
Apache Kafka® Administration

By Confluent
Version 7.8.1-v1.0.2

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Table of Contents

 Introduction . 1

Class Logistics and Overview . 2

Fundamentals Review . 9

1: Bridging From Fundamentals . 12

1a: How Can You Leverage Replication? . 16

Labs: Bridging From Fundamentals . 24

2: Replicating Data: A Deeper Dive . 25

2a: How Does Kafka Determine Which Messages Can be Consumed? . 28

2b: How Does Kafka Place Replicas and How Can You Control Replication Further? . 37

2c: How Does Kafka React When a Leader Dies?. 45

2d: How Does Kafka Track Follower Responsiveness? . 48

3: Producing Messages Reliably . 52

3a: How Do Producers Know Brokers Received Messages? . 55

3b: How Can Kafka recognize Duplicates caused by Retries?. 62

3c: How Does Kafka Handle the Notion of Producers Sending Messages in Transactions? . 65

4: Storing the Records Persistently. 72

4a: How Does Kafka Organize Files to Store Partition Data? . 75

Lab: Investigating the Distributed Log . 82

4b: How Can You Decide How Kafka Keeps Messages? . 83

4c: How to Scale Storage Beyond Kafka Servers? . 98

5: Configuring a Kafka Cluster. 103

5a: How Do You Configure Brokers? . 106

5b: What if You Want to Adjust Settings Dynamically or Apply at the Topic Level? . 114

Labs: Configuring a Kafka Cluster . 125

6: Managing a Kafka Cluster . 126

6a: What Should You Consider When Installing and Upgrading Kafka? . 129

6b: What is a Controller vs a Broker? . 136

6c: What are the Basics of Monitoring Kafka? . 142

6d: How Can You Move Partitions To New Brokers Easily? . 151

6e: What Should You Consider When Shrinking a Cluster?. 158

Lab: Kafka Administrative Tools . 162

7: Balancing Load with Consumer Groups and Partitions . 163

7a: What are the Basics of Scaling Consumption? . 166

7b: How Do Groups Distribute Work Across Partitions?. 171

7c: How Does Kafka Manage Groups? . 179

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

7d: How Do Partitions and Consumers Scale? . 186

7e: How Does Kafka Maintain Consumer Offsets? . 193

Lab: Modifying Partitions and Viewing Offsets . 199

8: Optimizing Kafka’s Performance . 200

8a: How Does Kafka Handle the Idea of Sending Many Messages at Once? . 204

Lab: Exploring Producer Performance . 212

8b: How Do Produce and Fetch Requests Get Processed on a Broker? . 213

8c: How Can You Measure and Control How Requests Make It Through a Broker? . 219

8d: What Else Can Affect Broker Performance? . 230

8e: How Do You Control It So One Client Does Not Dominate the Broker Resources? . 238

8f: What Should You Consider in Assessing Client Performance? . 247

8g: How Can You Test How Clients Perform? . 253

Lab: Performance Tuning . 257

9: Securing a Kafka Cluster . 258

9a: What are the Basic Ideas You Should Know about Kafka Security? . 261

9b: What Options Do You Have For Securing a Kafka/Confluent Deployment? . 270

9c: How Can You Easily Control Who Can Access What? . 275

9d: What Should You Know Securing a Deployment Beyond Kafka Itself? . 289

Lab: Securing the Kafka Cluster . 294

10: Understanding Kafka Connect . 295

10a: What Can You Do with Kafka Connect? . 298

10b: How Do You Configure Workers and Connectors?. 309

10c: Deep Dive into a Connector & Finding Connectors . 319

10d: What Else Can One Do With Connect? . 328

Lab: Running Kafka Connect . 332

11: Deploying Kafka in Production . 333

11a: What Does Confluent Advise for Deploying Servers in Production? . 337

11b: What Does Confluent Advise for Deploying Kafka Connect in Production? . 355

11c: What Does Confluent Advise for Deploying Schema Registry in Production? . 359

11d: What Does Confluent Advise for Deploying the REST Proxy in Production? . 364

11e: Deploying Kafka Streams applications in Production . 368

11f: What Does Confluent Advise for Deploying Control Center in Production? . 371

 Conclusion . 374

 Appendix: Additional Content . 383

Appendix A: Detailed Transactions Demo . 385

Appendix B: How Can You Monitor Replication? . 400

Appendix C: Multi-Region Clusters . 405

Appendix D: SSL and SASL Details . 421

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Introduction

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 1

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Class Logistics and Overview

Copyright & Trademarks

Copyright © Confluent, Inc. 2014-2025. Privacy Policy | Terms & Conditions.

Apache, Apache Kafka, Kafka, and the Kafka logo are trademarks of the

Apache Software Foundation

All other trademarks, product names, and company names or logos cited herein

are the property of their respective owners.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 2

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/confluent-privacy-statement/
https://www.confluent.io/terms-of-use/
http://www.apache.org/

Prerequisite

 This course requires a working knowledge of the Apache Kafka architecture.

New to Kafka? Need a refresher?

Sign up for free Confluent Fundamentals for Apache Kafka course at https://confluent.io/

training

Attendees should have a working knowledge of the Kafka architecture, either from prior

experience or the recommended prerequisite course Confluent Fundamentals for Apache

Kafka®.

This free course is available at https://training.confluent.io/learningpath/apache-kafka-

fundamentals for anyone who needs to catch up.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 3

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://confluent.io/training
https://confluent.io/training
https://training.confluent.io/learningpath/apache-kafka-fundamentals
https://training.confluent.io/learningpath/apache-kafka-fundamentals

Agenda

This course consists of these modules:

• Bridging From Fundamentals

• Replicating Data: A Deeper Dive

• Producing Messages Reliably

• Storing the Records Persistently

• Configuring a Kafka Cluster

• Managing a Kafka Cluster

• Balancing Load with Consumer Groups and Partitions

• Optimizing Kafka’s Performance

• Securing a Kafka Cluster

• Understanding Kafka Connect

• Deploying Kafka in Production

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 4

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Course Objectives

Upon completion of this course, you should be able to:

• Describe how Kafka brokers, producers, and consumers work

• Describe how replication works within the cluster

• Understand hardware and runtime configuration options

• Monitor and administer your Kafka cluster

• Integrate Kafka with external systems using Kafka Connect

• Design a Kafka cluster for high availability & fault tolerance

Throughout the course, Hands-On Exercises and Activities will reinforce the topics being

discussed.

• "Hands-On Exercises" refers to lab exercises that are designed to follow up on many of

the lessons. Your instructor will introduce you to our lab environment. These exercises are

in the Exercise Guide, and there are slides in your handbook at the earliest point you are

enabled to do them.

• "Activities" refers to assorted interactive aspects of the course. Such activities appear at

the end of some lessons and embedded in others. Your instructor may choose to approach

these in various ways, but they are included in the content to give you opportunities to

engage with and reinforce the material.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 5

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Class Logistics

• Timing

◦ Start and end times

◦ Can I come in early/stay late?

◦ Breaks

◦ Lunch

• Physical Class Concerns

◦ Restrooms

◦ Wi-Fi and other information

◦ Emergency procedures

◦ Don’t leave belongings unattended

 No recording, please!

