VOLUME 2

BBBBBBBBBB

System Design Interview

An Insider’s Guide
Volume 2

Alex Xu | Sahn Lam

B) ByteByteGo

SYSTEM DESIGN INTERVIEW - AN INSIDER’S GUIDE (VOLUME 2)
Copyright ©2022 Byte Code LLC

All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the publisher €x ep!
for the use of brief quotations in a book review.

Join the community

We created a members-only Discord group. It is designed for community discussions Of

the following topics:

« System design fundamentals.

« Showcasing design diagrams and getting feedback.
« Finding mock interview buddies.

« General chat with community members.

Come join us and introduce yourself to the community, today! Use the link below or

scan the barcode.

Invite link: http://bit.ly/systemdiscord

T e N S,
Contents

Foreword

Acknowledgements

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Afterword

Index

Proximity Service

Nearby Friends

Google Maps

Distributed Message Queue
Metrics Monitoring and Alerting System
Ad Click Event Aggregation
Hotel Reservation System
Distributed Email Service
S3-like Object Storage
Real-time Gaming Leaderboard
Payment System

Digital Wallet

Stock Exchange

iii

35

59

921
131
159
195
225
253
289
315
341
379
415
417

Foreword

We are delighted you are joining us to become better equipped for system design inter-
views. System design interviews are the most difficult to tackle of all technical interview
questions. The questions test the interviewees’ ability to design a scalable software sys-
tem. This could be a news feed, Google search, chat application, or any other system.
These questions are intimidating and there is no fixed pattern to follow when tackling
them. The questions are usually very broad and vague. They are open-ended, with sev-
eral plausible angles of attack, and often no perfect answer.

Many companies ask system design interview questions because the communication and
problem-solving skills they test for are similar to the skills that software engineers use
in their daily work. A candidate is evaluated on how they analyze a vague problem and
how they solve it, step by step.

System design questions are open-ended. As in the real world, a design can have numer-
ous variations. The desired outcome is an architecture that satisfies the agreed design
goals. The discussions may go in different directions. Some interviewers may choose
high-level architecture to cover all aspects of the challenge, whereas others might focus
on one or more specific areas. Typically, system requirements, constraints, and bottle-
necks should be well understood by the candidate, to shape the direction of the inter-
V1ew.

The objective of this book is to provide a reliable strategy and knowledge base for ap-
proaching a broad range of system design questions. The right strategy and knowledge
are vital for the success of an interview.

This book also provides a step-by-step framework for how to tackle a system design
question. It provides many examples to illustrate the systematic approach, with detailed
steps that you can follow. With regular practice, you will be well-equipped to tackle
system design interview questions.

This book can be seen as a sequel to the book: System Design Interview - An Insider’s
Guide (Volume 1: https://bit.ly/systemdesigning). Although reading Volume 1 is helpful,
it is not a necessity to do so before you read this. This book should be accessible to readers
who have a basic understanding of distributed systems. Let’s get started!

Additional Resources

This book contains references at the end of each « hapter. The following CGithub repositor,
contains all the clickable links

https://bit ly/systemDesignLinks

You can connect with Alex on social media, where he shares system design interviey,
tips every week.

| twitter.com/alexxubyte

in bit.ly/linkedinaxu

Acknowledgements

We wish we could say all the designs in this book are original. The truth is that most
of the ideas discussed here can also be found elsewhere; in engineering blogs, research
papers, code, tech talks, and other places. We have collected these elegant ideas and
considered them, then added our personal experiences, to present them here in an easy-
to-understand way. Additionally, this book has been written with the significant input
and reviews of more than a dozen engineers and managers, some of whom made large
writing contributions to the chapters. Thank you so much!

Proximity Service, Meng Duan (Tencent)

Nearby Friends, Yan Guo (Amazon)

Google Maps, Ali Aminian (Adobe, Google)

Distributed Message Queue, Lionel Liu (eBay)

Distributed Message Queue, Tanmay Deshpande (Schlumberger)
Ad Click Event Aggregation, Xinda Bian (Ant Group)

Real-time Gaming Leaderboard, Jossie Haines (Tile)

Distributed Email Servers, Kevin Henrikson (Instacart)
Distributed Email Servers, J] Zhuang (Instacart)

S3-like Object Store, Zhiteng Huang (eBay)

We are particularly grateful to those who provided detailed feedback on an earlier draft
of this book:

L]

Darshit Dave (Bloomberg)
Dwaraknath Bakshi (Twitter)

Fei Nan (Gusto, Airbnb)

Richard Hsu (Amazon)

Simon Gao (Google)

Stanly Mathew Thomas (Microsoft)

» Wenhan Wang (Tiktok)

» Shiwakant Bharti (Amazon)
A huge thanks to our editors, Dominic Gover and Doug Warren. Your feedback wy,
invaluable.

Last but not least, very special thanks to Elvis Ren and Hua Li for their invaluable cqp,
tributions. This book wouldn’t be what it is without them.

1 Proximity Service

In this chapter, we design a proximity service. A proximity service is used to discover
nearby places such as restaurants, hotels, theaters, museums, etc., and is a core com-
ponent that powers features like finding the best restaurants nearby on Yelp or finding
k-nearest gas stations on Google Maps. Figure 1.1 shows the user interface via which
you can search for nearby restaurants on Yelp [1]. Note the map tiles used in this book
are from Stamen Design [2] and data are from OpenStreetMap [3].

Bit i s-eye View Fetae wm g rrmcry W bacieeisy W Mo W

1. Manila Bowl
oadgo

D i

]
AT -]
2. Wingslut ‘‘‘‘‘‘ o -
aooot - =
@ ° o

3. Matko
Qoooe -

meaan i

Figure 1.1: Nearby search on Yelp

Step 1 - Understand the Problem and Establish Design Scope

Yelp supports many features and it is not feasible to design all of them in an interview
session, so it's important to narrow down the scope by asking questions. The interactions
between the interviewer and the candidate could look like this:

Candidate: Can a user specify the search radius? If there are not enough businesses
within the search radius, does the system expand the search?

Interviewer: Thal's a great question. Let's assume we only care ahout businesses wiph,,
a specified radius. If time allows, we can then discuss how to expand the search if the,,
are not enough businesses within the radius.

Candidate: What's the maximal radius allowed? Can [assume it’s 20km (12.5 miles)
Interviewer: That's a reasonable assumption.

Candidate: Can a user change the search radius on the UI?
Interviewer: Yes, we have the following options: ().5km (0.31 mile). 1km (0.62 mile,
2km (1.24 mile), 5km (3.1 mile), and 20km (12.42 mile).

Candidate: How does business information get added, deleted, or updated? Do we neeq
to reflect these operations in real-time?
Interviewer: Business owners can add, delete or update a business. Assume we have
a business agreement upfront that newly added/updated businesses will be effective the
next day.
Candidate: A user might be moving while using the app/website, so the search results
could be slightly different after a while. Do we need to refresh the page to keep the results

up to date?
Interviewer: Let’s assume a user’s moving speed is slow and we don’t need to constantly

refresh the page.

Functional requirements
Based on this conversation, we focus on 3 key features:

« Return all businesses based on a user’s location (latitude and longitude pair) and
radius.
. Business owners can add, delete or update a business, but this information doesn't
need to be reflected in real-time.

« Customers can view detailed information about a business.

Non-functional requirements

From the business requirements, we can infer a list of non-functional requirements. You
should also check these with the interviewer.

. Low latency. Users should be able to see nearby businesses quickly.

« Data privacy. Location info is sensitive data. When we design a location-based ser-
vice (LBS), we should always take user privacy into consideration. We need to com-

ply with data privacy laws like General Data Protection Regulation (GDPR) [4] and
California Consumer Privacy Act (CCPA) [5], etc.

« High availability and scalability requirements. We should ensure our system can

handle the spike in traffic during peak hours in densely populated areas.

2 | Chapter 1. Proximity Service

Back-of-the-envelope estimation

Let's take a look at some back-of-the-envelope calculations to determine the potential

scale and challenges our solution will need to address. Assume we have 100 million daily
active users and 200 million businesses.

« Search QPS =

Calculate QPS

|

« Seconds in a day = 24 % 60 x 60 = 86,400, We can round it up to 10° for easier |

calculation. 10° is used throughout this book to represent seconds in a day. |

+ Assume a user makes b search queries per day.

100 million x 5
109

= 5,000

Step 2 - Propose High-level Design and Get Buy-in

In this section, we discuss the following:

+ API design
« High-level design

« Algorithms to find nearby businesses

« Data model
API design

We use the RESTful API convention to design a simplified version of the APIs.
GET /v1/search/nearby

This endpoint returns businesses based on certain search criteria. In real-life applications,
search results are usually paginated. Pagination [6] is not the focus of this chapter, but
is worth mentioning during an interview.

Request Parameters:

—~—

3
5

The business object contains everything needed to render the search result page, but we
may still need additional attributes such as pictures, reviews, star rating, etc., to render

Field Description Type
latitude | Latitude of a given location decimal
longitude | Longitude of a given location decimal
radius Optional. Default is 5000 meters (about 3 miles) | int

Table 1.1: Request parameters

*total™: 18,
"businesses":[{business object}]

Step 2 - Propose High-level Design and Get Buy-in | 3

the business delail page. Therefore, when a user clicks on the business detail page 4 g,
endpoint call to fetch the detailed information of a business is usually required,

APIs for a business

The APIs related to a business object are shown in the table below.

i API ' Detail I .
GET /v1/businesses/:id Return detailed information about a bﬂﬂe_ss .
POST /v1/businesses Add a business - : e |
PUT /v1/businesses/:id Update details of a business |
DELETE /v1/businesses/:id | Delete a business]

Table 1.2: APIs for a business

If you are interested in real-world APIs for place/business search, two examples are
Google Places API [7] and Yelp business endpoints [8].

Data model

In this section, we discuss the read/write ratio and the schema design. The scalability of
the database is covered in deep dive.

Read/write ratio

Read volume is high because the following two features are very commonly used:

« Search for nearby businesses.

« View the detailed information of a business.

On the other hand, the write volume is low because adding, removing, and editing busi-
ness info are infrequent operations.

For a read-heavy system, a relational database such as MySQL can be a good fit. Let’s
take a closer look at the schema design.

Data schema
The key database tables are the business table and the geospatial (geo) index table.

Business table

The business table contains detailed information about a business. It is shown in Table
1.3 and the primary key is business_id.

4 | Chapter 1. Proximity Service

buslneas-

business_id PK
address

city

slate

country

latitude

longtitude

Table 1.3: Business table

Geo index table

A geo index table is used for the efficient processing of spatial operations. Since this table
requires some knowledge about geohash, we will discuss it in the “Scale the database”
section on page 24.

High-level design

The high-level design diagram is shown in Figure 1.2. The system comprises two parts:
location-based service (LBS) and business-related service. Let’s take a look at each com-
ponent of the system.

Step 2 - Propose High-level Design and Get Buy-in | 5

Load balancer w

e

/search/nearby /businesses/|:id}
Business

/ ~
LBS
‘ \\ Service
Write

Read Read Read

I TS

_

Replicate

Replicate

Replica

Replica

Replicate

Database Cluster

Figure 1.2: High-level design

Load balancer
The load balancer automatically distributes incoming traffic across multiple services,
Normally, a company provides a single DNS entry point and internally routes the API

calls to the appropriate services based on the URL paths.

Location-based service (LBS)
The LBS service is the core part of the system which finds nearby businesses for a given
radius and location. The LBS has the following characteristics:

- It is a read-heavy service with no write requests.
« QPS is high, especially during peak hours in dense areas.
« This service is stateless so it’s easy to scale horizontally.

Business service
Business service mainly deals with two types of requests:

« Business owners create, update, or delete businesses. Those requests are mainly write

operations, and the QPS is not high.
« Customers view detailed information about a business. QPS is high during peak

hours.

6 | Chapter 1. Proximity Service

Database cluster

The database cluster can use the primary-sccondary setup. In this setup, the primary
database handles all the write operations, and multiple replicas are used for read oper-
ations. Data is saved to the primary database first and then replicated to replicas. Due
to the replication delay, there might be some discrepancy between data read by the LBS
and the data written to the primary database. This inconsistency is usually not an issue
because business information doesn't need to be updated in real-time.

Scalability of business service and LBS

Both the business service and LBS are stateless services, so it’s easy to automatically add
more servers to accommodate peak traffic (e.g. mealtime) and remove servers during off-
peak hours (e.g. sleep time). If the system operates on the cloud, we can set up different

regions and availability zones to further improve availability [9]. We discuss this more
in the deep dive.

Algorithms to fetch nearby businesses

In real life, companies might use existing geospatial databases such as Geohash in Redis
[10] or Postgres with PostGIS extension [11]. You are not expected to know the inter-
nals of those geospatial databases during an interview. It’s better to demonstrate your
problem-solving skills and technical knowledge by explaining how the geospatial index
works, rather than to simply throw out database names.

The next step is to explore different options for fetching nearby businesses. We will list
a few options, go over the thought process, and discuss trade-offs.
Option 1: Two-dimensional search

The most intuitive but naive way to get nearby businesses is to draw a circle with the pre-
defined radius and find all the businesses within the circle as shown in Figure 1.3.

Figure 1.3: Two dimensional search

Step 2 - Propose High-level Design and Get Buy-in | 7

This process can be translated into the following pscudo SQI. query:

SELECT business_id, latitude, longitude,

[ROM business
WHERE (latitude BLIWEEN {:my_lat} - radius AND {:my_lat} + radiyg,

AND
(longitude BETWEEN {:my_long} - radius AND {:mv_long} + radiug)

This query is not efficient because we need to scan the whole table. What if we buy,

indexes on longitude and latitude columns? Would this improve the efliciency? Th
answer is not by much. The problem is that we have two-dimensional data an(.l the daty,,
returned from each dimension could still be huge. For example, as shown in Figure 1.4,
can quickly retrieve dataset 1 and dataset 2, thanks to indexes on longitude and. latityg,
columns. But to fetch businesses within the radius, we need to perform an Interse
operation on those two datasets. This is not efficient because each dataset contains |,

of data.

dataset 2
=

k

3
= dataset 1
g
E 0
2
3
-180 -90 0 90 180
Longitude (degrees)

Figure 1.4: Intersect two datasets

The problem with the previous approach is that the database index can only improve
search speed in one dimension. So naturally, the follow-up question is, can we map two-
dimensional data to one dimension? The answer is yes.

Before we dive into the answers, let’s take a look at different types of indexing methods

8 | Chapter 1. Proximity Service

In a broad sense, there arc two types of geospatial indexing approaches, as shown in
Figure 1.5. The highlighted ones are the algorithms we discuss in detail because they are

commonly used in the industry.

» Hash: even grid, geohash, cartesian tiers [12], etc.

« Tree: quadtree, Google S2, RTree [13], etc.

Index

S

,T Tree
g AN

Even Grid Geohash Ca#:rs;an Quadtree Google S2 RTree

Figure 1.5: Different types of geospatial indexes

Even though the underlying implementations of those approaches are different, the high-
level idea is the same, that is, to divide the map into smaller areas and build indexes
for fast search. Among those, gechash, quadtree, and Google S2 are most widely used
in real-world applications. Let’s take a look at them one by one.

Reminder

In a real interview, you usually don’t need to explain the implementation details of
indexing options. However, it is important to have some basic understanding of the
need for geospatial indexing, how it works at a high level, and also its limitations.

Option 2: Evenly divided grid

One simple approach is to evenly divide the world into small grids (Figure 1.6). This way,
one grid could have multiple businesses, and each business on the map belongs to one
grid.

