workflow is both read and write
heavy. This is because, for each ad, we need to query the database every minute to display
the latest aggregation count for customers. This feature is useful for auto-refreshing the
dashboard or triggering alerts in a timely manner. Since there are two million ads in
total, the workflow is read-heavy. Data is aggregated and written every minute by the
aggregation service, so it’s write-heavy as well. We could use the same type of database
to store both raw data and aggregated data.

Now we have discussed query API design and data model, let’s put together the high-level
design.
High-level design

In real-time big data [8] processing, data usually flows into and out of the processing
system as unbounded data streams. The aggregation service works in the same way; the
input is the raw data (unbounded data streams), and the output is the aggregated results

(see Figure 6.2).

Input ' Process : Output : Display
E Ad count i
£ Data - (Aggrogate every min) — (3 i
Log Watcher Pusl; data —| Aggregation E Query Query Service
Servic® | 7op 100 most clicked Ads |

(Aggregate every min)

Figure 6.2: Aggregation workflow

Asynchronous processing

The design we currently have is synchronous. This is not good beg‘ause the lcapacit).f of
producers and consumers is not always equal. Consider the fol!owmg case; if there is a
sudden increase in traffic and the number of events produced is far beygnd what con-
sumers can handle, consumers might get out-of-memory errors or eXperience an unex-
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pected shutdown. If one component in the synchronous link is down, the whole system

stops working.

A common solution is to adopt a message queue (Kafka) to decouple producers and cop
sumers. This makes the whole process asynchronous and producers/consumers can e
scaled independently.

Putting everything we have discussed together, we come up with the high-level design
as shown in Figure 6.3. Log watcher, aggregation service, and database are decoupled hy
two message queues. The database writer polls data from the message queue, transforms
the data into the database format, and writes it to the database.

' Data
Message ;
Log Watcher Oueug Aggreg_anon
Service

Ad count
(Agaregate every min) —

Message
Queue

Top 100 most clicked Ads —%
(Aggregate every min)

Pull aggregation results

L

Database Database
Writer Writer
Y v
Raw data Aggregation
database database

Query aggregation results

Query
Service
(Dashboard)

Figure 6.3: High-level design

What is stored in the first message queue? It contains ad click event data as shown in
Table 6.13.

‘ ad_idJ click_timestamp ] user_id | ip | country ‘

Table 6.13: Data in the first message queue

What is stored in the second message queue? The second message queue contains two
types of data:

1. Ad click counts aggregated at per-minute granularity.

| ad_id | click_minute | C(}llllt_|

Table 6.14: Data in the second message queue
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2. Top N most clicked ads aggregated at per-minute granularity.

Table 6.15: Data in the second message queue

You might be wondering why we don’t write the aggregated results to the database di
rectly. The short answer is that we need the second message queue like Kafka to achieve
end-to-end exactly once semantics (atomic commit) [9].

L] E -
] Atomic commit
X Ad coumt
1

Data

Log Watcher

Service

Database
Writer

Raw data
database

Figure 6.4: End-to-end exactly once

Next, let’s dig into the details of the aggregation service.

Aggregation service

= (Aggregate avery min)

Top 100 most clicked Ads
(Aggregate every min)

Message
Queue

Pull aggregation results

Database
Writer

Aggregation
database

Query aggregation results
|

Query
Service
(Dashboard)

The MapReduce framework is a good option to aggregate ad click events. The directed
acyclic graph (DAG) is a good model for it [10]. The key to the DAG model is to break
down the system into small computing units, like the Map/Aggregate/Reduce nodes, as
shown in Figure 6.5.
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Figure 6.5: Aggregation service

Each node is responsible for one single task and it sends the processing result to its

downstream nodes.

Map node

A Map node reads data from a data source, and then filters and transforms the data. For
example, a Map node sends ads with ad_id %2 = 0 to node 1, and the other ads go to

node 2, as shown in Figure 6.6.
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Figure 6.6: Map operation

You might be wondering why we need the Map node. An alternative option is to set
up Kafka partitions or tags and let the aggregate nodes subscribe to Kafka directly. This
works, but the input data may need to be cleaned or normalized, and these operations
can be done by the Map node. Another reason is that we may not have control over how
data is produced and therefore events with the same ad_id might land in different Kafka
partitions.