Expanding on the rule at the bottom: You are not permitted to record via any medium, or

stream via any medium any of the content from this class.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 6

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How to get the courseware?

1. Register at training.confluent.io

2. Verify your email

3. Log in to training.confluent.io and enter your license

activation key

4. Go to the Classes dashboard and select your class

Your instructor may choose to have you do this now, combine it with the first lab, or do it

before class begins.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 7

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Introductions

About you:

• What is your name, your company, and your role?

• Where are you located (city, timezone)?

• What is your experience with Kafka?

• Which other Confluent courses have you attended, if any?

• (For Administration classes) What is your experience with Linux? With

container technology?

• (For Developer classes) Which Computer Languages are you fluent

with?

About your instructor

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 8

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Fundamentals Review

Discussion

Question Set 1 [4 minutes]

Determine if each statement is true or

false and why:

1. All messages in a topic are on the same

broker.

2. All messages in a partition are on the

same broker.

3. In a topic, all messages that have the

same key will be on the same broker.

4. The more partitions a topic has, the

higher the performance that can be

achieved.

Question Set 2 [4 minutes]

Determine the best answer to each

question.

1. What are the roles of a producer and a

consumer?

2. How is it decided which messages

consumers read?

3. Who initiates the reading of messages:

consumers or the Kafka cluster?

4. How many times can a single message

be consumed?


How your instructor approaches this section may vary depending on the

particular class.

Answers to Question Set 1

1. Mostly false. Kafka tries to balance the workload by selecting different brokers to "host"

different partitions (we say that a broker is the leader of that partition). Because

messages of the same topic are sent to different partitions, they can land ond different

topics. The exceptions are when the topic has a single partition and when the cluster is

badly balanced (one broker is the leader of all partitions of the topic).

2. True by definition. For each partition there is a broker that act as its leader: if a message

is not in the leader then it is not in the partition. When we add replication, there can be

other brokers, (which we call followers) that may be lagging behind the leader, so they

don’t have all the messages (yet).

3. True by default. For keyed messages, partition placement is determined by hash(key) %
num partitions by default, so all messages of a given key will always land on the same

partition (as long as the number of partitions does not change), and thus on the same

broker.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 9

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

4. True up to certain point. A topic with more partitions allows for more parallelism at the

broker- and consumer-level, there are diminishing returns because of increased overhead.

Answers to Question Set 2

1. A producer has to serialize the payload of the message, to select the target partition, and

to send the message to the Kafka cluster, A consumer has to subscribe to topics, keep

track of its offsets, fetch messages from the Kafka cluster based on said offsets, and

potentially work alongside other consumers in a cooperative way by taking advantage of

the parallelism that partitions allow.

2. Consumers must keep track of the offset of the next message they want to read per

partition (what we call consumer offsets), then typically read messages sequentially.

3. Kafka is a poll system, so consumers initiate the reading.

4. Consumers works independently, unless they are cooperating with each other in what we

call consumer groups. So if one consumer in a consumer group reads a message, no other

consumer in the same group can read it (this is done for parallelism). On the other side,

consumers belonging to different groups may read the same message, even at different

times! Expert mode: how the code persists offsets — offset commit — may change this, or if

the code manipulates the offsets.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 10

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Instructor-Led Review

Some time is allocated here for an instructor-led review/Q&A on prerequisite concepts from

Fundamentals.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 11

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

1: Bridging From Fundamentals

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 12

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 1 lesson:

• How Can You Leverage Replication?

Where this fits in:

• Recommended Prerequisite: Fundamentals course

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 13

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent’s Deployment Architecture for

Kafka

Applications Microservices

(optional)
Sticky Load Balancer

ProxyProxyProxy

Confluent REST Proxy

SecondaryPrimary

Confluent Schema Registry

Worker +
Connectors +

Replicator

Worker +
Connectors +

Replicator

Kafka Connect

CCCCCC

Control Center
Confluent

VoterVoterVoterVoter

Active Controller

KRaft Quorum

BrokerBroker

BrokerBroker

BrokerBroker

Kafka

App InstanceApp Instance

Kafka Streams App

= cluster

Microservices

Applications

This is a diagram of a possible Kafka/Confluent deployment. It is given to you now to show

you the "big picture."

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 14

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Does Confluent Platform Add to Kafka?

Open Source FeaturesCommunity FeaturesCommercial Features

Core | Connect API | Streams API

APACHE KAFKA®

Connectors | Non-Java Clients | REST Proxy | Schema Registry

DEVELOPMENT & CONNECTIVITY

Control Center | Health+

MANAGEMENT & MONITORING

Tiered Storage | Self-Balancing Clusters | Confluent for K8s | Ansible Playbooks

PERFORMANCE & SCALABILITY

RBAC | Audit Logs | Schema Validation | Multi-Region Clusters | Replicator | Cluster Linking

SECURITY & RESILIENCY

CONFLUENT PLATFORM

Confluent Platform adds additional features beyond the core. The top two boxes in the

medium shade of blue are paid features; the next two in the teal shade of blue are free

features.

You can also view a more-involved version of the graphic from our current documentation.

One note about Tiered Storage: Apache Kafka 3.6.0 introduces KIP-405 "Kafka Tiered

Storage", which is a different feature than Confluent Tiered Storage. For example:

Confluent Tiered Storage does support compacted topics, the Apache feature does not.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 15

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/_images/confluentPlatform.png

1a: How Can You Leverage Replication?

Description

Review of leaders vs. followers. Replication factor. How messages get from leaders to

followers and config. ISRs. Leader failover / leader election.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 16

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Review: Basics of Replication

Ensure high availability of data with multiple replicas

of partitions

Leader Always one per partition.

Clients connect to it to write and read

Follower Generally multiple per partition.

They keep extra copies from the

leader

Topic setting replication.factor

node.id=101

Leader

node.id=102

Follower

node.id=103

Follower

Consumer
read read

Producer
write write

(one partition of a topic with

replication.factor=3)

Observe that producers write only to the leader, never followers.

Observe that consumers read only from the leader, not from followers (later we may

introduce Follower Fetching).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 17

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

"Follow the Leader"

Step 1 Step 2 Step 3

m0

m1

m2

Leader

m0

m1

Follower A

m0

m1

Follower B

new message

m0

m1

m2

Leader

m0

m1

Follower A

m0

m1

m2

Follower B

follower got

new message

m0

m1

m2

Leader

m0

m1

m2

Follower A

m0

m1

m2

Follower B

follower got

new message

Observe the three steps that are illustrated:

1. We start with a leader that has two messages. The two followers shown are caught up,

i.e. they have the same two messages. A new message is written to this partition, and it

goes to the leader.

2. The followers are monitoring the leader, periodically checking for new messages. One

follower gets the new message.

3. Then a second follower gets the new message.

(Both followers may be perfectly timed with each other and Steps 2 and 3 happen

simultaneously, but they do not have to.)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 18

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

But Observe:

m0

m1

m2

m3

m4

node.id=101

Leader

m0

m1

m2

m3

m4

node.id=102

Follower A

m0

m1

node.id=103

Follower B

• Follower A (on node 102) is an in-sync replica (ISR)

• Follower B (on node 103) is not

Note that the leader is always in-sync with itself and is always considered an in-sync replica.