Step 2 - Propose High-level Design and Get Buy-in | 9

Global Map - Geographic Coordinate System - WGS84 Datum
Units Degrees - Latitude / Longitude

L " o

"N “"ﬁ
e el

Latitude (Degrees)

=150 -100 -50 0 50 100 150

Longitude (Degrees)

Figure 1.6: Global map (source: [14])

This approach works to some extent, but it has one major issue: the distribution of busi-
nesses is not even. There could be lots of businesses in downtown New York, while other
grids in deserts or oceans have no business at all. By dividing the world into even grids,
we produce a very uneven data distribution. Ideally, we want to use more granular grids
for dense areas and large grids in sparse areas. Another potential challenge is to find
neighboring grids of a fixed grid.

Option 3: Geohash

Geohash is better than the evenly divided grid option. It works by reducing the two-
dimensional longitude and latitude data into a one-dimensional string of letters and dig-
its. Geohash algorithms work by recursively dividing the world into smaller and smaller
grids with each additional bit. Let’s go over how geohash works at a high level.

First, divide the planet into four quadrants along with the prime meridian and equa-
tor.

10 | Chapter 1. Proximity Service

(18090 (180,90)

(-180,-90) . T (180,-90)
Figure 1.7: Geohash
« Latitude range [—90, 0] is represented by 0
« Latitude range [0, 90] is represented by 1

» Longitude range [—180, 0] is represented by 0
« Longitude range [0, 180] is represented by 1

Second, divide each grid into four smaller grids. Each grid can be represented by alter-
nating between longitude bit and latitude bit.

Step 2- Probbsé High-level Design and Get Buy-in | 11

Figure 1.8: Divide grid

Repeat this subdivision until the grid size is within the precision desired. Geohash usually
uses base32 representation [15]. Let’s take a look at two examples.

- geohash of the Google headquarter (length = 6):
1801 10116 61081 10606 11811 11018 (base32 in binary) —
9q9hvu (base32)

- geohash of the Facebook headquarter (length = 6):
1801 19110 91001 10601 166088 18111 (base32 in binary) —
9q9jhr (base32)

Geohash has 12 precisions (also called levels) as shown in Table 1.4. The precision factor
determines the size of the grid. We are only interested in geohashes with lengths between
4 and 6. This is because when it’s longer than 6, the grid size is too small, while if it is
smaller than 4, the grid size is too large (see Table 1.4).

12 | Chapter" _1._ Prow_m _'m_i_ty_gervice

hge_oh:;s_h_]e_ﬁgtE:G_rid width x he_ight
' 1 5,009.4km ;g;-f:!}_!-)-f._(ik_m (the size of the planet)
2 1,252.3km x 624.1km
3 = 156.5km x 156km
Y 39.1km x 10.5km o o
5 4.9km x 4.9km) :
) 6 1.2km x 609.4m -
7 152.9m x 152.4m - -
8 38.2m x 19m
9 4.8m x 4.8m
10 1.2m x 59.5cm
11 14.9cm x 14.9cm
| 3.7cm x 1.9cm

Table 1.4: Geohash length to grid size mapping (source: [16])

How do we choose the right precision? We want to find the minimal geohash length that
covers the whole circle drawn by the user-defined radius. The corresponding relationship
between the radius and the length of geohash is shown in the table below.

Radius (Kilometers) | Geohash length
0.5km (0.31 mile) 6
1km (0.62 mile) 5
2km (1.24 mile) 5
5km (3.1 mile) 4
20km (12.42 mile) 4

Table 1.5: Radius to geohash mapping

This approach works great most of the time, but there are some edge cases with how the
geohash boundary is handled that we should discuss with the interviewer.
Boundary issues

Geohashing guarantees that the longer a shared prefix is between two geohashes, the
closer they are. As shown in Figure 1.9, all the grids have a shared prefix: 9q8zn.

Step 2 - Propose High-level Design and Get Buy-in | 13

Figure 1.9: Shared prefix

Boundary issue 1

However, the reverse is not true: two locations can be very close but have no shared
prefix at all. This is because two close locations on either side of the equator or prime
meridian belong to different “halves” of the world. For example, in France, La Roche-
Chalais (geohash: u888) is just 30km from Pomerol (geohash: ezzz) but their geohashes
have no shared prefix at all [17].

__.f'. " ".-- : i
. La Roche-Chalais
geohash:u000

-

: Onlyr 30km away.
% But no shared prefix. =5
gy g) . |

Mk Lt S
Pomerol
geohash:ez

Figure 1.10: No shared prefix

Because of this boundary issue, a simple prefix SQL query below would fail to fetch all
nearby businesses.

SELECT * FROM geohash_index WHERE gechash LIKE '9q8zn%'

14 | Chapter 1. Proximity Service

Boundary issue 2

Another boundary issue is that two positions can have a long shared prefix, but they
belong to different geohashes as shown in Figure 1.11.

I e e e e

||t
\ |
|

" 4 4 Ssins Sqsznd Saberd
e e e MG : i!"'“ dil e .
‘1 . 9agen3 sq8zn P

Figure 1.11: Boundary issue

A common solution is to fetch all businesses not only within the current grid but also
from its neighbors. The geohashes of neighbors can be calculated in constant time and
more details about this can be found here [17].

Not enough businesses

Now let’s tackle the bonus question. What should we do if there are not enough busi-
nesses returned from the current grid and all the neighbors combined?

Option 1: only return businesses within the radius. This option is easy to implement, but
the drawback is obvious. It doesn’t return enough results to satisfy a user’s needs.

Option 2: increase the search radius. We can remove the last digit of the geohash and
use the new geohash to fetch nearby businesses. If there are not enough businesses,
we continue to expand the scope by removing another digit. This way, the grid size is
gradually expanded until the result is greater than the desired number of results. Figure
1.12 shows the conceptual diagram of the expanding search process.

increase search increase search
area area

[
>

v

Figure 1.12: Expand the search process

Step_é Propose High-level Design and Get Buy-in | 15

Option 4: Quadtree

Another popular solution is quadtree. A quadtree [18] is a data structure that is cop,

monly used to partition a two-dimensional space by recursively subdividing it into fony
quadrants (grids) until the contents of the grids meet certain criteria. For example, .
criterion can be to keep subdividing until the number of businesses in the grid is not mey,
than 100. This number is arbitrary as the actual number can be determined by busines,
needs. With a quadtree, we build an in-memory tree structure to answer queries. Note
that quadtree is an in-memory data structure and it is not a database solution. It runs ¢,
each LBS server, and the data structure is built at server start-up time.

The following figure visualizes the conceptual process of subdividing the world into 4
quadtree. Let’s assume the world contains 200m (million) businesses.

__—.—————'_-_-r_'_-__'_
10m 11m
NW (40m) NE (30m)
4m 5m
200m :’I’J>—-——‘"‘_‘*
SW (70m) SE (60m)

Figure 1.13: Quadtree

Figure 1.14 explains the quadtree building process in more detail. The root node repre-
sents the whole world map. The root node is recursively broken down into 4 quadrants
until no nodes are left with more than 100 businesses.

16 | Chapter 1. Proximity Service

- Represent many layers

() Internal node

{_I Leaf node

Figure 1.14: Build quadtree

The pseudocode for building quadtree is shown below:

public void buildQuadtree(TreeNode node) {
if (countNumberOfBusinessesInCurrentGrid(node) > 168) {
node.subdivide();
for (TreeNode child : node.getChildren()) {
buildQuadtree (child);
}
}
}

How much memory does it need to store the whole quadtree?

To answer this question, we need to know what kind of data is stored.

Data on a leaf node

Name Size
Top left coordinates and bottom-right
coordinates to identify the grid

32 bytes (8 bytes x4)

8 bytes per ID x 100 (maximal number
of businesses allowed in one grid)
Total 832 bytes

Table 1.6: Leaf node

List of business IDs in the grid

Data on internal node

Step 2 - Propose High-level Design and Get Buy-in | 17

Name - Size
Top lf‘.ﬁ coord?natesmilt(ﬁm.'riig;hl 19 -hy!cs (8 bytes x4)
coordinates to identify the grid S —
Pointers to 4 children | 32 bytes (8 bytes x4)
Total — |Gdbytes

Table 1.7: Internal node

f businesses within g

Even though the tree-building process depends on the number o .
de because it can be

grid, this number does not need to be stored in the quadtree no
inferred from records in the database.

Now that we know the data structure for each node, let’s take a look at the memory

usage.
« Each grid can store a maximal of 100 businesses
200 milli -
« Number of leaf nodes =~ ——100—02 =~ 2 million

« Number of internal nodes = 2 million X L 0.67 million. If you do not know why
the number of internal nodes is one-third of the leaf nodes, please read the reference
material [19].

. Total memory requirement = 2 million x 832 bytes +- 0.67 million x 64 bytes = ~
1.71GB. Even if we add some overhead to build the tree, the memory requirement to
build the tree is quite small.

In a real interview, we shouldn’t need such detailed calculations. The key takeaway here
is that the quadtree index doesn’t take too much memory and can easily fit in one server.
Does it mean we should use only one server to store the quadtree index? The answer is
no. Depending on the read volume, a single quadtree server might not have enough CPU
or network bandwidth to serve all read requests. If that is the case, it will be necessary

to spread the read load among multiple quadtree servers.

How long does it take to build the whole quadtree?

Each leaf node contains approximately 100 business IDs. The time complexity to build
the tree is 145 log 105, where n is the total number of businesses. It might take a few
minutes to build the whole quadtree with 200 million businesses.

How to get nearby businesses with quadtree?

1. Build the quadtree in memory.

2. After the quadtree is built, start searching from the root and traverse the tree, until
we find the leaf node where the search origin is. If that leaf node has 100 businesses,
return the node. Otherwise, add businesses from its neighbors until enough busi-
nesses are returned.

18 | Chapter 1. Proximity Service

Operational considerations for quadtree

As mentioned above, it may take a few minutes to build a quadtree with 200 million busi
nesses at the server start-up time. It is important to consider the operational implications
of such a long server start-up time. While the quadtree is being built, the server cannot
serve traffic. Therefore, we should roll out a new release of the server incrementally to
a small subset of servers at a time. This avoids taking a large swath of the server cluster
offline and causes service brownout. Blue/green deployment [20] can also be used. but
an entire cluster of new servers fetching 200 million businesses at the same time from
the database service can put a lot of strain on the system. This can be done, but it may
complicate the design and you should mention that in the interview.

Another operational consideration is how to update the quadtree as businesses are added
and removed over time. The easiest approach would be to incrementally rebuild the
quadtree, a small subset of servers at a time, across the entire cluster. But this would
mean some servers would return stale data for a short period of time. However, this
is generally an acceptable compromise based on the requirements. This can be further
mitigated by setting up a business agreement that newly added/updated businesses will
only be effective the next day. This means we can update the cache using a nightly job.
One potential problem with this approach is that tons of keys will be invalidated at the
same time, causing heavy load on cache servers.

It's also possible to update the quadtree on the fly as businesses are added and removed.
This certainly complicates the design, especially if the quadtree data structure could be
accessed by multiple threads. This will require some locking mechanism which could

dramatically complicate the quadtree implementation.
Real-world quadtree example

Yext [21] provided an image (Figure 1.15) that shows a constructed quadtree near Denver
[21]. We want smaller, more granular grids for dense areas and larger grids for sparse

areas.

Step 2 - Propose High-level Design and Get Buy-in | 19

:-' : _:- i i | rYan 1 IL
_Bduldel” i e
1 S g 2 . '|
J.‘ !‘ E . ." . !
s ' e { w__.,% i Y s | - ~twl
W TN B T ;
ik Apaa ¥ . R
W‘ o b) _ i -:-:{-" o Watkinsg - - ' S"aﬂb_l_l_f_q
zESEam Agroral = Byers
— +—t+— il !
il
Es S = Dl
il ntedmial
Nai -
Parker
Figure 1.15: Real-world example of a quadtree
Option 5: Google S2

Google S2 geometry library [22] is another big player in this field. Similar to Quadtree,
it is an in-memory solution. It maps a sphere to a 1D index based on the Hilbert curve
(a space-filling curve) [23]. The Hilbert curve has a very important property: two points
that are close to each other on the Hilbert curve are close in 1D space (Figure 1.16). Search
on 1D space is much more efficient than on 2D. Interested readers can play with an online
tool [24] for the Hilbert curve.

20 | Chapter 1. Proximity Service

i e lﬂ |

| |
0.125 0.250 0.375 0.500 0.625 0.750 0.875 1

Figure 1.16: Hilbert curve (source: [24])

S2 is a complicated library and you are not expected to explain its internals during an
interview. But because it’s widely used in companies such as Google, Tinder, etc., we
will briefly cover its advantages.

« S2 is great for geofencing because it can cover arbitrary areas with varying levels
(Figure 1.17). According to Wikipedia, “A geofence is a virtual perimeter for a real-
world geographic area. A geo-fence could be dynamically generated—as in a radius
around a point location, or a geo-fence can be a predefined set of boundaries (such
as school zones or neighborhood boundaries)” [25].

Geofencing allows us to define perimeters that surround the areas of interest and to
send notifications to users who are out of the areas. This can provide richer func-
tionalities than just returning nearby businesses.

Step 2 - Propose High-level Design and Get Buy-in | 21

Figure 1.17: Geofence

» Another advantage of S2 is its Region Cover algorithm [26]. Instead of having a fixed
level (precision) as in geohash, we can specify min level, max level, and max C_EHS in
S2. The result returned by S2 is more granular because the cell sizes are flexible. If
you want to learn more, take a look at the S2 tool [26].

Recommendation

To find nearby businesses efficiently, we have discussed a few options: geohash, ql_ladtree
and S2. As you can see from Table 1.8, different companies or technologies adopt different
options.

Geo Index Companies

geohash Bing map [27], Redis [10], MongoDB [28], Lyft [29]
quadtree Yext [21]

Both geohash and quadtree | Elasticsearch [30]

S2 Google Maps, Tinder [31]

Table 1.8: Different types of geo indexes
During an interview, we suggest choosing geohash or quadtree because S2 is more
complicated to explain clearly in an interview.

Geohash vs quadtree

Before we conclude this section, let’s do a quick comparison between geohash and
quadtree.

Geohash

« Easy to use and implement. No need to build a tree.

.

Supports returning businesses within a specified radius.

When the precision (level) of geohash is fixed, the size of the grid is fixed as well. It
cannot dynamically adjust the grid size, based on population density. More complex
logic is needed to support this.

Updating the index is easy. For example, to remove a business from the index.

22 | Chapter 1. Proximity Service

we just need to remove it from the corresponding row with the same geohash and
business_id. See Figure 1.18 for a concrete example.

geohash buﬁn;;;jﬂ_
9q8zn 3
9q8zn- —18 —
9q8zn 4

Figure 1.18: Remove a business

Quadtree

« Slightly harder to implement because it needs to build the tree.

Supports fetching k-nearest businesses. Sometimes we just want to return k-nearest
businesses and don’t care if businesses are within a specified radius. For example,
when you are traveling and your car is low on gas, you just want to find the nearest
k gas stations. These gas stations may not be near you, but the app needs to return
the nearest £ results. For this type of query, a quadtree is a good fit because its
subdividing process is based on the number k and it can automatically adjust the
query range until it returns k results.

It can dynamically adjust the grid size based on population density (see the Denver
example in Figure 1.15).

Updating the index is more complicated than geohash. A quadtree is a tree structure.
If a business is removed, we need to traverse from the root to the leaf node, to remove
the business. For example, if we want to remove the business with ID = 2, we
have to travel from the root all the way down to the leaf node, as shown in Figure
1.19. Updating the index takes O(log n), but the implementation is complicated if the
data structure is accessed by a multi-threaded program, as locking is required. Also,
rebalancing the tree can be complicated. Rebalancing is necessary if, for example,
a leaf node has no room for a new addition. A possible fix is to over-allocate the
ranges.