Aggregate node

An Aggregate node counts ad click events by ad_id in memory every minute. In the

MapReduce paradigm, the Aggregate node is part of the Reduce. So the map-aggregate-
reduce process really means map-reduce-reduce.

Reduce node

A Reduce node reduces aggregated results from all “Aggregate” nodes to the final result.
For example, as shown in Figure 6.7, there are three aggregation nodes and each contains
the top 3 most clicked ads within the node. The Reduce node reduces the total number
of most clicked ads to 3.
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Figure 6.7: Reduce node

The DAG model represents the well-known MapReduce paradigm. It is designed to tak
big data and use parallel distributed computing to turn big data into little- or regular-size
data.

In the DAG model, intermediate data can be stored in memory and different nodes com-
municate with each other through either TCP (nodes running in different processes) or
shared memory (nodes running in different threads).

Main use cases
Now that we understand how MapReduce works at the high level, let’s take a look at

how it can be utilized to support the main use cases:

« Aggregate the number of clicks of ad_id in the last A/ mins.
+ Return top N most clicked ad_ids in the last M minutes.

« Data filtering.

Use case 1: aggregate the number of clicks

As shown in Figure 6.8, input events are partitioned by ad_id (ad_id %3) in Map nodes
and are then aggregated by Aggregation nodes.
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Figure 6.8: Aggregate the number of clicks

Use case 2: return top N most clicked ads

Figure 6.9 shows a simplified design of getting the top 3 most clicked ads, which can
be extended to top N. Input events are mapped using ad_id and each Aggregate node
maintains a heap data structure to get the top 3 ads within the node efficiently. In the
last step, the Reduce node reduces 9 ads (top 3 from each aggregate node) to the top 3
most clicked ads every minute.

I ] ] ]
Inputs ! Map E Aggregate E Reduce i Outputs
‘. : i |
E i adad: 12 | |
] 1 6: | 1
i Events: ad3, ad6, - :gg- : i '
[ ad9, ad12, ad15 = : i i
‘: y -adi2—- ! ; !
: v |eetsa-f 5
1 ] 1
; i : ad3: 12 :
! ! ! adl: 9 !
Top 3 most 3 {ojaan 8] g YA S s e e
: ' ' add: 4 | |-adg—=5-| 1 Top3mostc
clicked ads pro—— i | Events: ad1, ad4, : o ad7- 3 I A \ ads in the past 1
(Minute interval ! ad7, ad10, ad13 ' - ! : ' minutes are ad3,
aggregation) . ! : ; i i ad1 and ad2
i b [eetet| 1 j-eeg—a-|
% ' H g —a3- -
' : ' |-ad8—a| |
g | | ez 8( i
E Events: ad2, ad5, i ] agg ; E :
i | ad8,ad11,ad14 [ 1 | 2 : ;
i ' ~agti- 2o r !
' I V- T T T |
: | i
] i 1
] 1

Figure 6.9: Return top N most clicked ads

Use case 3: data filtering

To support data filtering like “show me the aggregated click count for ad001 within the
USA only”, we can pre-define filtering criteria and aggregate based on them. For example,
the aggregation results look like this for ad881 and ad862:
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ad id click_h1_i;11_ltc 'cmmtry count
adee 202101010001 UUSA 100

ade8l | 202101010001 | GPB 200)
aded1 | 202101010001 | others | 3000
ad@82 | 202101010001 | USA 1)
add82 | 202101010001 | GPB 25
| ad082 | 202101010001 | others | 12

Table 6.16: Aggregation results (filter by country)

This technique is called the star schema [11], which is widely used in data warehouse
The filtering fields are called dimensions. This approach has the following benefits:
« It is simple to understand and build.