Followers that are not ISRs are often referred to as stuck followers.

Note that replicas are partitions. It wouldn’t make sense to have more than one replica on

the same node, so tools reporting replica information can use node IDs to reference replicas.

Given that, we would often see the ISR list for this picture written as [101, 102].

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 19

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Leader Failover

m0

m1

m2

m3

m4

node.id=101

Leader

m0

m1

m2

m3

m4

node.id=102

Follower A

New Leader

m0

m1

node.id=103

Follower B

Question: Would either choice of follower have been equally good to replace the leader that

had died?

Answer: No, an in-sync replica is the best choice of a new leader. We want the (new) leader

to be caught up with the old leader. It’s stepping in to do the job the old leader was doing.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 20

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Does Kafka Choose Leaders?

• Leader election happens automatically

• Kafka will generally choose an in-sync follower to become leader

• Leader election does not happen in parallel

• Background processes manage balance of leadership

It’s important for you to know that when a broker containing a leader goes down, a follower

will become the new leader. But, you don’t need to worry about how this happens; Kafka will

take care of this for you.

One thing that’s important to know, however, is that the leader election process cannot be

parallelized. So, if a broker that contains the leaders for four different partitions goes down,

Kafka will need to choose a new leader for the first, then the second, then the third, and

then the fourth — in succession and not in parallel. Having leaders spread evenly across

brokers is thus good. Administrators should monitor for this, but Kafka has processes in

place to help with it.

In case you’re curious:

• For each partition, there is a preferred replica, or a broker where having its leader would

yield the best balance. Kafka has background processes that monitor how many leaders

are not in the preferred place, and, when a threshold has been crossed, Kafka balances

this.

• One Kafka node acts as Active Controller, and it handles leader election.

• If there is no in-sync follower able to become leader, Kafka will not select an out-of-sync

follower, as this could lead to data loss. Administrators may choose to turn this on,

though, understanding the implications, and allowing for something called "unclean leader

election."

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 21

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring Replication Factor

Increase the replication factor for better durability guarantees

• When creating a topic:

$ kafka-topics \
 --bootstrap-server kafka-1:9092 \
 --create
 --topic my_topic \
 --replication-factor 3 \
 --partitions 2

• Cluster-wide default value in server.properties (on all Kafka nodes)

◦ default.replication.factor (Default: 1)

There are 2 basic ways to create a topic: * Through the Admin API library. This library can be

called by your applications, and it is also used by Confluent Control Center and the kafka-
topics CLI. In this case we can specify the replication factor, or it will be created with the

default cluster-wide value. * So-called automatic topic creation. This functionality is enabled

by default: when a producer application sends a Produce request to Kafka for a topic that

doesn’t exist, Kafka will automatically create that topic with default values (number of

partitions, replication factor, clean-up policy, etc.)

The default setting for default.replication.factor is 1; change it to an appropriate

value for your environment. For production environments, it is suggested to use a replication

factor of at least 3 (and thus, you would need at least 3 brokers).

Also, notice that we do not specify which brokers to use; in most cases it is best to let Kafka

decide where to place replicas.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 22

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Exploring Replica Placement & Replication

Behavior

Say we have 5 brokers - b1, b2, …, b5.

Say we have a replication factor of 4.

1. How many followers would we have?

2. Say leader is on broker b5. Where could the followers be?

3. Say we have 3 successfully written messages that have been

properly replicated. It’s time to write the fourth message.

a. Where does it go?

b. What happens next?

4. Say broker b5 fails. What happens? Why?

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 23

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Labs: Bridging From Fundamentals

Please work on

• Lab 1a: Introduction

• Lab 1b: Preparing the Lab

• Lab 1c: Using Kafka’s Command Line Tools

• Lab 1d: Producing Records with a Null Key

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 24

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

2: Replicating Data: A Deeper Dive

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 25

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 4 lessons:

• How Does Kafka Determine Which Messages Can be Consumed?

• How Does Kafka Place Replicas and How Can You Control

Replication Further?

• How Does Kafka React When a Leader Dies?

• How Does Kafka Track Follower Responsiveness?

Where this fits in:

• Hard Prerequisite: Fundamentals course

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 26

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Describe data replication in a Kafka cluster

• Explain how a cluster recovers from failures

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 27

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

2a: How Does Kafka Determine Which

Messages Can be Consumed?

Description

High Water Mark. Committing messages.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 28

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Which Messages can be Consumed?

• A message is called "committed"

when it is replicated by all the

replicas in the ISR list

• The leader keeps track of when a

message is committed

• Consumers can only read committed

messages

• The High Water Mark (HWM) points

to the first non-committed offset

◦ Consumers can consume up to (but

not including) the HWM

◦ The HWM is checkpointed to disk

leader

c
o

m
m

it
te

d

follower follower

A message is considered committed by the leader if all the in-sync replicas have fetched the

message successfully. A committed message is guaranteed to have the same offset number

on all the followers. This means that no matter which replica is the leader (in the event of a

failure), any consumer will see the same data in that offset number. This is why a response

to a consumer’s fetch request can only contain committed messages — this is how Kafka can

make its data guarantees.

To make sure that the broker retains a list of committed messages over restarts, the last

committed offset for every partition on the broker is checkpointed to disk in a file called

replication-offset-checkpoint. This file will be described in more detail later in this

chapter.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 29

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Refining ISR Definition

• We said before that a follower that has all the messages the leader also has is considered

an in-sync replica

• More accurately, a replica is an in-sync replica if it has all the messages the leader has up

to but not including the high water mark. So …

◦ a leader may have messages that are not committed

◦ a follower that does not have some or all not-committed messages may still be an in-

sync replica

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 30

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Committing Messages with Replicas (1)

0
Initial state

Leader A

0

Follower B

Producer

0

Follower C

1

The next few slides walk through a typical replication/commit process.

Initially, the replicas for this partition have been assigned with the leader on Broker A and

followers on the other two brokers. A message has been written to offset 0 on the leader

and replicated to all followers. Therefore, the message at offset 0 is marked committed and

the high water mark is set to offset 1.

Followers constantly request more data from the leader. If new data is available (i.e., data

has been added to offsets they haven’t replicated yet), the leader will send the messages to

the followers when the followers request it. If no data is available, the request will time out

after 500ms (default) and the followers will request data again.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 31

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Committing Messages with Replicas (2)

0
Initial state

Leader A

0

Follower B

Producer

0

0 0 0

1

Follower C

1

A appends new message at offset 1 2

A message is received by the leader and written into offset 1. At this point, the followers

have not requested the new data.

But how does the leader know when the other replicas have received the message?

Traditional networking would use ack messages. However, that would add significant load

to our networks if every replica is sending an ack for every message it receives. Kafka will

use a more elegant approach that makes use of how followers fetch data.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 32

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Committing Messages with Replicas (3)

0
Initial state

Leader A

0

Follower B

Producer

0

0 0 0

1

0 0 0

1 1 1

Follower C

1

A appends new message at offset 1 2

B and C fetch and append message at offset 1 3

The followers on brokers B and C independently request any available offsets from the

leader. Each copies the message to its local commit log.