Step 2 - Propose High-level Design and Get Buy-in | 23

Represent many layary

() Internal node I
D Leaf node

—

business_ids: [2, 6, 7]

Figure 1.19: Update quadtree

Step 3 - Design Deep Dive
By now you should have a good picture of what the overall system looks like. Now let’s
dive deeper into a few areas.

» Scale the database
Caching
Region and availability zones

Filter results by time or business type

Final architecture diagram

.

Scale the database
We will discuss how to scale two of the most important tables: the business table and the
geospatial index table.

Business table

The data for the business table may not all fit in one server, so it is a good candidate
for sharding. The easiest approach is to shard everything by business ID. This sharding
scheme ensures that load is evenly distributed among all the shards, and operationally it

is easy to maintain.

24 | Chapter 1. Proximity Service

|
!

o]

Geospatial index table

Both geohash and quadtree are widely used. Due to geohash's simplicity, we use it as an
example. There are two ways to structure the table.

Option 1: For each geohash key, there is a JSON array of business IDs in a single row.
This means all business IDs within a geohash are stored in one row.

gaospatlal__lnde;;_ -

geohash

list_of business ids

Table 1.9: 1ist_of_business_ids is a JSON array

Option 2: If there are multiple businesses in the same geohash, there will be multiple

rows, one for each business. This means different business IDs within a geohash are
stored in different rows.

geospatial_index

geohash
business_id

Table 1.10: business_id is a single ID

Here are some sample rows for option 2.

geohash | business_id
32feac 343
32feac 347
f31cad 112
f31cad 113

Table 1.11: Sample rows of the geospatial index table

Recommendation: we recommend option 2 because of the following reasons:

For option 1, to update a business, we need to fetch the array of business_ids and scan
the whole array to find the business to update. When inserting a new business, we have
to scan the entire array to make sure there is no duplicate. We also need to lock the row
to prevent concurrent updates. There are a lot of edge cases to handle.

For option 2, if we have two columns with a compound key of (geohash, business_id),
the addition and removal of a business are very simple. There would be no need to lock
anything.

Scale the geospatial index

One common mistake about scaling the geospatial index is to quickly jump to a sharding
scheme without considering the actual data size of the table. In our case, the full dataset

Step 3 - Design Deep Dive | 25

for the geospatial index table is not large (quadtree index only takes | 716G memory ang
storage requirement for geohash index is similar). The whole geospatial index can easily
fit in the working set of a modern database server. Iowever, depending on the reaq
volume, a single database server might not have enough CPU or network bandwidth
handle all read requests. If thal is the case, it is necessary to spread the read load among
multiple database servers.

There are two general approaches for spreading the load of a relational database server
We can add read replicas, or shard the database.

Many engineers like to talk about sharding during interviews. However, it might not be
a good fit for the geohash table as sharding is complicated. For instance, the sharding
logic has to be added to the application layer. Sometimes, sharding is the only option. [
this case, though, everything can fit in the working set of a database server, so there ig
no strong technical reason to shard the data among multiple servers.

A better approach, in this case, is to have a series of read replicas to help with the read
load. This method is much simpler to develop and maintain. For this reason, scaling the
geospatial index table through replicas is recommended.

Caching
Before introducing a cache layer we have to ask ourselves, do we really need a cache
layer?

It is not immediately obvious that caching is a solid win:

. The workload is read-heavy, and the dataset is relatively small. The data could fit in
the working set of any modern database server. Therefore, the queries are not [/0
bound and they should run almost as fast as an in-memory cache.

« If read performance is a bottleneck, we can add database read replicas to improve the
read throughput.

Be mindful when discussing caching with the interviewer, as it will require careful bench-
marking and cost analysis. If you find out that caching does fit the business requirements,
then you can proceed with discussions about caching strategy.

Cache key

The most straightforward cache key choice is the location coordinates (latitude and lon-
gitude) of the user. However, this choice has a few issues:

« Location coordinates returned from mobile phones are not accurate as they are just
the best estimation [32]. Even if you don’t move, the results might be slightly differ-

ent each time you fetch coordinates on your phone.

« A user can move from one location to another, causing location coordinates to change
slightly. For most applications, this change is not meaningful.

Therefore, location coordinates are not a good cache key. Ideally, small changes in loca-

26 | Chapter 1. Proximity Service

tion should still map to the same cache key. The geohash/quadtree solution mentioned
carlier handles this problem well because all businesses within a grid map to the same

geohash.
Types of data to cache

As shown in Table 1.12, there are two types of data that can be cached to improve the
overall performance of the system:

Key Value

geohash List of business IDs in the grid
business_id | Business object

Table 1.12: Key-value pairs in cache

List of business IDs in a grid

Since business data is relatively stable, we precompute the list of business IDs for a given
geohash and store it in a key-value store such as Redis. Let’s take a look at a concrete
example of getting nearby businesses with caching enabled.

L. Get the list of business IDs for a given geohash.

SELECT business_id FROM geohash_index WHERE geohash LIKE {:
geohash}%®

2. Store the result in the Redis cache if cache misses.

public List<String> getNearbyBusinessIds(String geohash) {
String cacheKey = hash(geohash);
List<string> listOfBusinessIds = Redis.get(cacheKey);
if (listOfBusinessIDs == null) {
listOfBusinessIds = Run the select SQL query above;
Cache.set(cacheKey, listOfBusinessIds, "1d");

}

return 1istOfBusinessIds;

}

When a new business is added, edited, or deleted, the database is updated and the cache
invalidated. Since the volume of those operations is relatively small and no locking mech-
anism is needed for the geohash approach, update operations are easy to deal with.

According to the requirements, a user can choose the following 4 radii on the client:
500m, 1km, 2km, and 5km. Those radii are mapped to geohash lengths of 4, 5, 5, and
6, respectively. To quickly fetch nearby businesses for different radii, we cache data in
Redis on all three precisions (geohash_4, geohash_5, and geohash_é).

As mentioned earlier, we have 200 million businesses and each business belongs to 1 grid
in a given precision. Therefore the total memory required is:

- Storage for Redis values: 8 bytes x 200 million x 3 precisions = ~ 5GB
- Storage for Redis keys: negligible

Step 3 - Design Deep Dive | 27

» Total memory required: ~ HGB

We can get away with one modern Redis server from the memory usage perspee tive, by
to ensure high availability and reduce cross continent latency, we deploy the Redis cluste,
across the globe. Given the estimated data size, we can have the same copy of cache dat,
deployed globally. We call this Redis cache “Geohash” in our final architecture diagrap,
(Figure 1.21).

Business data needed to render pages on the client

This type of data is quite straightforward to cache. The key is the business_id and the

value is the business object which contains the business name, address, image URLs
etc. We call this Redis cache “Business info” in our final architecture diagram (Figure
1.21).

Region and availability zones

We deploy a location-based service to multiple regions and availability zones as shown
in Figure 1.20. This has a few advantages:

. Makes users physically “closer” to the system. Users from the US West are connected
to the data centers in that region, and users from Europe are connected with data
centers in Europe.

. Gives us the flexibility to spread the traffic evenly across the population. Some re-
gions such as Japan and Korea have high population densities. It might be wise
to put them in separate regions, or even deploy location-based services in multiple
availability zones to spread the load.

« Privacy laws. Some countries may require user data to be used and stored locally.
In this case, we could set up a region in that country and employ DNS routing to
restrict all requests from the country to only that region.

28 | Chapter 1. Proximity Service

)

7N

Users from
Europe
oy
—
l\ """ 140ms 15ms
S 10ms TR i
Users from
USwest ~ .. @»m® ., & TTnass
o] *0
O O (o)
o
o) (8]
o
O @)

O Regions
Figure 1.20: Deploy LBS “closer” to the user

Follow-up question: filter results by time or business type
The interviewer might ask a follow-up question: how to return businesses that are open

now, or only return businesses that are restaurants?

Candidate: When the world is divided into small grids with geohash or quadtree, the
number of businesses returned from the search result is relatively small. Therefore, it is
acceptable to return business IDs first, hydrate business objects, and filter them based on
opening time or business type. This solution assumes opening time and business type
are stored in the business table.

Final design diagram
Putting everything together, we come up with the following design diagram.

Step 3 - Design Deep Dive | 29

Load balancer

-
-~
o~

@ /se.::\rch/nearby /businesses/{:id}
i
P
so
_ Service
® Write
Read Read
Replicate
é e s Replicate
- —
Business Info Geohash me -
Redis Cluster Replica Rephca Friman
Database Cluster
Figure 1.21: Design diagram
Get nearby businesses

1

You try to find restaurants within 500 meters on Yelp. The client sends the user

location (latitude = 37.776720, longitude = —122.416730) and radius (500m) to the
load balancer.

The load balancer forwards the request to the LBS.

Based on the user location and radius info, the LBS finds the geohash length that
matches the search. By checking Table 1.5, 500m map to geohash length = 6.

LBS calculates neighboring geohashes and adds them to the list. The result looks
like this:

list_of_geohashes = [my_geohash, neighbor1_geohash, neighbor2_geohash,

..., neighbor8_geohash].

. For each geohash in list_of_geohashes, LBS calls the “Geohash” Redis server to

fetch corresponding business IDs. Calls to fetch business IDs for each geohash can
be made in parallel to reduce latency.

Based on the list of business IDs returned, LBS fetches fully hydrated business in-
formation from the “Business info” Redis server, then calculates distances between
a user and businesses, ranks them, and returns the result to the client.

| Chapter 1. Proximity Service

View, update, add or delete a business

All business-related APls are separated from the LBS. To view the detailed information
aboul a business. the business service first checks if the data is stored in the “Business
info” Redis cache. If it is. cached data will be returned to the client. If not, data is fetched
from the database cluster and then stored in the Redis cache, allowing subsequent re-
quests to get results from the cache directly.

Since we have an upfront business agreement that newly added/updated businesses will
be effective the next day. cached business data is updated by a nightly job.

Step 4 - Wrap Up

In this chapter, we have presented the design for proximity service. The system is a typi-
cal LBS that leverages geospatial indexing. We discussed several indexing options:

« Two-dimensional search

Evenly divided grid
» Geohash

+ Quadtree

Google S2

Geohash, quadtree, and S2 are widely used by different tech companies. We choose geo-
hash as an example to show how a geospatial index works.

In the deep dive, we discussed why caching is effective in reducing the latency, what
should be cached and how to use cache to retrieve nearby businesses fast. We also dis-
cussed how to scale the database with replication and sharding.

We then looked at deploying LBS in different regions and availability zones to improve
availability, to make users physically closer to the servers, and to comply better with

local privacy laws.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

Step 4 - Wrap Up | 31

Chapter Summary
return nearby businesses
functional req add/delete/update a business
view a business
step 1

low latency

non-functional req data privacy

5,000 search gqps

api for search
api design { apis for businesses
pagination

read/write ratio
data model
data schema

step 2
P high-level design diagram

two-dimensional search

evenly divided grid

Proximity Service
geohash

algorithms
quadtree

google S2

geohash vs quadtree

business table
scale the database <
geospatial index table
cache key
caching <
types of data

region and availability zone

step 3

filter results
final design diagram
step 4 —— wrap up

32 | Chapter 1. Proximity Service

Reference Material

(1]

[7]

(8]

[9]

(10]

[11]
[12]

(13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]
[23]

Yelp. https: [www.yelp.com/.,

Map tiles by Stamen Design. http://maps.stamen.com/.

OpenStreetMap. https://www.openstreetmap.org.

GDPR. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation.
CCPA. https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act.

Pagination in the REST APL https://developer.atlassian.com/server/confluence/pa
gination-in-the-rest-api/.

Google places APL. https://developers.google.com/maps/documentation/places/we
b-service/search.

Yelp business endpoints. https://www.yelp.com/developers/documentation/vS/ bus
iness_search.

Regions and Zones. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/usin
g-regions-availability-zones.html.

Redis GEOHASH. https://redis.io/commands/GEOHASH.
POSTGIS. https://postgis.net/.

Cartesian tiers. http://www.nsshutdown.com/projects/lucene/whitepaper/localluc
ene v2.html.

R-tree. https://en.wikipedia.org/wiki/R-tree.

Global map in a Geographic Coordinate Reference System. https://bit.ly/3DsjAwg.
Base32. https://en.wikipedia.org/wiki/Base32.

Geohash grid aggregation. https://bit.ly/3kKl4e6.

Geohash. https://www.movable-type.co.uk/scripts/geohash.html.

Quadtree. https://en.wikipedia.org/wiki/Quadtree.

How many leaves has a quadtree. https://stackoverflow.com/questions/35976444/h
ow-many-leaves-has-a-quadtree.

Blue green deployment. https://martinfowler.com/bliki/BlueGreenDeployment.h
tml.

Improved Location Caching with Quadtrees. https://engblog.yext.com/post/geoloc
ation-caching.

S2. https://s2geometry.io/.

Hilbert curve. https://en.wikipedia.org/wiki/Hilbert_curve.

Reference Material | 33

(24]
[25]
(26]
[27]
(28]
[29]

[30]

[31]

[32]

Hilbert mapping. htlp:.’.'hil-player.nrg!c-xtras!hilhcrl{hilh{-rl—mapping.hlml.
Geo-fence. https://en.wikipedia.org/wiki/Geo-fence.
Region cover. https://s2.sidewalklabs.com/regioncoverer/.

Bing map. https://bit.ly/30ytSfG.

MongoDB. https://docs.mongodb.com/manual/tutorial/build-a-2d-index/.
Geospatial Indexing: The 10 Million QPS Redis Architecture Powering Lyft. https,
//www.youtube.com/watch?v=cSFWIF96Sds&t=2155s.

Geo Shape Type. https://www.elastic.co/ guide/en{elaslicsearch! reference/1.6/my
pping-geo-shape-type.html.

Geosharded Recommendations Part 1: Sharding Approach. https://medium.comy
inder-engineering/geosharded-recommendations-part-1-sharding-approach-dsds

4e0ec77a.
Get the last known location. https://developer.android.com/training/location/retr
ieve-current#Challenges.

34 | Chapter 1. Proximity Service

2 Nearby Friends

In this chapter, we design a scalable backend system for a new mobile app feature called
“Nearby Friends”. For an opt-in user who grants permission to access their location, the
mobile client presents a list of friends who are geographically nearby. If you are looking
for a real-world example, please refer to this article [1] about a similar feature in the
Facebook app.

1052

Nearby Friends

Figure 2.1: Facebook’s nearby friends

If you read Chapter 1 Proximity Service, you may wonder why we need a separate chapter
for designing “nearby friends” since it looks similar to proximity services. If you think
carefully though, you will find major differences. In proximity services, the addresses for
businesses are static as their locations do not change, while in “nearby friends”, data is
more dynamic because user locations change frequently.

| 35

Step 1 - Understand the Problem and Establish Design Scope

Any backend system at the Facebook scale is complicated. Before starting with the (.
sign, we need to ask clarification questions to narrow down the scope.

Candidate: How geographically close is considered to be “nearby”?
Interviewer: 5 miles. This number should be configurable.

Candidate: Can [assume the distance is calculated as the straight-line distance between
two users? In real life, there could be, for example, a river in between the users, resu[ting
in a longer travel distance.

Interviewer: Yes, that's a reasonable assumption.

Candidate: How many users does the app have? Can I assume 1 billion users and 107,
of them use the nearby friends feature?
Interviewer: Yes, that’s a reasonable assumption.

Candidate: Do we need to store location history?
Interviewer: Yes, location history can be valuable for different purposes such as ma-

chine learning.

Candidate: Could we assume if a friend is inactive for more than 10 minutes, that friend
will disappear from the nearby friend list? Or should we display the last known location?
Interviewer: We can assume inactive friends will no longer be shown.