+ The current aggregation service can be reused to create more dimensions in the styr
schema. No additional component is needed.

« Accessing data based on filtering criteria is fast because the result is pre-caleulated

A limitation with this approach is that it creates many more buckets and records, espe-
cially when we have a lot of filtering criteria.

Step 3 - Design Deep Dive

In this section, we will dive deep into the following:

Streaming vs batching

Time and aggregation window

Delivery guarantees

Scale the system

Data monitoring and correctness

Final design diagram

Fault tolerance

Streaming vs batching

The high-level architecture we proposed in Figure 6.3 is a type of stream processing sys-
tem. Table 6.17 shows the comparison of three types of systems [12]:
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‘ Online ;

’ Example = MapReduce Flink [13]
| shopping

Table 6.17: Comparison of three types of systems

In our design, both stream processing and batch processing are used. We utilized stream
processing to process data as it arrives and generates aggregated results in a near real-
time fashion. We utilized batch processing for historical data backup.

For a system that contains two processing paths (batch and streaming) simultaneously,
this architecture is called lambda [14]. A disadvantage of lambda architecture is that
you have two processing paths, meaning there are two codebases to maintain. Kappa
architecture [15], which combines the batch and streaming in one processing path, solves
the problem. The key idea is to handle both real-time data processing and continuous data
reprocessing using a single stream processing engine. Figure 6.10 shows a comparison
of lambda and kappa architecture.
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Figure 6.10: Lambda and Kappa architectures

Our high-level design uses Kappa architecture, where the reprocessing of historical data
also goes through the real-time aggregation service. See the “Data recalculation” section
below for details.

Data recalculation

Sometimes we have to recalculate the aggregated dalta, also called historical data replay.
For example, if we discover a major bug in the aggregation service, we would need to
recalculate the aggregated data from raw data starting at the point where the bug was
introduced. Figure 6.11 shows the data recalculation flow:

1. The recalculation service retrieves data from raw data storage. This is a batched job.

2. Retrieved data is sent to a dedicated aggregation service so that the real-time pro-
cessing is not impacted by historical data replay.

3. Aggregated results are sent to the second message queue, then updated in the aggre-
gation database.
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Figure 6.11: Recalculation service

The recalculation process reuses the data aggregation service but uses a different data
source (the raw data).

Time
We need a timestamp to perform aggregation. The timestamp can be generated in two

different places:

« Event time: when an ad click happens.

« Processing time: refers to the system time of the aggregation server that processes
the click event.

Due to network delays and asynchronous environments (data go through a message
queue), the gap between event time and processing time can be large. As shown in Figure
6.12, event 1 arrives at the aggregation service very late (5 hours later).

5 hours later

3]
o

60 90

Event Time @ @

L@@ -

Processing Time

®

Figure 6.12: Late events
If event time is used for aggregation, we have to deal with delayed events. If processing

time is used for aggregation, the aggregation result may not be accurate. There is no
perfect solution, so we need to consider the trade-offs.
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Pros Cons

l[ﬂdepcmls on the timestamp

' Aggregation results are more generated on the client-side.
Event accurate because the client Clients might have the wrong |
time knows exactly when an ad is time, or the timestamp might ‘

clicked be generated by malicious |
users '

=S

; ; ; The timestamp is not accurale
Processing | Server timestamp is more

. . if an event reaches the system
time reliable

at a much later time

Table 6.18: Event time vs processing time

Since data accuracy is very important, we recommend using event time for aggregation,
How do we properly process delayed events in this case? A technique called “watermark”
is commonly utilized to handle slightly delayed events.

In Figure 6.13, ad click events are aggregated in the one-minute tumbling window (sec
the “Aggregation window” section on page 177 for more details). If event time is used
to decide whether the event is in the window, window 1 misses event 2, and window 3
misses event 5 because they arrive slightly later than the end of their aggregation win-
dows.