Now, all the replicas have the message but the leader does not know for sure that the

replication has been successful. It only knows that the data was requested - there is still a

chance that some followers would need to retry.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 33

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Committing Messages with Replicas (4)

0
Initial state

Leader A

0

Follower B

Producer

0

0 0 0

1

0 0 0

1 1 1

0 0 0

1 1 1

Follower C

1

A appends new message at offset 1 2

B and C fetch and append message at offset 1 3

B and C fetch null at offset 2; A advances high water mark4

Rather than wait for a separate ack message, the leader is waiting for the followers to

request the next offset. Followers will only ask for an offset if they have successfully copied

the previous ones. In this example, the leader knows that a follower has the message at

offset 1 when it requests offset 2. Once all the replicas have requested the next offset, the

leader considers the message as committed and advances the high water mark.

However, when does it send the updated high water mark to the followers? Just as with the

ack responses, Kafka does not want to send any unnecessary messages which will decrease

available bandwidth.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 34

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Committing Messages with Replicas (5)

0
Initial state

Leader A

0

Follower B

Producer

0

0 0 0

1

0 0 0

1 1 1

0 0 0

1 1 1

0 0 0

1 1 1

Follower C

1

A appends new message at offset 1 2

B and C fetch and append message at offset 1 3

B and C fetch null at offset 2; A advances high water mark4

B and C fetch null at offset 2 again and receive new high water mark 5

Rather than send the updated high water mark to the followers as a special message, the

leader will include the high water mark updates the next time the followers request new

data, independently of whether the leader’s response includes some records or not.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 35

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Assessing Consumption of a Recent Message

Discuss:

Scenario:

• Partition p's leader got a message at time 7.

• Consumer c, configured correctly and assigned to partition p

polls and gets an empty object back at time 8.

How is this possible? Use appropriate Kafka terminology.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 36

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

2b: How Does Kafka Place Replicas and How

Can You Control Replication Further?

Description

Replica placement. Preferred replicas. Under-replicated and offline partitions.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 37

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Replica Placement

Kafka…

• places replicas on brokers

• tries to balance the placement of replicas across brokers

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 38

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Rack Awareness

• Configure broker.rack in server.properties

• Specify the same "rack name" for brokers in the same Availability Zone

• Replicas will be balanced across racks with best effort

• Only enforced on topic creation or with Confluent Self-Balancing Cluster

• Feature is all or nothing

/etc/kafka/server.properties

broker.rack=us-east-1a
node.id=101

/etc/kafka/server.properties

broker.rack=us-east-1a
node.id=102

/etc/kafka/server.properties

broker.rack=us-east-1b
node.id=103

/etc/kafka/server.properties

broker.rack=us-east-1b
node.id=104

/etc/kafka/server.properties

broker.rack=us-east-1c
node.id=105

/etc/kafka/server.properties

broker.rack=us-east-1c
node.id=106

broker.rack=us-east-1c
node.id=107

/etc/kafka/server.properties

Rack awareness enforces replica placement across sets of brokers to ensure resiliency in the

face of an availability zone outage or rack failure. This is useful if deploying Kafka on

Amazon EC2 instances across availability zones in the same region, or if grouping brokers

that share physical rack space in an on-premises data center. Specify the same "rack name"

for Brokers in the same availability zone.

Rack awareness is only enforced on topic creation and with Confluent’s Self-Balancing

Cluster and Auto Data Balancer (Self-Balancing Cluster will be discussed in more detail in

an upcoming module). Setting rack awareness has no automatic effect on existing topics.

If some, but not all brokers have broker.rack set, then automatic topic creation will ignore

rack information and manual topic creation will fail. Use --disable-rack-aware to force

creation (with no rack awareness).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 39

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Balancing Leadership and Preferred Replicas

Kafka attempts to balance brokers in terms of how many leaders are on one broker

For each partition…

• a broker is designated as the default leader - the preferred replica

• failover can select other replica as new leader

• Kafka monitors how many leaders are on their preferred replicas

◦ When a threshold is exceeded, Kafka "fails back" leaderships to preferred replicas

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 40

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Viewing Partition Placement Across Cluster (1)

The same data tracked from the CLI with:

$ kafka-topics \
 --bootstrap-server kafka-1:9092 \
 --describe \
 --topic i-love-kafka

Topic:i-love-kafka PartitionCount:3 ReplicationFactor:3 Configs:
 Topic: i-love-kafka Partition: 0 Leader: 101 Replicas: 101,102,103 Isr:
101,102,103
 Topic: i-love-kafka Partition: 1 Leader: 103 Replicas: 103,101,102 Isr:
103,101,102
 Topic: i-love-kafka Partition: 2 Leader: 102 Replicas: 102,103,101 Isr:
102,103,101

 Preferred replicas highlighted in bold

The first element of the ISR is called the "preferred replica" for the leader of a partition.

Having a preferred replica allows the cluster to keep leader Partitions spread out amongst

the brokers.

Note that the output has been shortened to focus on the important pieces of information

for this slide: namely the Leader, Replicas and ISR. For reference, here is the complete

output:

$ kafka-topics \
 --bootstrap-server kafka-1:9092 \
 --describe \
 --topic i-love-kafka

Topic: i-love-kafka TopicId: NUjO1uKQSSGvfW4eToIjAg PartitionCount: 3
ReplicationFactor: 3 Configs:
 Topic: i-love-kafka Partition: 0 Leader: 1 Replicas: 1,2,3Isr: 1,2,3
Offline: Elr: N/A LastKnownElr: N/A
 Topic: i-love-kafka Partition: 1 Leader: 2 Replicas: 2,3,1Isr: 2,3,1
Offline: Elr: N/A LastKnownElr: N/A
 Topic: i-love-kafka Partition: 2 Leader: 3 Replicas: 3,1,2Isr: 3,1,2
Offline: Elr: N/A LastKnownElr: N/A

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 41

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Viewing Partition Placement Across Cluster (2)

Confluent Control Center provides per-topic replica view:

Here is a topic called grow-topic with 12 partitions (0 through 11) and replication factor 3.

Confluent Control Center shows where replicas are placed and whether they are out of sync.

A broker usually contains both leaders and followers, depending on which partition you are

talking about. For example, broker 102 in the image contains the leader for partitions 1 and

4, and contains followers for partitions 0, 2, and 3.

Note: Only 5 of 12 partitions of the grow-topic are visible in the partition list view on the

slide. The list allows one to scroll the remaining partitions and their details into view.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 42

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Two More Important Definitions

Under-Replicated Partition

partition where the number of in-sync replicas < replication factor

Offline partition

partition for which no leader exists

 You can monitor both of these. More on that in the appendix.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 43

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Follower Fetching

In this course, we told you all clients must interact with the leader. But, it is possible to

configure Kafka so consumers fetch from followers in the same "rack" to reduce costs…

leader

us-east-1a

broker-1

follower

us-east-1b

broker-2
consumers

follower

us-east-1c

broker-3

broker.rack=us-
east-1a

broker.rack=us-
east-1b

broker.rack=us-
east-1c

client.rack=us-
east-1b

All nodes:
replica.selector.class=org.apache.kafka.common.replica.RackAwareReplicaSele
ctor

Question: What is the tradeoff?