Candidate: Do we need to worry about privacy and data laws such as GDPR or CCPA?
Interviewer: Good question. For simplicity, don’t worry about it for now.

Functional requirements

. Users should be able to see nearby friends on their mobile apps. Each entry in the
nearby friend list has a distance and a timestamp indicating when the distance was

last updated.
« Nearby friend lists should be updated every few seconds.

Non-functional requirements

« Low latency. It’s important to receive location updates from friends without too
much delay.

» Reliability. The system needs to be reliable overall, but occasional data point loss is
acceptable.

- Eventual consistency. The location data store doesn’t need strong consistency. A
few seconds delay in receiving location data in different replicas is acceptable.

Back-of-the-envelope estimation

Let’s do a back-of-the-envelope estimation to determine the potential scale and chal-

lenges our solution will need to address. Some constraints and assumptions are listed
below:

36 | Chapter 2. Nearby Friends

« Nearby friends are defined as friends whose locations are within a 5-mile radius.

« The location refresh interval is 30 seconds. The reason for this is that human walking
speed is slow (average 3 ~ 4 miles per hour). The distance traveled in 30 seconds
does not make a significant difference on the “nearby friends” feature.

« On average, 100 million users use the “nearby friends” feature every day.

« Assume the number of concurrent users is 10% of DAU (Daily Active Users), so the
number of concurrent users is 10 million.

+ On average, a user has 400 friends. Assume all of them use the “nearby friends”
feature.

» The app displays 20 nearby friends per page and may load more nearby friends upon
request.

Calculate QPS

100 million DAU

« Concurrent users: 10% x 100 million = 10 million

« Users report their locations every 30 seconds.
10 million
30

Location update QPS = = ~334,000

Step 2 - Propose High-level Design and Get Buy-in

In this section, we will discuss the following:

« High-level design
« API design

« Data model

In other chapters, we usually discuss API design and data model before the high-level de-
sign. However, for this problem, the communication protocol between client and server
might not be a straightforward HTTP protocol, as we need to push location data to all
friends. Without understanding the high-level design, it’s difficult to know what the
APIs look like. Therefore, we discuss the high-level design first.

High-level design

At a high level, this problem calls for a design with efficient message passing. Concep-
tually, a user would like to receive location updates from every active friend nearby. It
could in theory be done purely peer-to-peer, that is, a user could maintain a persistent
connection to every other active friend in the vicinity (Figure 2.2).

Step 2 - Propose High-level Design and Get Buy-in | 37

Figure 2.2: Peer-to-peer

This solution is not practical for a mobile device with sometimes flaky connections and
a tight power consumption budget, but the idea sheds some light on the general design
direction.

A more practical design would have a shared backend and look like this:

@ Friend A
@ », Backend =@ Friend B
User

@ Friend C

Figure 2.3: Shared backend

What are the responsibilities of the backend in Figure 2.3?

« Receive location updates from all active users.

» For each location update, find all the active friends who should receive it and forward
it to those users’ devices.

« If the distance between two users is over a certain threshold, do not forward it to the
recipient’s device.

This sounds pretty simple. What is the issue? Well, to do this at scale is not easy. We
have 10 million active users. With each user updating the location information every 30
seconds, there are 334K updates per second. If on average each user has 400 friends, and
we further assume that roughly 10% of those friends are online and nearby, every second
the backend forwards 334K x 400 x 10% = 14 million location updates per second. That
is a lot of updates to forward.

38 | Chapter 2. Nearby Friends

Proposed design

We will first come up with a high-level design for the backend at a lower scale. Later in
the deep dive section, we will optimize the design for scale.

Figure 2.4 shows the basic design that should satisfy the functional requirements. Let’s
go over each component in the design.

Mobile Users

WebSocket
htt
ws) / P

Load Balancer

A

o User management
WebSocket B|-d1fect!ona| API Friendship management
Servers location info Servers Auth, etc

User profile,
i Friendship

Redis Pub/Sub Location Location User
Cache History Database
Database

Figure 2.4: High-level design

Load balancer

The load balancer sits in front of the RESTful API servers and the stateful, bi-directional
WebSocket servers. It distributes traffic across those servers to spread out load
evenly.

RESTful API servers

This is a cluster of stateless HTTP servers that handles the typical request/response traf-
fic. The API request flow is highlighted in Figure 2.5. This API layer handles auxiliary
tasks like adding/removing friends, updating user profiles, etc. These are very common
and we will not go into more detail.

Step 2 - Propose High-level Design and Get Buy-in | 39

Mobile Users

)N
WebSocket ;:-1)
(WS) P

L

N/

Load Balancer]

\\
o t
WebSocket | Bi-directional AP Kisay menagemes
S Friendship management
Servers location info Servers Auth, etc
User profile,
Redis Pub/Sub Location Location User
Cache History Database
Database

Figure 2.5: RESTful API request flow

WebSocket servers

This is a cluster of stateful servers that handles the near real-time update of friends’
locations. Each client maintains one persistent WebSocket connection to one of these
servers. When there is a location update from a friend who is within the search radius,
the update is sent on this connection to the client.

Another major responsibility of the WebSocket servers is to handle client initialization
for the “nearby friends” feature. It seeds the mobile client with the locations of all nearby
online friends. We will discuss how this is done in more detail later.

Note “WebSocket connection” and “WebSocket connection handler” are interchangeable
in this chapter.

Redis location cache

Redis is used to store the most recent location data for each active user. There is a Time
to Live (TTL) set on each entry in the cache. When the TTL expires, the user is no longer
active and the location data is expunged from the cache. Every update refreshes the TTL.
Other KV stores that support TTL could also be used.

40 | Chapter 2. Nearby Friends

User database
The user database stores user data and user friendship data. Either a relational database
or a NoSQI. database can be used for this.

Location history database

This database stores users’ historical location data. It is not directly related to the “nearby
friends” feature.

Redis Pub/Sub server

Redis Pub/Sub [2] is a very lightweight message bus. Channels in Redis Pub/Sub are
very cheap to create. A modern Redis server with GBs of memory could hold millions of
channels (also called topics). Figure 2.6 shows how Redis Pub/Sub works.

Users publish location updat Redis Pub/Sub Friends
! Publisher 1 ———II—-—v<User 1's channe@——}—v——» Subscriber 1
| ! Subscriber 2

Publisher 2

Subscriber 3

i]
i |
i 1}
1}]
' '
|]
1 1}

]
1 1
| 1
1 1}
i |
|]
| '
] 1}
] — '
1 1
1}]
] I
1 '
) 1

|
] |
| |
| |
| i
1 1
1 i

1
| |
i i
| 1
1 1
1]
1 1
']
]]

Figure 2.6: Redis Pub/Sub

In this design, location updates received via the WebSocket server are published to the
user’s own channel in the Redis Pub/Sub server. A dedicated WebSocket connection han-
dler for each active friend subscribes to the channel. When there is a location update,
the WebSocket handler function gets invoked, and for each active friend, the function
recomputes the distance. If the new distance is within the search radius, the new loca-
tion and timestamp are sent via the WebSocket connection to the friend’s client. Other
message buses with lightweight channels could also be used.

Now that we understand what each component does, let’s examine what happens when
a user’s location changes from the system’s perspective.

Periodic location update

The mobile client sends periodic location updates over the persistent WebSocket connec-
tion. The flow is shown in Figure 2.7.

Step 2 - Propose High-level Design and Get Buy-in | 41

Mabile Users

/N
(‘i)Wet()vSvgc}:kel hitp

\/
FLoad Balan;‘

WebSocket | Bi-directional API User management
Friendship managem
@ Servers location info Servers P ant

User profile,

Redis Pub/Sub Location Location User
Cache History Database
Database

Figure 2.7: Periodic location update

The mobile client sends a location update to the load balancer.

The load balancer forwards the location update to the persistent connection on the
WebSocket server for that client.

3. The WebSocket server saves the location data to the location history database.

42

The WebSocket server updates the new location in the location cache. The update
refreshes the TTL. The WebSocket server also saves the new location in a variablein
the user’s WebSocket connection handler for subsequent distance calculations.

The WebSocket server publishes the new location to the user’s channel in the Redis
Pub/Sub server. Steps 3 to 5 can be executed in parallel.

When Redis Pub/Sub receives a location update on a channel, it broadcasts the update
to all the subscribers (WebSocket connection handlers). In this case, the subscribers
are all the online friends of the user sending the update. For each subscriber (i.e., for
each of the user’s friends), its WebSocket connection handler would receive the user
location update.

On receiving the message, the WebSocket server, on which the connection handler
lives, computes the distance between the user sending the new location (the location

| Chapter 2. Nearby Friends

data 1s in the message) and the subscriber (the location data is stored in a variable
with the WebSocket connection handler for the subscriber).

& This step is not drawn on the diagram. If the distance does not exceed the search
radius. the new location and the last updated timestamp are sent to the subscriber's
chent. Otherwise, the update is dropped.

Since understanding this flow is extremely important, let's examine it again with a

concrete example, as shown in Figure 2.8. Before we start, let's make a few assump-
tions.

« User 1’s friends: User 2, User 3, and User 4.

« User 5's friends: User 4 and User 6.

User 1 User 5
@ User 1's location

WebSocket User 1's WS User 5's WS ‘I
Servers connection connection :

@ Publish Publish
5 e
Redi ; , .
Put;.fdslib User 1’s channel User 5's channel E
' :

(3) subscribe Subscribe Subscribe Subscribe Subscribe

O i .S s

WebSocket | | User 2's WS User 3's WS User 4's WS User 6's WS | !
Servers | | connection connection connection connection | !
(4)Friends’ location update
User 2 User 3 User 4 User 6

1. When User 1’s location changes, their location update is sent to the WebSocket server

Figure 2.8: Send location update to friends

which holds User 1's connection.

2. 'The location is published to User 1’s channel in Redis Pub/Sub server.

3. Redis Pub/Sub server broadcasts the location update to all subscribers. In this case,

Step 2 - Propose High-level Design and Get Buy-in | 43

subscribers are WebSocket connection handlers (User 1's friends).

4. It the distance between the user sending the location (User 1) and the subscril,,
(User 2) doesn’t exceed the search radius, the new location is sent to the client (User
2).

This computation is repeated for every subscriber to the channel. Since there are 4y,
friends on average, and we assume that 10% of those friends are online and nearby, ther,
are about 40 location updates to forward for each user’s location update.

API design
Now that we have created a high-level design, let’s list APIs needed.

WebSocket: Users send and receive location updates through the WebSocket protoco|
At the minimum, we need the following APIs.

1. Periodic location update

Request: Client sends latitude, longitude, and timestamp.
Response: Nothing,

2. Client receives location updates
Data sent: Friend location data and timestamp.

3. WebSocket initialization
Request: Client sends latitude, longitude, and timestamp.
Response: Client receives friends’ location data.

4. Subscribe to a new friend
Request: WebSocket server sends friend ID.
Response: Friend’s latest latitude, longitude, and timestamp.

5. Unsubscribe a friend
Request: WebSocket server sends friend ID.
Response. Nothing,

HTTP requests: the API servers handle tasks like adding/removing friends, updating
user profiles, etc. These are very common and we will not go into detail here.
Data model

Another important element to discuss is the data model. We already talked about the
User DB in the high-level design, so let’s focus on the location cache and location history
database.

Location cache

The location cache stores the latest locations of all active users who have had the nearby
friends feature turned on. We use Redis for this cache. The key/value of the cache is
shown in Table 2.1.

44 | Chapter 2. Nearby Friends

key value
[Wi T e E
| user_id {lallll_ld_e_. longitude, timestamp)

Table 2.1: Location cache

Why don't we use a database to store location data?

The "nearby friends™ feature only cares about the current location of a user. Therefore,
we only need to store one location per user. Redis is an excellent choice because it pro-
vides super-fast read and write operations. It supports TTL, which we use to auto-purge
users from the cache who are no longer active. The current locations do not need to be
durably stored. If the Redis instance goes down, we could replace it with an empty new
instance and let the cache be filled as new location updates stream in. The active users
could miss location updates from friends for an update cycle or two while the new cache
warms. It is an acceptable tradeoff. In the deep dive section, we will discuss ways to
lessen the impact on users when the cache gets replaced.

Location history database

The location history database stores users’ historical location data and the schema looks
like this:

| user_id [latitude { longitude l timestamp [

We need a database that handles the heavy-write workload well and can be horizontally
scaled. Cassandra is a good candidate, We could also use a relational database. However,
with a relational database, the historical data would not fit in a single instance so we need
to shard that data. The most basic approach is to shard by user ID. This sharding scheme
ensures that load is evenly distributed among all the shards, and operationally, it is easy
to maintain.

Step 3 - Design Deep Dive

The high-level design we created in the previous section works in most cases, but it will
likely break at our scale. In this section, we work together to uncover the bottlenecks
as we increase the scale, and along the way work on solutions to eliminate those bottle-
necks.

How well does each component scale?

API servers

The methods to scale the RESTful API tiers are well understood. These are stateless
servers, and there are many ways to auto-scale the clusters based on CPU usage, load, or
I/0. We will not go into detail here.

WebSocket servers

For the WebSocket cluster, it is not difficult to auto-scale based on usage. However, the
WebSocket servers are stateful, so care must be taken when removing existing nodes.
Before a node can be removed, all existing connections should be allowed to drain. To

Step 3 - Design Deep Dive | 45

@ . o " -~ b 1t ¥ r
achicve that, we can mark a node as “draining” at the load balancer so 1.hat. no new Wy,
Socket connections will be routed to the draining server. Once all the ‘X"’sm%w conne,
tions are closed (or after a reasonably long wait), the server is then removed.

Releasing a new version of the application software on a WebSocket server requireg
same level of care.

It is worth noting that effective auto-scaling of stateful servers is the job of a good |o
balancer. Most cloud load balancers handle this job very well.

Client initialization
The mobile client on startup establishes a persistent WebSocket connection with one ¢
the WebSocket server instances. Each connection is long-running. Most modern Jg,

guages are capable of maintaining many long-running connections with a reasonapj,
small memory footprint.

When a WebSocket connection is initialized, the client sends the initial location of the
user, and the server performs the following tasks in the WebSocket connection hap.
dler.

1. It updates the user’s location in the location cache.

2. Tt saves the location in a variable of the connection handler for subsequent calculs.
tions.

3. It loads all the user’s friends from the user database.

4. Tt makes a batched request to the location cache to fetch the locations for all the
friends. Note that because we set a TTL on each entry in the location cache to match
our inactivity timeout period, if a friend is inactive then their location will not be in
the location cache.

5. For each location returned by the cache, the server computes the distance between
the user and the friend at that location. If the distance is within the search radius,
the friend’s profile, location, and last updated timestamp are returned over the Web-
Socket connection to the client.

6. For each friend, the server subscribes to the friend’s channel in the Redis Pub/Sub
server. We will explain our use of Redis Pub/Sub shortly. Since creating a new chan-
nel is cheap, the user subscribes to all active and inactive friends. The inactive friends
will take up a small amount of memory on the Redis Pub/Sub server, but they wil
not consume any CPU or I/O (since they do not publish updates) until they come
online.

7. It sends the user’s current location to the user’s channel in the Redis Pub/Sub server

User database

The user database holds two distinct sets of data: user profiles (user ID, username, pro
file URL, etc.) and friendships. These datasets at our design scale will likely not fit in
single relational database instance. The good news is that the data is horizontally sca-

46 | Chapter 2. Nearby Friends

able by sharding based on user ID. Relational database sharding is a very common tech

nique.

As a side note, at the scale we are designing for, the user and friendship datasets will likely
be managed by a dedicated team and be available via an internal APL In this scenario,
the WebSocket servers will use the internal API instead of querying the database directly
to fetch user and friendship-related data. Whether accessing via API or direct database
queries, it does not make much difference in terms of fu nctionality or performance.