0 30 60 20 120 150 180 Second
Event Time ':—@—l-—@ : @— . J—@—i—@—i——*
Processing Tirme -O—@-GH —- -&—
Window 1 @ ! 5 | !
windowz | | ® 5 5
Window 3 | : ‘ @

Figure 6.13: Miss events in an aggregation window

One way to mitigate this problem is to use “watermark” (the extended rectangles in Fig-
ure 6.14), which is regarded as an extension of an aggregation window. This improves
the accuracy of the aggregation result. By extending an extra 15 second (adjustable) ag-
gregation window, window 1 is able to include event 2, and window 3 is able to include
event 5.

The value set for the watermark depends on the business requirement. A long watermark
could catch events that arrive very late, but it adds more latency to the system. A short
watermark means data is less accurate, but it adds less latency to the system.
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Figure 6.14: Watermark

Notice that the watermark technique does not handle events that have long delays. We
can argue that it is not worth the return on investment (ROI) to have a complicated
design for low probability events. We can always correct the tiny bit of inaccuracy with
end-of-day reconciliation (see “Reconciliation” section on page 189). One trade-off to
consider is that using watermark improves data accuracy but increases overall latency,
due to extended wait time.

Aggregation window

According to the “Designing data-intensive applications” book by Martin Kleppmann
(16], there are four types of window functions: tumbling window (also called fixed win-
dow), hopping window, sliding window, and session window. We will discuss the tum-
bling window and sliding window as they are most relevant to our system.

In the tumbling window (highlighted in Figure 6.15), time is partitioned into same-length,
non-overlapping chunks. The tumbling window is a good fit for aggregating ad click
events every minute (use case 1).

Minute

L

e e Y
———-r
===y
-——d-n
---4-n

. . Aggregate Aggregate Aggregate Aggregate
Tumplmg Window click count click count click count click count
(1 minute window)

Figure 6.15: Tumbling window

In the sliding window (highlighted in Figure 6.16), events are grouped within a window
that slides across the data stream, according to a specified interval. A sliding window
can be an overlapping one. This is a good strategy to satisfy our second use case; to get
the top N most clicked ads during the last M minutes.

Step 3 - Design Deep Dive | 177



Minuta

—

-

1’:?

———-w
-1 &
en

S ———
1

Sliding window Top ads from last 3 minutes
(3 minute window, -
Run every minute)

Top ads from last 3 minutes

| | 1 !
] | 1 ]
J | I !

Figure 6.16: Sliding window

Delivery guarantees

Since the aggregation result is utilized for billing, data accuracy and completeness are
very important. The system needs to be able lo answer questions such as:

« How to avoid processing duplicate events?

« How to ensure all events are processed?

Message queues such as Kafka usually provide three delivery semantics: at-most once,
at-least once, and exactly once.

Which delivery method should we choose?

In most circumstances, at-least once processing is good enough if a small percentage of
duplicates are acceptable.

However, this is not the case for our system. Differences of a few percent in data points
could result in discrepancies of millions of dollars. Therefore, we recommend exactly-
once delivery for the system. If you are interested in learning more about a real-life ad
aggregation system, take a look at how Yelp implements it [17].

Data deduplication

One of the most common data quality issues is duplicated data. Duplicated data can come
from a wide range of sources and in this section, we discuss two common sources.

« Client-side. For example, a client might resend the same event multiple times. Du-
plicated events sent with malicious intent are best handled by ad fraud/risk control
components. If this is of interest, please refer to the reference material [18].

- Server outage. If an aggregation service node goes down in the middle of aggregation
and the upstream service hasn’t yet received an acknowledgment, the same events
might be sent and aggregated again. Let’s take a closer look.

Figure 6.17 shows how the aggregation service node (Aggregator) outage introduces du-
plicate data. The Aggregator manages the status of data consumption by storing the
offset in upstream Kafka.
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Figure 6.17: Duplicate data

If step 6 fails, perhaps due to Aggregator outage, events from 100 to 110 are already sent
to the downstream, but the new offset 110 is not persisted in upstream Kafka. In this case,
anew Aggregator would consume again from offset 100, even if those events are already
processed, causing duplicate data.