Answer to question: Followers follow the leader and fetch records from the leader

periodically. Thus, if we fetch from a follower, we might not have the most up-to-date

information. But the follower will catch up. The cost is increased latency.

Follower fetching was introduced in AK 2.4 with the client.rack property for consumers.

Brokers must have rack awareness configured with broker.rack and

replica.selector.class so that clients can discern where the closest replicas are.

You may wonder whether producers also have a client.rack setting. They do not. Kafka’s

fault tolerance and strong ordering guarantees are due to the append-only nature of the log

and the fact that producers write only to the leader. If producers could write to followers,

then the leader and follower logs would diverge.

For more information, see KIP-392.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 44

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica

2c: How Does Kafka React When a Leader

Dies?

Description

Active Controller. Leader election. Unclean leader election.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 45

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The Active Controller

• Kafka needs to maintain internal metadata (such as ISRs). This is stored in the system

metadata topic

• The leader of the metadata topic is called the Controller Leader, Active Controller or just

Controller

The Active Controller also:

• Monitors that brokers are alive

• Facilitates leader election

• Persists partition state to metadata topic

• Pushes leadership/ISR changes to involved brokers

There is a chicken-and-egg problem here: the Active Controller is a leader, but it is also the

responsible for choosing leaders. Kafka solves this with KRaft. We will discuss the role of the

Active Controller in more depth later, as well as breaking this dependency cycle.

Managing the current list of leaders and followers (ISR list) for every replicated partition is a

full-time and mission-critical job. This task is managed by the Kafka Nodes configured with

the controller role, instead of the more typical broker role.

The Active Controller monitors the health of every other node through keep-alive messages.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 46

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Unclean Leader

• Kafka defaults to choosing a follower from the ISR

• What if the ISR is empty (no in-sync follower), but you want the partition to have a

leader?

◦ Topic configuration property: unclean.leader.election.enable

◦ Determines whether a new leader can be elected even if it is not in-sync, if there is no

other choice

◦ Can result in data loss if enabled (Default: false)

unclean.leader.election.enable: By default, a leader is selected from the ISR list. This

makes the most sense because that guarantees that the data is consistent up to the high

water mark. But what if the leader fails and the only available replicas are out of sync? If the

config is set to true, the partition is available for writes immediately but will lose any

committed messages it had not synchronized before the leader failed. If the config is set to

false, the partition will be offline until one of the in-sync replicas come back. Default

behavior is false because of its stronger durability guarantee.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 47

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

2d: How Does Kafka Track Follower

Responsiveness?

Description

Replica Health. Slow Replicas. ISR Recovery

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 48

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Replica Health

Kafka include mechanisms to assess the health of the nodes:

• Per-node check: broker sends heartbeats to Active Controller

◦ If this check fails: Active Controller removes the broker from all ISRs and initiates

elections for partitions that had this broker as leader

• Per-partition check: follower replicates in a short time

◦ If this check fails: Leader asks Active Controller to remove the broker (only) from this

partition’s ISR

At a high level, all the followers that are caught up with the leader are ISRs. Recall: to

commit a message, the leader must wait for the message to be received by all ISRs. You

don’t want to wait forever if a follower fails, so failed followers will be removed from the ISR

list. This allows the leader to commit new messages with fewer replicas, but the partition is

now considered under-replicated.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 49

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Detecting Slow Replicas

Controller

Node 108

ISR: [102,101]

follower

Node 101

read write

Consumer

Node 103

follower

Too slow! Leader removes
follower from ISR after
replica.lag.time.max.ms
(default 30 sec)

leader

Node 102

Producer

• Broker setting: replica.lag.time.max.ms (Default: 30 sec)

◦ Leader drops slow follower from ISR list

◦ Too large → slow replicas will slow down time to commit a produce request

◦ Too small → replicas drop in and out of ISR

• Leader sends ISR changes to Controller

• When out-of-sync follower catches back up (by requesting the offset of a record still not

produced), the leader will add back to the ISR by sending the change to the Controller.

Recall that the condition for data to be marked committed (which makes it visible to

consumers) is for all replicas in the ISR (rather than all possible replicas) to have received

the message. If a replica has not requested data from the leader in replica.lag.time.max.ms

(30 seconds by default), the replica is dropped from the ISR so that commits can happen

without the delay caused by the slow replica.

For low latency applications, you can adjust replica.lag.time.max.ms down…but not too

low or else you risk unnecessarily dropping members from the ISR this impacting data

resiliency.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 50

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

ISR Recovery

• Leader adds a replica back when both conditions are true:

◦ Replica is up (sends heartbeats)

◦ Replica is up to date (requests to fetch the HWM)

Recall that followers can request to fetch an offset that isn’t in the leader yet; this can be

used to acknowledge the reception of the previous offset, and to receive an update of the

watermark from leader.

ISR lists are self-healing: when replicas come back up and replicate until end of partition,

leader automatically adds them back to ISR list.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 51

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

3: Producing Messages Reliably

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 52

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 3 lessons:

• How Do Producers Know Brokers Received

Messages?

• How Can Kafka recognize Duplicates caused by

Retries?

• How are Transactional Messages Tagged and

Handled?

Where this fits in:

• Hard Prerequisite: Fundamentals course

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 53

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Explain how producers reliably send messages to the brokers

• Explain how Kafka achieves Exactly Once Semantics (EOS)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 54

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

3a: How Do Producers Know Brokers Received

Messages?

Description

Producer acknowledgements.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 55

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

acks - Three Cases, Ideal Performance

Producer A Broker 101 leader

send

fetch

fetch

ack

acks

1

4

followerBroker 102

followerBroker 103

2

3

Producer A Broker 101 leader

send

ack

1

2

followerBroker 102

followerBroker 103

Producer A Broker 101 leader

send

1

followerBroker 102

followerBroker 103

We have three choices for the acks setting:

• 0 means the Kafka cluster does not communicate back to the producer whether a

message has been received.

• 1 means that once the leader has persisted the message, it communicates an

acknowledgement back to the producer.

• all means that once leader and all followers have persisted the message, the leader

communicates an acknowledgement back to the producer.

Put differently, 1 means that an ack is sent after record is stored in "1" member of the ISR,

whereas all means that an ack is sent after the record is stored in "all" members of the

ISR.

This loosely relates to message delivery guarantees. Note that there are three cases:

• At most once: Messages may be lost but are never redelivered.

• At least once: Messages are never lost but may be redelivered.

• Exactly once: this is what people generally want; each message is delivered once and only

once.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 56

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

There is a later full lesson on delivery guarantees in the Advanced Concepts branch of the

course.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 57

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

…But not all followers are in-sync…

Producer A Broker 101 leader

send

ack

1

4

followerBroker 102

out of sync replicaBroker 103
fetch

fetchacks

2

3

So… when the leader gets a new message and acks=all…

1. It notes which followers are in sync with the leader when it receives the message

2. Followers fetch from the leader and send acks to the leader

3. When the leader gets acks from all followers from (1), it sends an ack to the producer

If we took the acks = all requirement from the last slide literally, Kafka would require

stuck followers not only to get the new message, but also catch up on prior messages in

order to satisfy the acks request. Instead, Kafka does not require stuck followers to catch

up to satisfy acks = all; the new message must only be received by followers that were in-

sync with the leader at the time the leader received the new message.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 58

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if We Don’t Have Any In-Sync Followers?