Location cache

We choose Redis to cache the most recent locations of all the active users. As mentioned
carlier, we also set a TTL on each key. The TTL is renewed upon every location update.
This puts a cap on the maximum amount of memory used. With 10 million active users
at peak, and with each location taking no more than 100 bytes, a single modern Redis
server with many GBs of memory should be able to easily hold the location information
for all users.

However, with 10 million active users roughly updating every 30 seconds, the Redis
server will have to handle 334K updates per second. That is likely a little too high, even
for a modern high-end server. Luckily, this cache data is easy to shard. The location data
for each user is independent, and we can evenly spread the load among several Redis
servers by sharding the location data based on user ID.

To improve availability, we could replicate the location data on each shard to a standby
node. If the primary node goes down, the standby could be quickly promoted to minimize
downtime.

Redis Pub/Sub server

The Pub/Sub server is used as a routing layer to direct messages (location updates) from
one user to all the online friends. As mentioned earlier, we choose Redis Pub/Sub because
it is very lightweight to create new channels. A new channel is created when someone
subscribes to it. If a message is published to a channel that has no subscribers, the mes-
sage is dropped, placing very little load on the server. When a channel is created, Redis
uses a small amount of memory to maintain a hash table and a linked list [3] to track the
subscribers. If there is no update on a channel when a user is offline, no CPU cycles are
used after a channel is created. We take advantage of this in our design in the following

ways:

1. We assign a unique channel to every user who uses the “nearby friends” feature. A
user would, upon app initialization, subscribe to each friend’s channel, whether the
friend is online or not. This simplifies the design since the backend does not need to
handle subscribing to a friend’s channel when the friend becomes active, or handling
unsubscribing when the friend becomes inactive.

2. The tradeoft is that the design would use more memory. As we will see later, mem-
ory use is unlikely to be the bottleneck. Trading higher memory use for a simpler
architecture is worth it in this case.

Step 3 - Design Deep Dive | 47

How many Redis Pub/Sub servers do we need?

Let's do some math on memory and CPU usage.

Memory usage

Assuming a channel is allocated for each user who uses the nearby friends feature
need 100 million channels (1 billion x 10%). Assuming that on average a user has
active friends using this feature (this includes friends who are nearby, or not), anq
takes about 20 bytes of pointers in the internal hash table and linked list to track e,
subscriber, it will need about 200GB (100 million x 20 bytes x 100 friends / 107 = Qﬂf}(‘.ﬁl
to hold all the channels. For a modern server with 100GB of memory, we will need aboy
2 Redis Pub/Sub servers to hold all the channels.

CPU usage

As previously calculated, the Pub/Sub server pushes about 14 million updates per secopj |
to subscribers. Even though it is not easy to estimate with any accuracy how Many
messages a modern Redis server could push a second without actual benchmarking j
is safe to assume that a single Redis server will not be able to handle that load. Le
pick a conservative number and assume that a modern server with a gigabit network
could handle about 100,000 subscriber pushes per second. Given how small our location
update messages are, this number is likely to be conservative. Using this conservative
estimate, we will need to distribute the load among 14 million / 100,000 = 140 Redis
servers. Again, this number is likely too conservative, and the actual number of servers
could be much lower.

From the math, we conclude that:

» The bottleneck of Redis Pub/Sub server is the CPU usage, not the memory usage.
« To support our scale, we need a distributed Redis Pub/Sub cluster.

Distributed Redis Pub/Sub server cluster

How do we distribute the channels to hundreds of Redis servers? The good news is that
the channels are independent of each other. This makes it relatively easy to spread the
channels among multiple Pub/Sub servers by sharding, based on the publisher’s user
ID. Practically speaking though, with hundreds of Pub/Sub servers, we should go intoa
bit more detail on how this is done so that operationally it is somewhat manageable, a
servers inevitably go down from time to time.

Here, we introduce a service discovery component to our design. There are many service
discovery packages available, with etcd [4] and ZooKeeper [5] among the most popular
ones. Our need for the service discovery component is very basic. We need these two

features:

1. The ability to keep a list of servers in the service discovery component, and a simple
Ul or API to update it. Fundamentally, service discovery is a small key-value store
for holding configuration data. Using Figure 2.9 as an example, the key and value for

48 | Chapter 2. Nearby Friends

the hash ring could look like this:

Key: /config/pub_sub_ring
\‘alu(‘i ["p_‘] " ; "p_2" 2 "p_3" ; “p_4"]
2. The ability for clients (in this case, the WebSocket servers) to subscribe to any updates
to the “Value™ (Redis Pub/Sub servers).

Under the “Key” mentioned in point 1, we store a hash ring of all the active Redis Pub/Sub
servers in the service discovery component (See the consistent hashing chapter in Volume
1 of the System Design Interview book or [6] on details of a hash ring). The hash ring
is used by the publishers and subscribers of the Redis Pub/Sub servers to determine the
Pub/Sub server to talk to for each channel. For example, channel 2 lives in Redis Pub/Sub
server 1 in Figure 2.9.

Redis Pub/Sub server 1 is responsible
for hash values in this range

hash{channel_name1)

p_x: Redis Pub/Sub server X

Figure 2.9: Consistent hashing

Figure 2.10 shows what happens when a WebSocket server publishes a location update
to a user’s channel.

Step 3 - Désign Deep Dive | 49

e
p 4 g \B__)\

hash(channel name2)

==y

Figure out which Redis

@ Pub/Sub server to publish
location to
Publish ket
(Channel 2 O‘—_._ C) tocation ng;?vc;cr.s

update

O

Redis Pub/Sub

Figure 2.10: Figure out the correct Redis Pub/Sub server

1. The WebSocket server consults the hash ring to determine the Redis Pub/Sub server
to write to. The source of truth is stored in service discovery, but for efficiency, s
copy of the hash ring could be cached on each WebSocket server. The WebSocket

server subscribes to any updates on the hash ring to keep its local in-memory copy
up to date.

2. WebSocket server publishes the location update to the user’s channel on that Redis
Pub/Sub server.

Subscribing to a channel for location updates uses the same mechanism.
Scaling considerations for Redis Pub/Sub servers

How should we scale the Redis Pub/Sub server cluster? Should we scale it up and down
daily, based on traffic patterns? This is a very common practice for stateless servers
because it is low risk and saves costs. To answer these questions, let’s examine some of
the properties of the Redis Pub/Sub server cluster.

50 | Chapter 2. Nearby Friends

1. The messages sent on a Pub/Sub channel are not persisted in memory or on disk.
Theyv are sent to all subscribers of the channel and removed immediately after. If
lherf are no subscribers, the messages are jusl dropped. In this sense, the data going
through the Pub/Sub channel is stateless.

2. However, there are indeed states stored in the Pub/Sub servers for the channels.
Specifically, the subscriber list for each channel is a key piece of the states tracked by
the Pub/Sub servers. If a channel is moved, which could happen when the channel’s
Pub/Sub server is replaced, or if a new server is added or an old server removed on
the hash ring, then every subscriber to the moved channel must know about it, so
they could unsubscribe from the channel on the old server and resubscribe to the
replacement channel on the new server. In this sense, a Pub/Sub server is stateful,
and coordination with all subscribers to the server must be orchestrated to minimize
service interruptions.

For these reasons, we should treat the Redis Pub/Sub cluster more like a stateful clus-
ter, similar to how we would handle a storage cluster. With stateful clusters, scaling
up or down has some operational overhead and risks, so it should be done with care-
ful planning. The cluster is normally over-provisioned to make sure it can handle daily
peak traffic with some comfortable headroom to avoid unnecessary resizing of the clus-
ter.

When we inevitably have to scale, be mindful of these potential issues:

» When we resize a cluster, many channels will be moved to different servers on the
hash ring. When the service discovery component notifies all the WebSocket servers
of the hash ring update, there will be a ton of resubscription requests.

« During these mass resubscription events, some location updates might be missed by
the clients. Although occasional misses are acceptable for our design, we should

minimize the occurrences.

« Because of the potential interruptions, resizing should be done when usage is at its
lowest in the day.

How is resizing actually done? It is quite simple. Follow these steps:

« Determine the new ring size, and if scaling up, provision enough new servers.
« Update the keys of the hash ring with the new content.

« Monitor your dashboard. There should be some spike in CPU usage in the WebSocket
cluster.

Using the hash ring from Figure 2.9 above, if we were to add 2 new nodes, say, p_5, and
p_6, the hash ring would be updated like this:

Old [“p_1“, llp-zll, Ilp_3ll’ ||p_4||]
NCW: [llp_‘lﬂ, Ilpnzll, "9_3", "P_4", "p.-5“, "p_bll]

Step 3 - Design Deep Dive | 51

Operational considerations for Redis Pub/Sub servers

The operational risk of replacing an existing Redis Pub/Sub server is rnur]h. much loy,,
It does not cause a large number of channels to be moved. Only the ¢ 1ar1|1e~l's on th,
server being replaced will need to be handled. This is good because servers inevitably

down and need to be replaced regularly.

When a Pub/Sub server goes down, the monitoring software should alert the on.¢y
operator. Precisely how the monitoring software monitors the health of a Pub/Sub sery,
is beyond the scope of this chapter, so it is not covered. The on-ca%l operator updae
the hash ring key in service discovery to replace the dead node with a fresh standby
node. The WebSocket servers are notified about the update and each one then notife
its connection handlers to re-subscribe to the channels on the new Pub/Sub server. Ea,
WebSocket handler keeps a list of all channels it has subscribed to, and' upon receiving
the notification from the server, it checks each channel against the hash ring to determip,
if a channel needs to be re-subscribed on a new server.

Using the hash ring from Figure 2.9 above, if p_1 went down, and we replace it wit
p1_new, the hash ring would be updated like so:

Old: [I|p_1ll’ Ilp-zli’ llp_3ll, llp_4ll] ’
N‘ew: ["p_‘l_newll’ llp-zll, llp_3l|’ Ilp—4II]

hash(channel_name2)

Figure 2.11: Replace Pub/Sub serverver

Adding/removing friends

What should the client do when the user adds or removes a friend? When a new friend
is added, the client’s WebSocket connection handler on the server needs to be notified,
so it can subscribe to the new friend’s Pub/Sub channel.

Since the “nearby friends” feature is within the ecosystem of a larger app, we can assume
that the “nearby friends” feature could register a callback on the mobile client whenever
a new friend is added. The callback, upon invocation, sends a message to the WebSocket
server to subscribe to the new friend’s Pub/Sub channel. The WebSocket server also

52 | Chapter 2. Nearby Friends

returns a message containing the new friend’s latest location and timestamp, if they are
active.

Likewise, the client could register a callback in the application whenever a friend is re-
moved. The callback would send a message to the WebSocket server to unsubscribe from
the friend’s Pub/Sub channel.

This subscribe/unsubscribe callback could also be used whenever a friend has opted in
or out of the location update.

Users with many friends

It is worth discussing whether a user with many friends could cause performance
hotspots in our design. We assume here that there is a hard cap on the number
of friends. (Facebook has a cap of 5,000 friends, for example). Friendships are bi-
directional. We are not talking about a follower model in which a celebrity could have
millions of followers.

In a scenario with thousands of friends, the Pub/Sub subscribers will be scattered among
the many WebSocket servers in the cluster. The update load would be spread among
them and it’s unlikely to cause any hotspots.

The user would place a bit more load on the Pub/Sub server where their channel lives.

Since there are over 100 Pub/Sub servers, these “whale” users would be spread. out
among the Pub/Sub servers and the incremental load should not overwhelm any single

one.

Nearby random person
You might call this section an extra credit, as it’s not in the initial functional requirements.
What if the interviewer wants to update the design to show random people who opted-in

to location-sharing?

One way to do this while leveraging our design is to add a pool of Pub/Sub channels
by geohash. (See Chapter 1 Proximity Service for details on geohash). As shown in
Figure 2.12, an area is divided into four geohash grids and a channel is created for each

grid.

Step 3 - Design Deep Dive | 53

(G :er’Jha-qh
9']81 né
G‘!n hash
9aqBznd
Gaohash
9qBznf
Geohash |
9g8zn3

—_—

Redis Pub/Sub

Figure 2.12: Redis Pub/Sub channels

Anyone within the grid subscribes to the same channel. Let’s take grid 998znd for exan.
ple as shown in Figure 2.13.

Usefs in geohash: sqam

Geohash: i WebSocket connechuns
9g8zn3 :

Redis Pub/Sub

' '
': Geohash . ! ——» User1
5 9q8zn6 :
User 2 Ty toeion —(@subsoribe —| || User2
" “WebSocket connections E |
; G;:gasp: . ': L User 3
] Zn :
:
:
:
]

Figure 2.13: Publish location update to random nearby person

1. Here, when user 2 updates their location, the WebSocket connection handler com-
putes the user’s geohash ID and sends the location to the channel for that geohash.

2. Anyone nearby who subscribes to the channel (exclude the sender) will receive a
location update message.

To handle people who are close to the border of a geohash grid, every client could sub-
scribe to the geohash the user is in and the eight surrounding geohash grids. An example
with all 9 geohash grids highlighted is shown in Figure 2.14.

54 | Chapter 2. Nearby Friends

TR N 7
\ \ ~9q8zn3 | | 9qBzn9 [~ 9g8znc
\&\ " ‘;_ .." J & ..n_*' » I; 8 J {J‘ "
AN Woaalode B4 OK fofo S
C v N\ \ i/ A WA E
5\" / a9 8'zn\ \ [, / 9q8zn8 B {" 9gBznb |
" N, . T - r ~ '] J ¥,
N 7N \"*uy w /’\,f\ /_.“ \'h,_{i’ /
R, W _\ bt FL S N :
- o e
N

3 0. Data © OpenStrestMap contributors,

Map tiles by Stamen Design, under CC BY

Figure 2.14: Nine geohash grids

Alternative to Redis Pub/Sub

Is there any good alternative to using Redis Pub/Sub as the routing layer? The answer
is a resounding yes. Erlang [7] is a great solution for this particular problem. We would
argue that Erlang is a better solution than the Redis Pub/Sub proposed above. However,
Erlang is quite a niche, and hiring good Erlang programmers is hard. But if your team
has Erlang expertise, this is a great option.

So, why Erlang? Erlang is a general programming language and runtime environment
built for highly distributed and concurrent applications. When we say Erlang here, we
specifically talk about the Erlang ecosystem itself. This includes the language compo-
nent (Erlang or Elixir [8]) and the runtime environment and libraries (the Erlang virtual
machine called BEAM [9] and the Erlang runtime libraries called OTP [10]).

The power of Erlang lies in its lightweight processes. An Erlang process is an entity
running on the BEAM VM. It is several orders of magnitude cheaper to create than a Linux
process. A minimal Erlang process takes about 300 bytes, and we can have millions of
these processes on a single modern server. If there is no work to do in an Erlang process,
it just sits there without using any CPU cycles at all. In other words, it is extremely
cheap to model each of the 10 million active users in our design as an individual Erlang
process.

Erlang is also very easy to distribute among many Erlang servers. The operational over-
head is very low, and there are great tools to support debugging live production issues,
safely. The deployment tools are also very strong.

How would we use Erlang in our design? We would implement the WebSocket service in
Erlang, and also replace the entire cluster of Redis Pub/Sub with a distributed Erlang ap-
plication. In this application, each user is modeled as an Erlang process. The user process
would receive updates from the WebSocket server when a user’s location is updated by
the client. The user process also subscribes to updates from the Erlang processes of the

Step 3 - Design Deep Dive | 55

user’s friends. Subscription is native in Erlang/OTP and it’s easy to build. This form,
Sa

mesh of connections that would efficiently route location updates from one user to Many
friends.