The most straightforward solution (Figure 6.18) is to use external file storage, such as
HDFS or S3, to record the offset. However, this solution has issues as well.
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Figure 6.18: Record the offset

In step 3, the aggregator will process events from offset 100 to 110, only if the last offset
stored in external storage is 100. If the offset stored in the storage is 110, the aggregator
ignores events before offset 110.

But this design has a major problem: the offset is saved to HDFS or S3 (step 3.2) before the
aggregation result is sent downstream. If step 4 fails due to Aggregator outage, events
from 100 to 110 will never be processed by a newly brought up aggregator node, since
the offset stored in external storage is 110.

To avoid data loss, we need to save the offset once we get an acknowledgment back from
downstream. The updated design is shown in Figure 6.19.
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Figure 6.19: Save offset after receiving ack

In this design, if the Aggregator is down before step 5.1 is executed, events from 100
to 110 will be sent downstream again. To achieve exactly once processing, We nfeed o
put operations between step 4 to step 6 in one distributed transaction. A distributed
transaction is a transaction that works across several nodes. If any of the operations

fails, the whole transaction is rolled back.
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Figure 6.20: Distributed transaction

As you can see, it's not casy to dedupe data in large-scale systems. Iow to achieve
exactly-once processing is an advanced topic. If you are interested in the details, please
refer to reference material [9].

Scale the system

From the back-of-the-envelope estimation, we know the business grows 30% per year,
which doubles traffic every 3 years. How do we handle this growth? Let’s take a
look.

Our system consists of three independent components: message queue, aggregation set-
vice, and database. Since these components are decoupled, we can scale each one inde-
pendently.

Scale the message queue

We have already discussed how to scale the message queue extensively in the “Distributed
Message Queue” chapter, so we'll only briefly touch on a few points.

Producers. We don’t limit the number of producer instances, so the scalability of pro-
ducers can be easily achieved.

Consumers. Inside a consumer group, the rebalancing mechanism helps to scale the
consumers by adding or removing nodes. As shown in Figure 6.21, by adding two more
consumers, each consumer only processes events from one partition.
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Figure 6.21: Add consumers

When there are hundreds of Kafka consumers in the system, consumer rebalance can be
quite slow and could take a few minutes or even more. Therefore, if more consumers
need to be added, try to do it during off-peak hours to minimize the impact.

Brokers

» Hashing key
Using ad_id as hashing key for Kafka partition to store events from the same ad_id
in the same Kafka partition. In this case, an aggregation service can subscribe to all
events of the same ad_id from one single partition.

+ The number of partitions
If the number of partitions changes, events of the same ad_id might be mapped to a
different partition. Therefore, it’s recommended to pre-allocate enough partitions in
advance, to avoid dynamically increasing the number of partitions in production.

+ Topic physical sharding
One single topic is usually not enough. We can split the data by geography
(topic_north_america, topic_europe, topic_asia, etc.) or by business type
(topic_web_ads, topic_mobile_ads, etc).

o Pros: Slicing data to different topics can help increase the system throughput.
With fewer consumers for a single topic, the time to rebalance consumer groups
is reduced.

o Cons: It introduces extra complexity and increases maintenance costs.

Scale the aggregation service

In the high-level design, we talked about the aggregation service being a map/reduce
Operation. Figure 6.22 shows how things are wired together.
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Figure 6.22: Aggregation service

If you are interested in the details, please refer to reference material [19]. Aggrega-
tion service is horizontally scalable by adding or removing nodes. Here is an interesting
question; how do we increase the throughput of the aggregation service? There are two

options.

Option 1: Allocate events with different ad_ids to different threads, as shown in Figure

6.23.
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Figure 6.23: Multi-threading

Option 2: Deploy aggregation service nodes on resource providers like Apache Hadoop
YARN [20]. You can think of this approach as utilizing multi-processing.

sn’t depend on resource providers. In reality,

Option 1 is easier to implement and doe
ale the system by adding more

however, option 2 is more widely used because we can s
computing resources.