Producer A Broker 101 leader

send

ack

1

2

stuck followerBroker 102

stuck followerBroker 103

Let’s be literal about what acks = all requires:

1. The leader must persist the new message

2. All followers that were in sync with the leader at the time the leader received the message

must also receive the message.

What if no followers were in sync with the leader? Then the second condition is vacuously

true and acks = all is met. But if one has set acks = all, that means the producer wants

certainty that the message has been delivered to one or more followers. This isn’t so good…

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 59

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Guaranteeing Meaningful acks=all

Producer A Broker 101 leader

send

nack

stuck followerBroker 102

stuck followerBroker 103

1

2

We'd often like `acks = all` to be stronger and only be met when a new message has made
it to at least one follower. We can strengthen it by setting `min.insync.replicas` to
`2` or greater. (Remember, the leader always counts as one in-sync replica, so this
value must be strictly greater than 1.)

Also, note that while acks is a producer setting, min.insync.replicas is a broker setting.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 60

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Producer Time Limits

send() batching await send retries in flight

Name Description Default

retries Number of times producer will retry sending

messages

MAX_IN
T

request.timeout.ms An upper bound on the time a producer will wait to

hear acknowledgments back from the cluster.

30 sec.

retry.backoff.ms How much time is added after a failed request before

retrying it.

100

delivery.timeout.ms An upper bound on the time to report success or

failure after a call to send() returns. Use this to

control producer retries.

2

minute

s.


Leave retries at MAX_INT. Control retry behavior with delivery.timeout.ms
instead.

You can review a larger list of producer configurations on our website.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 61

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html

3b: How Can Kafka recognize Duplicates

caused by Retries?

Description

Idempotent producers: why, metadata, benefits.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 62

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Problem: Producing Duplicates to the Log

• acks = all

• retries > 0 (default)

Producer

Producer

leader

follower

follower

failed

leader

follower

Here, the producer has settings acks=all with retries enabled, and under the hood we

have disabled idempotence so you can understand the issues it solves. The leader fails

before record batch m2 is replicated by all the brokers. The new leader already received m2

from the previous leader, not the producer, so it doesn’t know it has to acknowledge.

Because the new leader won’t send the acknowledgement, the producer’s retry loop will

send a new request, causing m2 to be duplicated.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 63

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Solution: Idempotent Producers

• enable.idempotence = true

• acks = all

The enable.idempotence = true setting in the Producer ensures messages aren’t

duplicated, even in the case of Producer retries or Broker failure. This is possible due to

headers in the message format for producer ID and sequence number.

• Producer ID: A unique identifier for a producer session

• Sequence number: Each message a producer sends is given a sequence number that

increments with each message.

In this example, we see that the broker recognizes the sequence number from this producer,

so it acknowledges the producer without appending a duplicate of m1 to the log.

The broker will retain a map { PID : sequence number } in memory that is occasionally

snapshotted to the log in a .snapshot file. If the Broker recovers from failure, it could read

through the log and catch up to the current mapping of PID → Sequence number, but this

could take a while. The .snapshot file speeds up this process.


acks = all and enable.idempotence = true became default values in AK

3.0

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 64

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

3c: How Does Kafka Handle the Notion of

Producers Sending Messages in Transactions?

Description

Transactions. How to enable on producers. Metadata. Effects. How brokers handle

messages in transactions. How consumers handle transactional messages.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 65

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Why Transactional Messages?

• Input message → Multiple related Output messages

◦ Either all output messages are produced or none at all

◦ E.g. money transfer order changes 2 bank account balances

• Kafka has a Transactional API

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 66

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Motivation for Exactly Once Semantics (EOS)

• Write real-time, mission-critical streaming applications that require guarantees that data

is processed “exactly once”

• Exactly Once Semantics (EOS) depends on 2 mechanisms:

◦ Idempotent producers: Prevents duplicate messages from being produced within a

producer session (no restarts)

◦ Consume-Process-Produce Design Pattern: developers can implement this pattern in

code (needs Transactional API), preventing duplicates even between producer sessions

(restarts)

• Sample use cases:

◦ tracking ad views for billing

◦ processing financial transactions

◦ tracking inventory in the supply chain

EOS guarantees are only within Kafka. Guarantees that the committing of offsets and

writing of data happens atomically—as part of a single transaction. Avoids duplicates, out

of orders and zombies (potential failed producer trying to participate in the reaction).

More info: How Kafka Achieves EOS

The implementation of Consume-Process-Produce Design Pattern to achieve EOS is studied

in our "Confluent Developer Skills for Building Apache Kafka Applications" course.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 67

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/

Overview of Exactly Once Semantics

• Fully supported on all versions of the Java clients and librdkafka-based clients (v.1.4.0 and

later)

◦ Producer and consumer

◦ Kafka Streams API

◦ Confluent REST Proxy

◦ Kafka Connect

• Transaction Coordinator:

◦ Broker thread that manages a special transaction log

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 68

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Enabling Transactional API (including EOS)

Applications using low-level APIs (producer, consumer):

• If the application’s input is Kafka (i.e. has a KafkaConsumer):

◦ isolation.level = read_committed (not default)

◦ enable.auto.commit = false (not default)

◦ Use sendOffsetsToTransaction() inside transactional code block

• For applications producing Transactional messages:

◦ acks = all, enable.idempotence = true (default)

◦ retries > 0, delivery.timeout.ms > 0 (default)

◦ unique transactional.id for each producer instance

◦ Use the transactions API in the producer code

The Kafka Streams API was designed with exactly-once processing in mind:

• processing.guarantee = exactly_once (not default)

Generally speaking, an application doesn’t create information (unless it’s something like an

RNG). In order to produce an output it needs some input. If the input is one or multiple

Kafka topics (application implements both Consumer and Producer) all the configuration

above, plus code, need to be implemented.

EOS only guarantees exactly once delivery into Kafka. On the consumer side, To ensure

transactional semantics for the "consume-process-produce" pattern, a client application

should set enable.auto.commit=false and should not commit offsets manually, and

instead use the sendOffsetsToTransaction() method in the KafkaProducer interface.

The configuration in a Kafka Streams application is simpler, based on a single parameter

processing.guarantee=exactly_once to get exactly once processing (Default:

at_least_once.)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 69

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consume Committed Transactions

Consumers of topics that contain transactional messages:

• isolation.level=read_committed: reads only committed transactional messages and

all non-transactional messages

◦ This prevents the consumer to consume messages from aborted transactions /

duplicates.

• Consumer API alone cannot guarantee exactly-once processing

• Guarantee exactly-once processing with "consume-process-produce" pattern

Default behavior is for the consumer to be set to read_uncommitted, which will read all

messages regardless of their transaction result.

Each partition maintains an "abort index" file with suffix .txnindex that gets cached on

read_committed Consumers, so they can quickly skip messages from aborted transactions.