Step 4 - Wrap Up

In this chapter, we presented design that supports a nearby friends feature. Concepy,.
ally, we want to design a system that can efficiently pass location updates from one yge,
to their friends.

Some of the core components include:

« WebSocket: real-time communication between clients and the server.
. Redis: fast read and write of location data.
. Redis Pub/Sub: routing layer to direct location updates from one user to all the online

friends.

We first came up with a high-level design at a lower scale and then discussed challenges
that arise as the scale increases. We explored how to scale the following:

« RESTful API servers
« WebSocket servers
« Data layer
- Redis Pub/Sub servers
« Alternative to Redis Pub/Sub
Finally, we discussed potential bottlenecks when a user has many friends and we pro-

posed a design for the “nearby random person” feature.

Congratulations on getting this far! Now give yourselfa pat on the back. Good job!

56 | Chapter 2. Nearby Friends

Chapter Summary

view nearby friends
functional req <
update nearby friend list

low latency

non-functional
step 1 =4

5-mile radius

R

estimation location refresh interval: 30s

locate update qps: 334k

restful api servers

websocket servers

high-level design diagram redis location cache

location history database
periodic location update
g redis pub/sub server
api design
Nearby Friends location cache
data model

location history database

api servers
websocket servers

user database

scale each component
location cache
step 3 adding/removing friends redis pub/sub server
users with many friends alternative to redis pub/sub
nearby random person

step 4

wrap up

Chapter Summary | 57

Reference Material

[1]

(3]

(4]
(5]
(6]
(7]
(8]
(9]
[10]

Facebook Launches “Nearby Friends”,]l|t]‘15.‘!/[[‘t‘]l(‘l‘lmt'h.(‘Hrn!'zm14!'”4;']?,-'[;“.r.h[
)
ok-nearby-friends/.

Redis Pub/Sub. https://redis.io/topics/pubsub.

Redis Pub/Sub under the hood. https://making.pusher.com/redis-pubsub-unde,.,
he-hood/.

eted. https://eted.io/.

ZooKeeper. https://zookeeper.apache.org/.

Consistent hashingones. https://www.toptal.com/big-data/consistent-hashing.
Erlang. https://www.erlang.org/.

Elixir. https://elixir-lang.org/.

A brief introduction to BEAM. https://www.erlang.org/blog/a-brief-beam-primer/

OTP. https://www.erlang.org/doc/design_principles/des_princ.html.

58 | Chapter 2. Nearby Friends

B e S——

3 Google Maps

In this chapter, we design a simple version of Google Maps. Before we proceed to the
system design, let’s learn a bit about Google Maps. Google started Project Google Maps
in 2005 and developed a web mapping service. It provides many services such as satellite
imagery, street maps, real-time traffic conditions, and route planning [1].

Google Maps helps users find directions and navigate to their destination. As of March
2021, Google Maps had one billion daily active users, 99% coverage of the world, and
25 million updates daily of accurate and real-time location information [2]. Given the

enormous complexity of Google Maps, it is important to nail down which features our
version of it supports.

Step 1 - Understand the Problem and Establish Design Scope

The interaction between the interviewer and the candidate could look like this:

Candidate: How many daily active users are we expecting?
Interviewer: 1 billion DAU.

Candidate: Which features should we focus on? Direction, navigation, and estimated
time of arrival (ETA)?
Interviewer: Let’s focus on location update, navigation, ETA, and map rendering.

Candidate: How large is the road data? Can we assume we have access to it?
Interviewer: Great questions. Yes, let’s assume we obtained the road data from different
sources. It is terabytes (TBs) of raw data.

Candidate: Should our system take traffic conditions into consideration?
Interviewer: Yes, traffic conditions are very important for accurate time estimation.

Candidate: How about different travel modes such as driving, walking, bus, etc?
Interviewer: We should be able to support different travel modes.

Candidate: Should it support multi-stop directions?
Interviewer: It is good to allow a user to define multiple stops, but let’s not focus on it.

| 59

Candidate: How about business places and photos? How many photos are we expect.
ing?

Interviewer: I am happy you asked and considered these. We do not need to design
those.

In the rest of the chapter, we focus on three key features. The main devices that we need
to support are mobile phones.

» User location update.

« Navigation service, including ETA service.

» Map rendering.

Non-functional requirements and constraints
» Accuracy: Users should not be given the wrong directions.

« Smooth navigation: On the client-side, users should experience very smooth map
rendering,.

« Data and battery usage: The client should use as little data and battery as possible.
This is very important for mobile devices.

» General availability and scalability requirements.
Before jumping into the design, we will briefly introduce some basic concepts and termi-
nologies that are helpful in designing Google Maps.
Map 101
Positioning system

The world is a sphere that rotates on its axis. At the very top, there is the north pole, and
the very bottom is the south pole.

60 | Chapter 3. Google Maps

- -l

AN°N Lat

70"E Long

Figure 3.1: Latitude and longitude (source: [3])

Lat (Latitude): denotes how far north or south we are

Long (Longitude): denotes how far east or west we are

Going from 3D to 2D

The process of translating the points from a 3D globe to a 2D plane is called “Map Pro-
jection”.

There are different ways to do map projection, and each comes with its own strengths
and limitations. Almost all of them distort the actual geometry. Below we can see some

examples.

Step 1 - Understéﬁd the Problem and Establish Design Scope | 61

 Gal-Pelsrs prajection Winkel tnpel projecton

Figure 3.2: Map projections (source: Wikipedia [4] [5] [6] [7])

Google Maps selected a modified version of Mercator projection called Web Mercator,
For more details on positioning systems and projections, please refer to [3].

Geocoding

Geocoding is the process of converting addresses to geographic coordinates. For instance,
“1600 Amphitheatre Parkway, Mountain View, CA” is geocoded to a latitude/longitude
pair of (latitude 37.423021, longitude —122.083739).

In the other direction, the conversion from the latitude/longitude pair to the actual
human-readable address is called reverse geocoding.

One way to geocode is interpolation [8]. This method leverages the data from differ-
ent sources such as geographic information systems (GIS) where the street network is
mapped to the geographic coordinate space.

Geohashing

Geohashing is an encoding system that encodes a geographic area into a short string of
letters and digits. At its core, it depicts the earth as a flattened surface and recursively
divides the grids into sub-grids, which can be square or rectangular. We represent each
grid with a string of numbers between 0 to 3 that are created recursively.

62 | Chapter 3. Google Maps

Let’s assume the initial flattened surface is of size 20.000km x 10.000km. After the first
division, we would have 4 grids of size 10,000km % 5.000km. We represent them as (1),
01, 10, and 11 as shown in Figure 3.3. We further divide each grid into 4 grids and use the
same naming strategy. Each sub-grid is now of size 5,000km » 2.500km. We recursively
divide the grids until each grid reaches a certain size threshold.

Figure 3.3: Geohashing

Geohashing has many uses. In our design, we use geohashing for map tiling. For more
details on geohashing and its benefits, please refer to [9].

Map rendering

We won'’t go into a lot of detail about map rendering here, but it is worth mentioning
the basics. One foundational concept in map rendering is tiling. Instead of rendering the
entire map as one large custom image, the world is broken up into smaller tiles. The client

only downloads the relevant tiles for the area the user is in and stitches them together
like a mosaic for display.

Step 1 - Understand the Problem and Establish Design Scope | 63

There are distinct sets of tiles at different zoom levels. The client chooses the set of yjj,
appropriate for the zoom level of the map viewport on the client. This provides the rigp,
level of map details without consuming excess bandwidth. To illustrate with an extrep,
example, when the client is zoomed all the way out to show the entire world, we dop'y
want to have to download hundreds of thousands of tiles for a very high zoom level. Ay
the details would go to waste. Instead, the client would download one tile at the loweg
zoom level, which represents the entire world with a single 256 % 206 pixel image,

Road data processing for navigation algorithms

Most routing algorithms are variations of Dijkstra’s or A* pathfinding algorithms. The ex-
act algorithm choice is a complex topic and we won’t go into much detail in this chapter,
What is important to note is that all these algorithms operate on a graph data structure,
where intersections are nodes and roads are edges of the graph. See Figure 3.4 for ap
example:

/

—
Pa -"."'“' Ty

Figure 3.4: Map as a graph

The pathfinding performance for most of these algorithms is extremely sensitive to the
size of the graph. Representing the entire world of road networks as a single graph would
consume too much memory and is likely too large for any of these algorithms to run
efficiently. The graph needs to be broken up into manageable units for these algorithms
to work at our design scale.

One way to break up road networks around the world is very similar to the tiling con-
cept we discussed for map rendering. By employing a similar subdivision technique as
geohashing, we divide the world into small grids. For each grid, we convert the roads
within the grid into a small graph data structure that consists of the nodes (intersections)
and edges (roads) inside the geographical area covered by the grid. We call these grids
routing tiles. Each routing tile holds references to all the other tiles it connects to. This is
how the routing algorithms can stitch together a bigger road graph as it traverses these
interconnected routing tiles.

By breaking up road networks into routing tiles that can be loaded on demand, the rout-

64 | Chapter 3. Google Maps

ing algorithms can significantly reduce memory consumption and improve pathfinding
performance by only consuming a small subset of the routing tiles at a time, and only
loading additional tiles as needed.

y| Rauhng ll|E 1 Routlng tile2

\ ut

coniributors|

Figure 3.5: Routing tiles

Reminder

In Figure 3.5, we call these grids routing tiles. Routing tiles are similar to map tiles in
that both are grids covering certain geographical areas. Map tiles are PNG images,
while routing tiles are binary files of road data for the area covered by the tiles.

Hierarchical routing tiles

Efficient navigation routing also requires having road data at the right level of detail. For
example, for cross country routing, it would be slow to run the routing algorithm against
a highly detailed set of street-level routing tiles. The graph stitched together from these
detailed routing tiles would likely be too large and consume too much memory.

There are typically three sets of routing tiles with different levels of detail. At the most
detailed level, the routing tiles are small and contain only local roads. At the next level,
the tiles are bigger and contain only arterial roads connecting districts together. At the
lowest level of detail, the tiles cover large areas and contain only major highways con-
necting cities and states together. At each level, there could be edges connecting to tiles
at a different zoom level. For example, for a freeway entrance from local street A to
freeway F, there would be a reference from the node (street A) in the small tile to the
node (freeway F) in the big tile. See Figure 3.6 for an example of routing tiles of varying
sizes.

Step 1 - Understand the Problem and Establish Design Scope | 65

Figure 3.6: Routing tiles of varying sizes

Back-of-the-envelope estimation

Now that we understand the basics, let’s do a back-of-the-envelope estimation. Since
the focus of the design is mobile, data usage and battery consumption are two Important
factors to consider.

Before we dive into the estimation, here are some imperial/metric conversions for refer-
ence.

« 1 foot = 0.3048 meters
« 1 kilometer (km) = 0.6214 miles
« 1 km = 1,000 meters

Storage usage
We need to store three types of data.

« Map of the world: A detailed calculation is shown below.
« Metadata: Given that the metadata for each map tile could be negligible in size, We
can skip the metadata in our computation.

. Road info: The interviewer told us there are TBs of road data from external sources.
We transform this dataset into routing tiles, which are also likely to be terabytesin

s1ze.

66 | Cllx.apter 3. Google Maps

Map of the world

We discussed the concept of map tiling in the “Map 101" section on page 60. There are
many sets of map tiles, with one at each zoom level. To get an idea of the storage require-
ment for the entire collection of map tile images, it would he informative to estimate the
size of the largest tile set at the highest zoom level first. At zoom level 21, there are about
4.3 trillion tiles (Table 3.1). Let's assume that each tile is a 256 » 256 pixel compressed
PNG image, with the image size of about 100KB. The entire set at the highest zoom level
would need about 4.4 trillion x 100KB = 440PB,

In Table 3.1, we show the progression of tile counts at every zoom level.

| Zoom | Number of Tiles
- -
1 4
3 16
3 64
4 256
5] 1024
6 4 096

7 16 384 |
8 65 536
9 262 144
10 1048 576
11 4194 304
12 16 777 216
13 67 108 864
14 268 435 456
15 1073 741 824
16 4 294 967 296
17 17 179 869 184
18 68 719 476 736
19 274 87T 906 944
20 1099 511 627 776
21 4 398 046 511 104

Table 3.1: Zoom levels

However, keep in mind that about 90% of the world’s surface is natural and mostly un-
inhabited areas like oceans, deserts, lakes, and mountains. Since these areas are highly
compressible as images, we could conservatively reduce the storage estimate by 80 ~
90%. That would reduce the storage size to a range of 44 to 88PB. Let’s pick a simple
round number of 50PB.

Next, let’s estimate how much storage each subsequent lower zoom level would take. At
each lower zoom level, the number of tiles for both north-south and east-west directions
drops by half. This results in a total reduction of the number of tiles by 4x, which drops

Step 1 - Understand the Problem and Establish Design Scope | 67

the storage size for the zoom level also by 4x. With the storage size reduced by 4x at each
lower zoom level, the math for the tolal size is a series: H0) + ‘—:’ } z}’i—: + ;‘; + - =~ HTPB.
This is just a rough estimate. Itis good enough to know that we need roughly about 100PB

to store all the map tiles at varying levels of detail.

Server throughput

To estimate the server throughput, let’s review the types of requests we need to support.
There are two main types of requests. The first is navigation requests. These are sent by
the clients to initiate a navigation session. The second is location update requests. These
are sent by the client as the user moves around during a navigation session. The location
data is used by downstream services in many different ways. For example, location data
is one of the inputs for live traffic data. We will cover the use cases of location data in
the design deep dive section.

Now we can analyze the server throughput for navigation requests. Let’s assume we
have 1 billion DAU, and each user on average uses navigation for a total of 35 minutes per
week. This translates to 35 billion minutes per week or 5 billion minutes per day.

One simple approach would be to send GPS coordinates every second, which re-

sults in 300 billion (5 billion minutes x 60) requests per day, or 3 million QPS

(300 bﬂhfgsrequms = 3 million). However, the client may not need to send a GPS update

every second. We can batch these on the client and send them at a much lower
frequency (for example, every 15 seconds or 30 seconds) to reduce the write QPS. The
actual frequency could depend on factors such as how fast the user moves. If they are
stuck in traffic, a client can slow down the GPS updates. In our design, we assume GPS
updates are batched and then sent to the server every 15 seconds. With this batched
approach, the QPS is reduced to 200,000 (2ilion),

Assume peak QPS is five times the average. Peak QPS for location updates = 200,000 x
5 = 1 million.

Step 2 - Propose High-level Design and Get Buy-in

Now that we have more knowledge about Google Maps, we are ready to propose a high-
level design (Figure 3.7).

High-level design

68 | Chapter 3. Google Maps

Mobile User

CDN

Load Balancer] {
Precomputed Map Images
(Origin)

Navigation Location
Service Service
Geocoding DB Routing Tiles User Location DB
(Object storage)

Figure 3.7: High-level design

The high-level design supports three features. Let’s take a look at them one by one.

1. Location service
2. Navigation service

3. Map rendering

Location service

The location service is responsible for recording a user’s location update. The architecture
is shown in Figure 3.8.

Step 2 - Propose High-level Design and Get Buy-in | 69

Motyie tiser

User Location DB

Figure 3.8: Location service

The basic design calls for the clients to send location updates every ¢ seconds, where
t is a configurable interval. The periodic updates have several benefits. First, we can
leverage the streams of location data to improve our system over time. We can use the
data to monitor live traffic, detect new or closed roads, and analyze user behavior to
enable personalization, for example. Second, we can leverage the location data in near
real-time to provide more accurate ETA estimates to the users and to reroute around
traffic, if necessary:.