Scale the database

Cassandra natively supports horizontal sc
ing.

aling, in a way similar to consistent hash-
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Figure 6.24: Virtual nodes [21]

Data is evenly distributed to every node with a proper replication factor. Each node saves
its own part of the ring based on hashed value and also saves copies from other virtual
nodes.

If we add a new node to the cluster, it automatically rebalances the virtual nodes among
all nodes. No manual resharding is required. See Cassandra’s official documentation for
more details [21].

Hotspot issue

A shard or service that receives much more data than the others is called a hotspot. This
occurs because major companies have advertising budgets in the millions of dollars and
their ads are clicked more often. Since events are partitioned by ad_id, some aggregation
service nodes might receive many more ad click events than others, potentially causing
server overload.

This problem can be mitigated by allocating more aggregation nodes to process popular
ads. Let’s take a look at an example as shown in Figure 6.25. Assume each aggregation
node can handle only 100 events.

1. Since there are 300 events in the aggregation node (beyond the capacity of a node
can handle), it applies for extra resources through the resource manager.

2. The resource manager allocates more resources (for example, add two more aggre-
gation nodes) so the original aggregation node isn’t overloaded.
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3. The original aggregation node split events into 3 groups and each aggregation node
handles 100 events.

4. The result is written back to the original aggregate node.
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Figure 6.25: Allocate more aggregation nodes

There are more sophisticated ways to handle this problem, such as Global-Local Aggre-
gation or Split Distinct Aggregation. For more information, please refer to [22].

Fault tolerance

Let’s discuss the fault tolerance of the aggregation service. Since aggregation happens
in memory, when an aggregation node goes down, the aggregated result is lost as well.
We can rebuild the count by replaying events from upstream Kafka brokers.

Replaying data from the beginning of Kafka is slow. A good practice is to save the “system
status” like upstream offset to a snapshot and recover from the last saved status. In our
design, the “system status” is more than just the upstream offset because we need to store
data like top N most clicked ads in the past M minutes.

Figure 6.26 shows a simple example of what the data looks like in a snapshot.
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Figure 6.26: Data in a snapshot

With a snapshot, the failover process of the aggregation service is quite simple. If ope
aggregation service node fails, we bring up a new node and recover data from the la-
est snapshot (Figure 6.27). If there are new events that arrive after the last snapsho
was taken, the new aggregation node will pull those data from the Kafka broker for re-
play.

External
Nodes

X
Primary | New
aggregation f-- 'g’;em&mf! sl fessvsssssodseed » aggregation
node R node

Snapshot
Storage

Figure 6.27: Aggregation node failover

Data monitoring and correctness

As mentioned earlier, aggregation results can be used for RTB and billing purposes. It's
critical to monitor the system’s health and to ensure correctness.

Continuous monitoring

Here are some metrics we might want to monitor:

» Latency. Since latency can be introduced at each stage, it’s invaluable to track times-
tamps as events flow through different parts of the system. The differences between
those timestamps can be exposed as latency metrics.

+ Message queue size. If there is a sudden increase in queue size, we may need to add
more aggregation nodes. Notice that Kafka is a message queue implemented as 2
distributed commit log, so we need to monitor the records-lag metrics instead.
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« System resources on aggregation nodes: CPU, disk, JVM, etc.

Reconciliation

Reconciliation means comparing different sets of data in order to ensure data inlegrity.
Unlike reconciliation in the banking industry, where you can compare your records with
the bank’s records, the result of ad click aggregation has no third-party result to reconcile
with.

What we can do is to sort the ad click events by event time in every partition at the end
of the day, by using a batch job and reconciling with the real-time aggregation result. If
we have higher accuracy requirements, we can use a smaller aggregation window; for
example, one hour. Please note, no matter which aggregation window is used, the result
from the batch job might not match exactly with the real-time aggregation result, since
some events might arrive late (see “Time” section on page 175).