If a producer dies in the middle of a transaction and a new Producer doesn’t

take its place, all read_committed Consumers must wait for the amount of

time specified by the Producer property transaction.timeout.ms (default 60

sec) for the transaction to be aborted and the Last Stable Offset to advanced

before they can move forward in the log. Any transactional and non-

transactional messages written to the log after the uncommitted transactional

message(s) will not be consumed until this abort occurs.


EOS was designed primarily for the Kafka Streams API where consume-

process-produce is the standard execution model, so Kafka Streams is highly

recommended if creating applications that require exactly once processing.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 70

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

More…

See the Appendix in your Student Handbook for a detailed example of a transaction.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 71

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

4: Storing the Records Persistently

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 72

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 3 lessons:

• How Does Kafka Organize Files to Store

Partition Data?

• How Can You Decide How Kafka Keeps

Messages?

• How to Scale Storage Beyond Kafka Servers?

Where this fits in:

• Hard Prerequisite: Fundamentals course

• Recommended Prerequisite: Replicating Data: A

Deeper Dive

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 73

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Explain how data is stored on local and/or object storage

• Understand how and when "old" records are removed to

regain free storage space

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 74

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

4a: How Does Kafka Organize Files to Store

Partition Data?

Description

Logs vs. segments. Details of files created per partition and per segment. Rolling of

segments.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 75

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Log File Subdirectories

• A Kafka partition is stored as a sequence of log segments

• Kafka log segment files are sometimes called data files.

• Each broker has one or more data directories specified in the server.properties file,

e.g.,

log.dirs = /var/lib/kafka/data-a, /var/lib/kafka/data-b, /var/lib/kafka/data-c

• Each topic-partition has a separate subdirectory

◦ e.g., /var/lib/kafka/data-a/my_topic-0 for partition 0 of topic my_topic

• Brokers detect log directory failures and notify Controller

When using multiple directories in log.dirs (also known as JBOD), it’s best practice that

those directories correspond to different mount points (hardware devices). Having a

dedicated disk per log directory means that a disk failure will not take the Broker completely

offline.

When specifying multiple paths in log.dirs, Kafka assigns Partitions across the directories

in a round-robin fashion. Partitions can be re-assigned to specific log directories using the

kafka-reassign-partitions tool, which is mentioned later in the course.


When a broker detects a log directory failure, it doesn’t notify the Controller

directly. The protocol is described in more detail here.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 76

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-112%3A+Handle+disk+failure+for+JBOD

Example of Log Files

Example of one broker’s subdirectory for topic my_topic with partition 0

$ ls /var/lib/kafka/data-b/my_topic-0
00000000000000283423.index
00000000000000283423.timeindex
00000000000000283423.log
...
00000000000008296402.index
00000000000008296402.timeindex
00000000000008296402.log
leader-epoch-checkpoint

• Each .log filename is equal to the offset of the first message it contains, e.g.,

◦ 00000000000000283423.log

Segment files are named for the first offset tracked by that set of files. In the example, the

files named 00000000000000283423.* manage messages in offsets from

00000000000000283423 to 00000000000008296401 ([the name of the next segment

file] - 1).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 77

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

File Types Per Topic Partition

• Per log segment

.log Log segment file holds the messages and metadata

.index Index file that maps message offsets to their byte position

in the log file

.timeindex Time-based index file that maps message timestamps

to their offset number

• Additional per log segment for certain producers:

.snapshot If using idempotent producers, checkpoints PID and seq #

.txnindex If using transactional producers, indexes aborted transactions

• Per partition

leader-epoch-checkpoint Helper file when re-syncing with leader after a crash

The data format of messages saved into the log files is exactly the same as what the broker

receives from the producer and sends to its consumers.

The *.index file is not continuous like the *.log file — there may be jumps. There is an

interval (index.interval.bytes) that controls how frequently Kafka adds an index entry

to its offset index (default is 4KiB). More frequent indexing allows reads to jump closer to

the exact position in the log but makes the index larger. Because IO page size in Linux

defaults to 4KiB, reducing the index interval may increase IO utilisation (worse

performance).

The *.timeindex index file enables timestamp-based functions, such as:

• Searching message by timestamp. This is useful to rewind offsets if applications need to

re-consume messages for a certain period of time, or in a multi-datacenter environment

because the offset between two different Kafka clusters are independent and users

cannot use the offsets from the failed datacenter to consume from the DR datacenter. In

this case, searching by timestamp will help because the messages should have same

timestamp if users are using the Producer option CreateTime.

• Time-based log rolling and log retention.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 78

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Log Segment Properties

• Messages are written to the active segment

• The active segment rolls to a new segment file if any are exceeded:

◦ log.segment.bytes (Default: 1GB)

◦ log.roll.ms (Default: 168 hours = 1 week)

◦ log.index.size.max.bytes (Default: 10MB)

• A former active segment is called an inactive segment after it has rolled over

All the settings on this page can be set as cluster-wide defaults or at the Topic level. Topic

level changes will override the defaults.

The purpose of segment files (instead of a single monolithic file) is to provide granular

control of the data when purging old data.

Most environments will use the log.segment.bytes as the roll threshold, but sometimes

setting log.index.size.max.bytes may be appropriate. The property

log.index.size.max.bytes describes the maximum size of the .index file that indexes

offsets contained in the associated .log file. It is most useful to tune this in environments

where message sizes are very small and the standard log segment size threshold would not

provide enough granular control over log rolling due to the sheer number of messages in

each segment file.

• Separately control when to roll the segment file for the offsets topic:

◦ offsets.topic.segment.bytes

Note that there is a separate property (offsets.topic.segment.bytes) to manage the

roll behavior of the consumer_offsets Topic. This mission-critical topic is so
important that rather than risk affecting its behavior when standard topic
configurations are changed, consumer_offsets has a separate set of configuration

properties.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 79

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Checkpoint Files

In addition, each broker has two checkpoint files:

• replication-offset-checkpoint

◦ Contains the high water mark (the first offset after the committed messages)

◦ On startup, followers use this to truncate any uncommitted messages

• recovery-point-offset-checkpoint

◦ Contains the offset up to which data has been flushed to disk

◦ During recovery, broker checks whether messages past this point have been lost

These files are located in the log.dirs directories, not the Partition subdirectories. They are

not intended to be manually administered and should not be altered or deleted.

• The recovery-point-offset-checkpoint file is updated by the broker after a segment

rolls and upon controlled shutdown. By default, this is the only time the broker knows for

sure that records have been flushed to disk. This could be different depending on how the

log.flush.interval.messages and log.flush.interval.ms properties are

configured. For additional information, review the following documentation:

◦ https://kafka.apache.org/documentation/#log.flush.interval.messages

◦ https://kafka.apache.org/documentation/#log.flush.interval.ms

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 80

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://kafka.apache.org/documentation/#log.flush.interval.messages
https://kafka.apache.org/documentation/#log.flush.interval.ms

A Step Beyond

Page Cache and Flushing to Disk

P B

Producer Broker Process Page Cache Disk

send write flush

• Messages are written to partitions

• Partitions are made up of segment files (new segment every 1 GB by default)

• Asynchronous IO means OS writes first to the in-memory page cache for performance

◦ Kafka consumer fetch requests benefit from zero-copy transfer

• Page cache is flushed to disk:

◦ Brokers have a clean shutdown

◦ OS background “flusher threads” run

The data format of messages saved into the log files is exactly the same as what the broker

receives from the producer and sends to its consumers, which allows for zero-copy transfer.