But do we really need to send every location update to the server immediately? The
answer is probably no. Location history can be buffered on the client and sent in batch
to the server at a much lower frequency. For example, as shown in Figure 3.9, the location
updates are recorded every second, but are only sent to the server as part of a batch every
15 seconds. This significantly reduces the total update traffic sent by all the clients.

: Client '
.: Batch 3 Batch 2 Batch 1
; loc loc | | loc loc loc | | loc loc loc | | loc ;
; 45 32 31 30 17 16 15 2 1 !

Figure 3.9: Batch requests
For a system like Google Maps, even when location updates are batched, the write volume

is still very high. We need a database that is optimized for high write volume and is
highly scalable, such as Cassandra. We may also need to log location data using a streal

70 | Chapter 3. Google Maps

processing engine such as Kafka for further processing. We discuss this in detail in the
deep dive section.

What communication protocol might be a good fit here? HTTP with the keep-alive op-
tion [10] is a good choice because it is very efficient. The IFFTT’rcqueslrﬂiE*” look like
this:

POST /v1/locations
Parameters
locs: JSON encoded array of (latitude, longitude, timestamp)

tuples.
Navigation service

This component is responsible for finding a reasonably fast route from point A to point
B. We can tolerate a little bit of latency. The calculated route does not have to be the

fastest, but accuracy is critical.

As shown in Figure 3.8, the user sends an HTTP request to the navigation service through
a load balancer. The request includes origin and destination as the parameters. The API
might look like this:

GET /v1/nav?origin=1355+market+street,SF&destination=
Disneyland

Here is an example of what the navigation result could look like:

'distance': {'text':'0.2 mi', 'value': 259},

"duration': {'text': '1 min', 'value': 83},

'end_location': {'lat': 37.4838943, 'Ing': -121.9418454},
"html_instructions': 'Head northeast on Brandon St

 toward Lumin Way<div style="font-size:8.%em">
Restricted usage road</div>',
'polyline': {'points': '_fhcFjbhgVuAwDsCal'},
'start_location': {'lat': 37.4827165, 'lng': -121.9435889},
'geocoded_waypoints ': [

{
"geocoder_status" : "OK",
"partial_match" : true,
"place_id" : "ChIJwZNMtilfawwR0Z2aVVVX2yKg",
"types" : ["locality", "political"]
1
I}
{
"geocoder_status" : "OK",
"partial_match" : true,
"place_id" : "ChIJ3aPgQGtXawwRLYeiBMUi/7bM",
"types" : ["locality", "political"]
}
]

travel _mode’: * DETVING

-

>

Pléase refer to [11] for more details on Google Maps’ official APIs.

So far we have not taken reroute and traffic changes into consideration. Those problems
are tackled by the Adaptive ETA service in the deep dive section.

Step 2 - Propose High-level Design and Get Buy-in | 71

Map rendering

As we discussed in the back-of-the-envelope estimation, the entire collection of mMap files
at various zoom levels is about a hundred petabytes in size. It is not practical to hold the
entire dataset on the client. The map tiles must be fetched on-demand from the serye,
based on the client’s location and the zoom level of the client viewport.

When should the client fetch new map tiles from the server? Here are some scenay

108:

« The user is zooming and panning the map viewpoint on the client to explore thejr
surroundings.

« During navigation, the user moves out of the current map tile into a nearby tile.

We are dealing with a lot of data. Let’s see how we could serve these map tiles from the
server efliciently.

Option 1

The server builds the map tiles on the fly, based on the client location arfd zoom level of the
client viewport. Considering that there is an infinite number of loclatlon and zoom leve]
combinations, generating map tiles dynamically has a few severe disadvantages:

« It puts a huge load on the server cluster to generate every map tile dynamically.

« Since the map tiles are dynamically generated, it is hard to take advantage of caching.

Option 2

Another option is to serve a pre-generated set of map tiles at each zoom l-e\.re‘l. The map
tiles are static, with each tile covering a fixed rectangular grid using a subdivision scheme
like geohashing. Each tile is therefore represented by its geohash. In other-wo.rds, there
is a unique geohash associated with each grid. When a client needs a map tile, it first de-
termines the map tile collection to use based on its zoom level. It I:.hen computes the map
tile URL by converting its location to the geohash at the appropriate zoom level.

These static, pre-generated images are served by a CDN as shown in Figure 3.10.

72 | Chapter 3. Google Maps

Mobile User

CDN

Precomputed Map Images
(Origin)

Figure 3.10: Pre-generated images are served by a CDN

In the diagram above, the mobile user makes an HTTP request to fetch a tile from the
CDN. If the CDN has not yet served that specific tile before, it fetches a copy from the
origin server, caches it locally, and returns it to the user. On subsequent requests, even
if those requests are from different users, the CDN returns a cached copy without con-
tacting the origin server.

This approach is more scalable and performant because the map tiles are served from the
nearest point of presence (POP) to the client, as shown in Figure 3.11. The static nature
of the map tiles makes them highly cacheable.

Step 2 - Propose High-level Design and Get Buy-in | 73

Without CON

E' 300 ms -
I§i

With CON
_ @
< POP
POP Origin Server-. POP ;
POP :

Figure 3.11: Without CDN vs with CDN

It is important to keep mobile data usage low. Let’s calculate the amount of data the
client needs to load during a typical navigation session. Note the following calculations
don’t take client-side caching into consideration. Since the routes a user takes could be
similar each day, the data usage is likely to be a lot lower with client-side caching.

' Data usage

| Let’s assume a user moves at 30km/h, and at a zoom level where each image covers a
' block of 200m x 200m (a block can be represented by a 256-pixel by 256-pixel image
\ and the average image size is 100KB). For an area of 1km x 1km, we need 25 images
i or 2.5MB (25 x 100KB) of data. Therefore, if the speed is 30km/h, we need 75MB

(30 x 2.5MB) of data per hour or 1.25MB of data per minute.

Next, we estimate the CDN data usage. Al our scale, the cost is an important factor to

consider,

74 | Chapter 3. Google Maps

- Tr;ﬂﬂc t_hrou_gh CDN

As mentioned earlier, we serve 5 billion minutes of navigation per day. This trans-
lates to b billion x 1.20MB = 6.2h billion MB per day. Hence, we serve (2,000MB

—1-‘-i-?3"-‘ﬁﬂ'-"-‘ﬂl---—) of map data per second. With a CDN, these map images are go-
10° seconds in a day | ' ’ :

ing to be served from the POPs all over the world. Let's assume there are 200 POPs.

-~ L I.' H’
Each POP would only need to serve a few hundred MBs ("’M—:—,) per second.

There is one final detail in the map rendering design we have only briefly touched on.
How does the client know which URLSs to use to fetch the map tiles from the CDN? Keep
in mind that we are using option 2 as discussed above. With that option, the map tiles
are static and pre-generated based on fixed sets of grids, with each set representing a
discrete zoom level.

Since we encode the grids in geohash, and there is one unique geohash per grid,
computationally it is very efficient to go from the client’s location (in latitude and
longitude) and zoom level to the geohash, for the map tile. This calculation can
be done on the client and we can fetch any static image tile from the CDN. For
example, the URL for the image tile of Google headquarter could look like this:
https://cdn.map—pruvider.com/tiles/9q9hvu.png

Refer to Chapter 1 Proximity Service on page 10 for a more detailed discussion of geohash
encoding.

Calculating geohash on the client should work well. However, keep in mind that this
algorithm is hardcoded in all the clients on all different platforms. Shipping changes to
mobile apps is a time-consuming and somewhat risky process. We have to be sure that
geohashing is the method we plan to use long-term to encode the collection of map tiles
and that it is unlikely to change. If we need to switch to another encoding method for
some reason, it will take a lot of effort and the risk is not low.

Here is another option worth considering. Instead of using a hardcoded client-side algo-
rithm to convert a latitude/longitude (lat/Ing) pair and zoom level to a tile URL, we could
introduce a service as an intermediary whose job is to construct the tile URLs based on
the same inputs mentioned above. This is a very simple service. The added operational
flexibility might be worth it. This is a very interesting tradeoff discussion we could have
with the interviewer. The alternative map rendering flow is shown in Figure 3.12.

When a user moves to a new location or to a new zoom level, the map tile service de-
termines which tiles are needed and translates that information into a set of tile URLs to
retrieve.

Step 2 - Propose High-level Design and Get Buy-in | 75

Mobile User
—(4) Download tiles v.

CDN

(1)Fetch URLs of tiles

Load Balancer

@ Forward Request

l

Construct
URLs of tiles

Map Tile Service

Figure 3.12: Map rendering

1. A mobile user calls the map tile service to fetch the tile URLs. The request is sent ,
the load balancer.

9. The load balancer forwards the request to the map tile service.

3. The map tile service takes the client’s location and zoom level as inputs and returs
9 URLs of the tiles to the client. These tiles include the tile to render and the eight
surrounding tiles.

4. The mobile client downloads the tiles from the CDN.

We will go into more detail on the precomputed map tiles in the design deep dive sec-
tion.

Step 3 - Design Deep Dive
In this section, we first have a discussion about the data model. Then we talk about
location service, navigation service, and map rendering in more detail.

Data model
We are dealing with four types of data: routing tiles, user location data, geocoding data,

and precomputed map tiles of the world.

Routing tiles

As mentioned previously, the initial road dataset is obtained from different sources and
authorities. It contains terabytes of data. The dataset is improved over time by the lo-
cation data the application continuously collects from the users as they use the applica-
tion.

This dataset contains a large number of roads and associated metadata such as names,
county, longitude, and latitude. This data is not organized as graph data structures and

76 | Chapter 3. Google Maps

is not usable by most routing algorithms. We run a periodic offline processing pipeline,
called routing tile processing service, to transform this dataset into the routing tiles we
introduced. The service runs periodically to capture new changes to the road data.

The output of the routing tile processing service is routing tiles. There are three sets
of these tiles at different resolutions, as described in the “Map 101" section on page 60.
Each tile contains a list of graph nodes and edges representing the intersections and
roads within the area covered by the tile. It also contains references to other tiles its
roads connect to. These tiles together form an interconnected network of roads that the
routing algorithms can consume incrementally.

Where should the routing tile processing service store these tiles? Most graph data is
represented as adjacency lists [12] in memory. There are too many tiles to keep the
entire set of adjacency lists in memory. We could store the nodes and edges as rows in a
database, but we would only be using the database as storage, and it seems an expensive
way to store bits of data. We also don’t need any database features for routing tiles.

The more efficient way to store these tiles is in object storage like S3 and cache it ag-
gressively on the routing service that uses those tiles. There are many high-performance
software packages we could use to serialize the adjacency lists to a binary file. We could
organize these tiles by their geohashes in object storage. This provides a fast lookup
mechanism to locate a tile by lat/Ing pair.

We discuss how the shortest path service uses these routing tiles shortly.

User location data

User location data is valuable. We use it to update our road data and routing tiles. We
also use it to build a database of live and historical traffic data. This location data is also
consumed by multiple data stream processing services to update the map data.

For user location data, we need a database that can handle the write-heavy workload well
and can be horizontally scaled. Cassandra could be a good candidate.

Here is what a single row could look like:

user_id | timestamp | user_mode | driving_mode | location
101 1635740977 | active driving (20.0, 30.5)

Table 3.2: Location table

Geocoding database

This database stores places and their corresponding lat/Ing pair. We can use a key-value
database such as Redis for fast reads, since we have frequent reads and infrequent writes.
We use it to convert an origin or destination to a lat/Ing pair before passing it to the route
planner service.

Precomputed images of the world map

When a device asks for a map of a particular area, we need to get nearby roads and
compute an image that represents that area with all the roads and related details. These

Step 3 - Design Deep Dive | 77

computations would be heavy and redundant, so it could be helpful to compyy,
once and then cache the images. We precompute images at different zoom Ipv(,.l the
. §
store them on a CDN. which is backed by cloud storage such as Amazon S3. Her, i
]

example of such an image:

Figure 3.13: Precomputed tiles

Services
Now that we have discussed the data model, let’s take a close look at some of the most im-
portant services: location service, map rendering service, and navigation service.

Location service
In the high-level design, we discussed how location service works. In this section, we

focus on the database design for this service and also how user location is used in de-

tail.
In Figure 3.14, the key-value store is used to store user location data. Let’s take a close
look.

78 | Chapter 3. Google Maps

Mobile User

L Load Balancer ‘

\J

Location
Service

User Location DB

Figure 3.14: User location database

Given the fact we have 1 million location updates every second, we need to have a
database that supports fast writes. A NoSQL key-value database or column-oriented
database would be a good choice here. In addition, a user’s location is continuously
changing and becomes stale as soon as a new update arrives. Therefore, we can prior-
itize availability over consistency. The CAP theorem [13] states that we could choose
two attributes among consistency, availability, and partition tolerance. Given our con-
straints, we would go with availability and partition tolerance. One database that is a
good fit is Cassandra. It can handle our scale with a strong availability guarantee.

The key is the combination of (user_id, timestamp) and the value is a lat/Ing pair. In
this setup, user_id is the primary key and timestamp is the clustering key. The advantage
of using user_id as the partition key is that we can quickly read the latest position of a
specific user. All the data with the same partition key are stored together, sorted by
timestamp. With this arrangement, the retrieval of the location data for a specific user

within a time range is very efficient.

Below is an example of what the table may look like.

key (user_id) | timestamp | lat | long | user_mode | navigation_mode
51 132053000 | 21.9 | 89.8 | active driving

Table 3.3: Location data

How do we use the user location data?

User location data is essential. It supports many use cases. We use the data to detect new
and recently closed roads. We use it as one of the inputs to improve the accuracy of our
map over time. It is also an input for live traffic data.

To support these use cases, in addition to writing current user locations in our data-

Step 3 - Design Deep Dive | 79

base. we log this information into a message queue, such as Kafka. Kafka is a UMiifleg
low -latency. high-throughput data streaming platform designed for real-time data feedy
Figure 3.15 shows how Kafka is used in the improved design.

Traffic Update
Service

Traffic DB

Wobis User

Machine Learning
Service fo_r
Personalization

-

Personalization Dg

Location
Service
Routing Tile —__’E
Processing
Service
Routing Tiles
(Object storage)

User Location DB Analytics

Analytics DB

!

Figure 3.15: Location data is used by other services

Other services consume the location data stream from Kafka for various use cases. For
instance, the live traffic service digests the output stream and updates the live traffi
database. The routing tile processing service improves the map of the world by detect-
ing new or closed roads and updating the affected routing tiles in object storage. Other
services can also tap into the stream for different purposes.

Rendering map
In this section, we dive deep into precomputed map tiles and map rendering optimization.
They are primarily inspired by the work of Google Design [3].

Precomputed tiles

As mentioned previously, there are different sets of precomputed map tiles at various
distinct zoom levels to provide the appropriate level of map detail to the user, based on
the client’s viewport size and zoom level. Google Maps uses 21 zoom levels (Table 3.1).

This is what we use, as well.

Level 0 is the most zoomed-out level. The entire map is represented by a single tile of
size 256 x 250 pixels.

With each increment of the zoom level, the number of map tiles doubles in both north-
south and east-west directions, while each tile stays at 256 x 256 pixels. As shown in
Figure 3.16, at zoom level 1, there are 2 x 2 tiles, with a total combined resolution of
H12 x 512 pixels. At zoom level 2, there are 4 x 4 tiles, with a total combined resolution
of 1024 x 1024 pixels. With each increment, the entire set of tiles has 4x as many pixels

80 | Chapter 3. Google Maps

as the previous level The increased pixel count provides an increasing level of detail to
the user. This allows the client to render the map at the best granularities depending
on the chient’s zoom level, without consuming excessive bandwidth to download tiles in
excessive detail.