Figure 6.28 shows the final design diagram with reconciliation support.
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Figure 6.28: Final design

Alternative design

In a generalist system design interview, you are not expected to know the internals of dif-
ferent pieces of specialized software used in a big data pipeline. Explaining your thought
process and discussing trade-offs is very important, which is why we propose a generic
solution. Another option is to store ad click data in Hive, with an ElasticSearch layer built
for faster queries. Aggregation is usually done in OLAP databases such as ClickHouse
(23] or Druid [24]. Figure 6.29 shows the architecture.
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Figure 6.29: Alternative design

For more detail on this, please refer to reference material [25].

Step 4 - Wrap Up

In this chapter, we went through the process of designing an ad click event aggregation
system at the scale of Facebook or Google. We covered:

« Data model and API design.

Mitigate hotspot issue.

Monitor the system continuously.

L]

Fault tolerance.

The ad click event aggregation system is a typical big data processing system. It will be
easier to understand and design if you have prior knowledge or experience with industry-
standard solutions such as Apache Kafka, Apache Flink, or Apache Spark.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!
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Use reconciliation to ensure correctness.

Query aggregation results
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Use MapReduce paradigm to aggregate ad click events.

Scale the message queue, aggregation service, and database.
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7 Hotel Reservation System

In this chapter, we design a hotel reservation system for a hotel chain such as Marriott
International. The design and techniques used in this chapter are also applicable to other
popular booking-related interview topics:

« Design Airbnb
+ Design a flight reservation system

+ Design a movie ticket booking system

Step 1 - Understand the Problem and Establish Design Scope

The hotel reservation system is complicated and its components vary based on business

use cases. Before diving into the design, we should ask the interviewer clarification ques-
tions to narrow down the scope.

Candidate: What is the scale of the system?

Interviewer: Let’s assume we are building a website for a hotel chain that has 5,000
hotels and 1 million rooms in total.

Candidate: Do customers pay when they make reservations or when they arrive at the
hotel?

Interviewer: For simplicity, they pay in full when they make reservations.

Candidate: Do customers book hotel rooms through the hotel’s website only? Do we
need to support other reservation options such as phone calls?

Interviewer: Let’s assume people could book a hotel room through the hotel website
or app.

Candidate: Can customers cancel their reservations?
Interviewer: Yes.

Candidate: Are there any other things we need to consider?

Interviewer: Yes, we allow 10% overbooking. In case you do not know, overbooking
means the hotel will sell more rooms than they actually have. Hotels do this in anticipa-
tion that some customers will cancel their reservations.
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Candidate: Since we have limited time, I assume the hotel room search is not in scope
We focus on the following features.

« Show the hotel-related page.

« Show the hotel room-related detail page.

» Reserve a room.

» Admin panel to add/remove/update hotel or room info.

« Support the overbooking feature,

Interviewer: Sounds good.

Interviewer: One more thing, hotel prices change dynamically. The price of a hotel
room depends on how full the hotel is expected to be on a given day. For this interview,
we can assume the price could be different each day.

Candidate: I'll keep this in mind.

Next, you might want to talk about the most important non-functional require-
ments.

Non-functional requirements

+ Support high concurrency. During peak season or big events, some popular hotels
may have a lot of customers trying to book the same room.

* Moderate latency. It's ideal to have a fast response time when a user makes the reser-
vation, but it's acceptable if the system takes a few seconds to process a reservation
request.

Back-of-the-envelope estimation
= 5,000 hotels and 1 million rooms in total.

« Assume 70% of the rooms are occupied and the average stay duration is 3 days.

» Estimated daily reservations: FHBE O 233,333 (rounding up to

3
~ 240,000)

240,000

10° seconds in a day
reservation transaction per second (TPS) is not high.

« Reservations per second = =~ 3. As we can see, the average

Next, let’s do a rough calculation of the QPS of all pages in the system. There are three
steps in a typical customer flow:

1. View hotel/room detail page. Users browse this page (query).

2. View the booking page. Users can confirm the booking details, such as dates, number
of guests, payment information before booking (query).

3. Reserve a room. Users click on the “book” button to book the room and the room is
reserved (transaction).
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