0 -" |'.j .
- '_I a : o - - -
mm1 00 10 01/00 10 1
rctlca

Figure 3.16: Zoom levels

Optimization: use vectors

With the development and implementation of WebGL, one potential improvement is to
change the design from sending the images over the network, to sending the vector in-
formation (paths and polygons) instead. The client draws the paths and polygons from
the vector information.

One obvious advantage of vector tiles is that vector data compresses much better than
images do. The bandwidth saving is substantial.

A less obvious benefit is that vector tiles provide a much better zooming experience.
With rasterized images, as the client zooms in from one level to another, everything gets

Step 3 - Design Deep Dive | 81

Shortest-path service

The shortest-path service receives the origin and the destination in lat/Ing pairs ang ,,
turns the top-k shortest paths without considering traffic or current conditions. 1,
pn]npu[aﬁnn 011]}" d(‘p(—‘nds on [h(‘ structure Dflh(-‘ 1'0:1c|s. “(?TC. L'F]L'hillg lht’.' routes could
be beneficial because the graph rarely changes.

The shortest-path service runs a variation of A" pathfinding algorithms against the rey;.
ing tiles in object storage. Here is an overview:

» The algorithm receives the origin and destination in lat/Ing pairs. The lat/Ing pairs
are converted to geohashes which are then used to load the start and end-points of
routing tiles.

« The algorithm starts from the origin routing tile, traverses the graph data structure,
and hydrates additional neighboring tiles from object storage (or its local cache if i
has loaded it before) as it expands the search area. It's worth noting that there are
connections from one level of tile to another covering the same area. This is how
the algorithm could “enter” the bigger tiles containing only highways, for example.
The algorithm continues to expand its search by hydrating more neighboring tiles
(or tiles at different resolutions) as needed until a set of best routes is found.

Figure 3.18 (based on [14]) gives a conceptual overview of the tiles used in the graph
traversal.

7 ey] oV

(e | I R
1

G

-

A .

.\.

s
‘T:‘r—

L

N (A /: i —
AN EAAN

Figure 3.18: Graph traversal

ETA service

Once the route planner receives a list of possible shortest paths, it calls the ETA service
for each possible route and gets a time estimate. For this, the ETA service uses machine
learning to predict the ETAs based on the current traffic and historical data.

One of the challenges here is that we not only need to have real-time traffic data but also
to predict how the traffic will look like in 10 or 20 minutes. These kinds of challenges
need to be addressed at an algorithmic level and will not be discussed in this section. If

84 | Chapter 3. Google Maps

vou are interested, refer to [15] and [16].
Ranker service

Finally, after the route planner obtains the ETA predictions, it passes this info to the
ranker to apply possible filters as defined by the user. Some example filters include op-
tions to avoid toll roads or to avoid freeways. The ranker service then ranks the possible
routes from fastest to slowest and returns top-k results to the navigation service.

Updater services

These services tap into the Kafka location update stream and asynchronously update
some of the important databases to keep them up-to-date. The traffic database and the
routing tiles are some examples.

The routing tile processing service is responsible for transforming the road dataset with
newly found roads and road closures into a continuously updated set of routing tiles.
This helps the shortest path service to be more accurate.

The traffic update service extracts traffic conditions from the streams of location updates
sent by the active users. This insight is fed into the live traffic database. This enables the
ETA service to provide more accurate estimates.

Improvement: adaptive ETA and rerouting

The current design does not support adaptive ETA and rerouting. To address this, the
server needs to keep track of all the active navigating users and update them on ETA
continuously, whenever traffic conditions change. Here we need to answer a few impor-
tant questions:

« How do we track actively navigating users?

« How do we store the data, so that we can efficiently locate the users affected by traffic
changes among millions of navigation routes?

Let’s start with a naive solution. In Figure 3.19, user_1’s navigation route is represented
by routing tiles r_1, r.2, r_3,...r_7.

L S S T S

! (origin) | \ i d
i r_s i
fre——— T““‘?"“.
! r_ i
! ré i (destination) |

Figure 3.19: Navigation route
The database stores actively navigating users and routes information which might look
like this:

user. s vty 12y B8y g LK

Step 3 - Design Deep Dive | 85

user_2: F.4, r.8; ©.9, wy tUN

user_3: r_2, r. 8, r_9, ..., r_m

user_n: r_2, r_18, r_21, ..., r_1

Let’s say there is a traffic incident in routing tile 2 (r_2). To figure out which userg ,,,
affected, we scan through each row and check if routing tile 2 is in our list of routing tjje.
(see example below).

gser_12 .l ¥.8; 35 ww; £.K

userL2: rod, rob, r.9, ey ron

user_3: r.2, r_ 8, r.9, ..., r_m

user_n: £.2, r.18; r.21, ., 1

Assume the number of rows in the table is n and the average length of the navigation
route is m. The time complexity to find all users affected by the traffic change is O(p
m).

Can we make this process faster? Let’s explore a different approach. For each actively
navigating user, we keep the current routing tile, the routing tile at the next resolution

level that contains it, and recursively find the routing tile at the next resolution level unti
we find the user’s destination in the tile as well (Figure 3.20). By doing this, we can get

a row of the database table like this.

user_1, r_1, super(r_1), super(super(r_1)), ...

86 | Chapter 3. Google Maps

i This routing tile only contains origin ’ O+ Origin Routing tile

it
x

O+ ——0rigin '
Level 1
Routing tile

-_-___,
|

|

|

|
|

0
[

1
!]
| '
| i
|

[
1

I
| |
¥

I
’ |
' '
' '
| 1
' i
! '
| '
i i |
'

i
Py [|
l [l !
! | I L
| |
! i
' |

t
| I |
'

1
1

|
! 1
i
1]
i i
' i
1 0
' 0
1 i
1 1
! I
1

1
'

I
' |
i i
i)
]

i
1
! |

b
|

'
| i
! '
) i
' [
| i
' '
i I

Level 2
Routing tile

Destination

O

This routing tile contains
both origin and destination

Figure 3.20: Build routing tiles

To find out if a user is affected by the traffic change, we need only check if a routing tile
is inside the last routing tile of a row in the database. If not, the user is not impacted. If
itis, the user is affected. By doing this, we can quickly filter out many users.

This approach doesn’t specify what happens when traffic clears. For example, if routing
tile 2 clears and users can go back to the old route, how do users know rerouting is
available? One idea is to keep track of all possible routes for a navigating user, recalculate
the ETAs regularly and notify the user if a new route with a shorter ETA is found.

Delivery protocols

It is a reality that during navigation, route conditions can change and the server needs
a reliable way to push data to mobile clients. For delivery protocol from the server to
the client, our options include mobile push notification, long polling, WebSocket, and
Server-Sent Events (SSE).

+ Mobile push notification is not a great option because the payload size is very limited
(4,096 bytes for iOS) and it doesn’t support web applications.

« WebSocket is generally considered to be a better option than long polling because it
has a very light footprint on servers.

« Since we have ruled out the mobile push notification and long polling, the choice is
mainly between WebSocket and SSE. Even though both can work, we lean towards
WebSocket because it supports bi-directional communication and features such as

Step 3 - Design Deep Dive | 87

last-mile delivery might require bi-directional real-time communication,

For more details about ETA and rerouting, please refer to [15].

Now we have every piece of the design together. Please see the updated design in Fig,,,
3.21.

Mobile User

Geocoding Navigation
Service Service
Geocoding DB
¥
Route Planer
Service
R / |
) Adaptive ETA and
\ Ranker i Sh%‘?{?l‘cza‘h 1 ETA Service Rerouting
Filler Service
(Avoid tolls, ...} Active U
e
Routing Tiles e Bers
(Object storage)

Figure 3.21: Final design

Step 4 - Wrap Up

In this chapter, we designed a simplified Google Maps application with key fealures such
as location update, ETAs, route planning, and map rendering. If you are u?terested in
expanding the system, one potential improvement would be to provide multl-sl'op qavi-
gation capability for enterprise customers. For example, for a given set of destinations,
we have to find the optimal order in which to visit them all and provide proper naviga-
tion, based on live traffic conditions. This could be helpful for delivery services such as
DoorDash, Uber, Lyft, etc.

Congratulations on getting this far! Now give yourself a pat on the back. Good job!

88 | Chapter 3. Google Maps

Chapter Summary

neer loeation |:1'--f|h
5
/

/

functional req <—— navigation service
5

\

N\
map rendering

highly accurate
step 1 . f
non-functional req \ smooth navigation

~ data usage

storage
estimation <
server Lraffic

positioning system
going from 3d to 2d
map 101 geocoding
geohashing
step 2 routing tiles
location service
high-level design navigalion service
map rendering
routing tiles

user location

data
places
precomputed images
location service how location data is used
services

step 3 precomputed tiles
rendering map

use vectors

geocoding

route planner

navigation service shortest-path
step 4 ——— wrap up ETA service

adaptive ETA and rerouting

Chapter Summary | 89

Reference Material

[1] Google Maps. https://developers.google.com/maps?hl=en_US.

[7]
8]
(9]

(10]
(11]

(12]
[13]
[14]
[15]

Google Maps Platform. https://cloud.google.com/maps-platform/.

Prototyping a Smoother Map. https://medium.com/google-design/google- Mmaps.
b0326d16515. ‘

Mercator projection. https://en.wikipedia.org/wiki/Mercator_projection.

Peirce quincuncial projection. https://en.wikipedia.org/wiki/Peirce_quincuncia] p
rojection. =

Gall-Peters projection. https://en.wikipedia.org/wiki/Gall-Peters_projection,
Winkel tripel projection. https://en.wikipedia.org/wiki/Winkel_tripel_projection,
Address geocoding. https://en.wikipedia.org/wiki/Address_geocoding.

Geohashing. https://kousiknath.medium.com/system- design-design-a-geo-spatia
-index-for-real-time-location-search-10968fe62b9c.

HTTP keep-alive. https://en.wikipedia.orgfwiki/HTI‘Pﬂpersistent_connection.

Directions APL https://’developers.google.com/mapsx’d0cumentationfdirectionsfst
art”hl=en_US.

Adjacency list. https://en.wikipedia.org/wiki/Adjacency_list.
CAP theorem. https:Nen.wikipedia.orglwiki/CAP_theorem.
Routing Tiles. https:f/va]ha.lla.readthedocs.io/enflatest/mjolm'r/why_tilesf.

ETAs with GNNs. https:/;’deepmind.com[blog/article;’trafﬁc-prediction—with-adva
nced-graph-neural-networks.

Google Maps 101: How AT helps predict traffic and determine routes. https://blog
.google/products/maps/google-maps-101-how-ai-helps-predict—trafﬁc-and-deter
mine-routes/.

90 | Chapter 3. Google Maps

4

Distributed Message Queue

In this chapter, we explore a popular question in system design interviews: design a
distributed message queue. In modern architecture, systems are broken up into small and
independent building blocks with well-defined interfaces between them. Message queues
provide communication and coordination for those building blocks. What benefits do
message queues bring?

Decoupling. Message queues eliminate the tight coupling between components so
they can be updated independently.

Improved scalability. We can scale producers and consumers independently based
on traffic load. For example, during peak hours, more consumers can be added to
handle the increased traffic.

Increased availability. If one part of the system goes offline, the other components
can continue to interact with the queue.

Better performance. Message queues make asynchronous communication easy. Pro-
ducers can add messages to a queue without waiting for the response and consumers
consume messages whenever they are available. They don’t need to wait for each
other.

Figure 4.1 shows some of the most popular distributed message queues on the mar-

ket.

Apache Kafka Apache RocketMQ E RabbitMQ
d

v

ﬁ Apache Pulsar @ Apache ActiveMQ z ZeroMQ

Figure 4.1: Popular distributed message queues

| 91

Message queues vs event streaming platforms

Strictly speaking, Apache Kafka and Pulsar are not message queuces as they are ¢,
streaming platforms. However, there is a convergence of features that starts to blyr !hlf‘
distinction between message queues (RocketMQ, ActiveMQ, RabbitMQ), ZeroM), ¢,
and event streaming platforms (Kafka, Pulsar). For example, RabbitMQ, which is a lypir;t]
message queue, added an optional streams feature to allow repeated message consump,.
tion and long message retention, and its implementation uses an append-only log, much
like an event streaming platform would. Apache Pulsar is primarily a Kafka competit,
but it is also flexible and performant enough to be used as a typical distributed mcssagé
queue.

In this chapter, we will design a distributed message queue with additional features
such as long data retention, repeated consumption of messages, etc., that are typ-,
ically only available on event streaming platforms. These additional features make the
design more complicated. Throughout the chapter, we will highlight places where the de-
sign could be simplified if the focus of your interview centers around the more traditiong|
distributed message queues.

Step 1 - Understand the Problem and Establish Design Scope

In a nutshell, the basic functionality of a message queue is straightforward: producers
send messages to a queue, and consumers consume messages from it. Beyond this basic
functionality, there are other considerations including performance, message delivery se-
mantics, data detention, etc. The following set of questions will help clarify requirements
and narrow down the scope.

Candidate: What's the format and average size of messages? Is it text only? Is multi-

media allowed?
Interviewer: Text messages only. Messages are generally measured in the range of

kilobytes (KBs).

Candidate: Can messages be repeatedly consumed?

Interviewer: Yes, messages can be repeatedly consumed by different consumers. Note
that this is an added feature. A traditional distributed message queue does not retain
a message once it has been successfully delivered to a consumer. Therefore, a message
cannot be repeatedly consumed in a traditional message queue.

Candidate: Are messages consumed in the same order they were produced?
Interviewer: Yes, messages should be consumed in the same order they were produced.
Note that this is an added feature. A traditional distributed message queue does not
usually guarantee delivery orders.

Candidate: Does data need to be persisted and what is the data retention?
Interviewer: Yes, let’s assume data retention is two weeks. This is an added feature. A
traditional distributed message queue does not retain messages.

Candidate: How many producers and consumers are we going to support?

92 | Chapter 4. Distributed Message Queue

—————————————

Interviewer: The more the better.

Candidate: What's the data delivery semantic we need to support? For example, at
most-once, at-least-once, and exactly once.

Interviewer: We definitely want to support at-least-once. Ideally, we should support
all of them and make them configurable,

Candidate: What's the target throughput and end-to-end latency?
Interviewer: It should support high throughput for use cases like log aggregation. It
should also support low latency delivery for more traditional message queue use cases,

With the above conversation, let’s assume we have the following functional require-
ments:

« Producers send messages to a message queue.

« Consumers consume messages from a message queue.

» Messages can be consumed repeatedly or only once.

« Historical data can be truncated.

« Message size is in the kilobyte range.

- Ability to deliver messages to consumers in the order they were added to the queue.

« Data delivery semantics (at-least once, at-most once, or exactly once) can be config-
ured by users.

Non-functional requirements
« High throughput or low latency, configurable based on use cases.

« Scalable. The system should be distributed in nature. It should be able to support a
sudden surge in message volume.

» Persistent and durable. Data should be persisted on disk and replicated across mul-
tiple nodes.

Adjustments for traditional message queues

Traditional message queues like RabbitMQ do not have as strong a retention requirement
as event streaming platforms. Traditional queues retain messages in memory just long
enough for them to be consumed. They provide on-disk overflow capacity [1] which
is several orders of magnitude smaller than the capacity required for event streaming
platforms. Traditional message queues do not typically maintain message ordering. The
messages can be consumed in a different order than they were produced. These differ-
ences greatly simplify the design which we will discuss where appropriate.

Step 2 - Propose High-level Design and Get Buy-in
First, let’s discuss the basic functionalities of a message queue.

Figure 4.2 shows the key components of a message queue and the simplified interactions
between these components.

Step 2 - Propose High-level Design and Get Buy-in | 93