Zero-copy transfer is when data flows directly between page cache and network buffer

without first being copied to userspace. This allows for excellent consumer throughput.

The implication of this slide is that if the broker’s machine fails before the OS has flushed

data to disk, that data will be lost. If a topic is replicated, then when the broker comes back

online, the data will be recovered from the leader replica. Without replication, there may be

permanent data loss.

Kafka does have its own flush policy. It can be set to trigger flushing (fsync) by either the

number of messages (log.flush.interval.messages) or time (log.flush.interval.ms)

since the last flush. However, those settings default to infinite (essentially disabling fsync)

because Kafka prefers to allow the operating system background flush capabilities (i.e.

pdflush) as it is more efficient. We highly recommend keeping these settings at default.

When users look at the *.log files, it shows data that is both flushed to disk and still in the

page cache (OS buffer) that has not yet been flushed. There are linux tools (e.g. vmtouch)

that show what has and hasn’t been flushed.

Lastly, when there is a segment roll, the new inactive segment is flushed.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 81

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Investigating the Distributed Log

Please work on Lab 4a: Investigating the Distributed

Log

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 82

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

4b: How Can You Decide How Kafka Keeps

Messages?

Description

Deletion. Compaction. Examples. Details of implementation of compaction. Monitoring and

logging of compaction.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 83

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Managing Log File Growth

• cleanup.policy at topic level

◦ delete (default)

◦ compact

◦ both: delete,compact


Regardless of the policy, the active segment is kept intact as it is still open in

read+append mode.

Messages are not deleted on consumption because many consumers might read from a

topic at different times. Instead, the brokers use a cleanup policy to decide when to delete

messages. This can be set at the node or topic level.

The cleanup policy is set to delete by default. With the delete policy, log segment files are

deleted when they get older than a given age or if the entire partition exceeds a given size.

The compact policy is used for keyed messages. Only the freshest message with a given key

will be kept. For example, if these messages flow into Kafka:

{"pie":"the pie is hot"},
{"pie":"the pie is warm"},
{"pie":"the pie is cold"}

then the broker will periodically compact the log so that only {"pie":"the pie is cold"}
remains. Log compaction will be discussed in further detail in a later slide.

Combining delete and compact is useful for topics that need to be compacted by key but

also want keys that are stale (i.e., haven’t been updated for some time) to be automatically

expired. Sample use cases:

• Order Management: An e-tailer is using the order number as the key to track the state of

an order ("101":"placed", "101":"processing", "101":"shipped", "101":"delivered"). Once

the package is delivered, the key is never used again and so will stay in the compacted

topic until the retention time has passed.

• A windowed join in Kafka Streams: If using windows of time with many versions of a

keyed message, you may only want to retain the latest version of the key message during

the window. However, once the window has expired you would like to have the segments

for the window deleted.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 84

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The default policy is configured in server.properties by setting log.cleanup.policy.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 85

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The Delete Retention Policy

How log segments roll:

• log.roll.ms

• log.segment.bytes

• log.retention.ms

When segments are checked:

• log.retention.check.inter
val.ms

◦ Default: 5 min

What the log cleaner

checks:

• log.retention.ms

• log.retention.bytes
(disabled by default)

• Segments whose newest message is older than log.retention.ms will be deleted

Recall that segment files are "rolled" on a regular basis; when a segment file reaches a

specified age or size, it is closed and a new segment file is created to receive new data.

Settings that affect when a new segment file is rolled out are:

• log.roll.ms (default 1 week)

◦ limit on how long a segment file is active before a new one is rolled.

• log.segment.bytes (default 1 GB)

◦ limit on how large the segment file can become before a new one is rolled.

◦ If a record being added to a segment file will cause it to exceed the

log.segment.bytes value, that segment file will be closed, a new segment file added,

and the record will be written to the new segment.

• The time based log retention setting that is in effect. The default setting is

log.retention.hours=168 (7 days) but this is superseded if log.retention.minutes or

log.retention.ms is set. The default value for these two settings is null.

◦ If the active segment is older than this amount, then it will be closed and a new

segment file rolled out.

◦ This is an edge case since segments usually roll much more frequently than this amount

of time. This will be discussed further in an upcoming slide.

The log cleaning process will trigger every log.retention.check.interval.ms (default 5

minutes). When the cleanup policy contains delete, the log cleaner will delete inactive

segments according to age or, less commonly, partition size. Once the log cleaner thread is

triggered, it will check inactive log segment files and delete the files that don’t pass its

checks:

• Age: If the newest message in a segment file is older than log.retention.ms (default 1

week), it will be deleted

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 86

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

• Size: If the entire partition exceeds log.retention.bytes, then when the log cleaner is

triggered, segment files will be deleted from oldest to newest until the size of the

partition is back within log.retention.bytes

◦ The default for log.retention.bytes is -1, meaning this function is disabled.

◦ Another edge case occurs where the active segment is larger than

log.retention.bytes. In this case, the active log segment will be deleted. Temporarily

setting a topic’s retention.bytes to 0 can therefore be used to delete the data in the

topic. This will be shown in an upcoming slide.

Note that the cleanup policy applies to whole log segment files, not individual messages. The

age of a segment file is determined by the timestamp of its newest message. This means

that messages are guaranteed to live at least as long as the retention time, but many

messages in the segment file will remain for longer than the retention time.

Here is a handy list of topic overrides to customize the behavior at topic level.

server.properties Topic override

log.roll.ms segment.ms
log.segment.bytes segment.bytes
log.retention.ms retention.ms
log.retention.bytes retention.bytes

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 87

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Deleting All Messages in a Topic

1. Turn off all producers and consumers

2. Temporarily configure retention.ms to 0 $ kafka-configs \
 --bootstrap-server
broker_host:9092 \
 --alter \
 --topic my_topic \
 --add-config retention.ms=0

3. Wait for cleanup thread to run

(every 5 minutes by default)

4. Restore default retention.ms configuration $ kafka-configs \
 --bootstrap-server
broker_host:9092 \
 --alter \
 --topic my_topic \
 --delete-config retention.ms

 Do not just delete log files!

The method here assumes the topic’s cleanup.policy is set to delete.

This idea relates to the aforementioned edge case with retention.ms. If an active segment

is older than retention.ms, then it is closed and a new segment file is rolled. Setting

retention.ms=0 immediately closes the active segment. Now, once the log cleaner check

interval passes, the log cleaner will delete all segments older than 0 ms (i.e., all segments). In

virtually all practical situations, retention.ms is much longer than the time it takes for a

log to roll to the next segment, which is why this idea can be counterintuitive at first.

There is another way to accomplish this task that is beyond the scope of this course.

Developers can use the AdminClient API in their client code (producer or consumer) to delete

all records prior to a specified offset.

 This is not recommended for production systems

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 88

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Compact Policy Use Case

Keep only the most recent value for a given key

• Examples:

◦ Database change capture

◦ Real-time table look-ups during stream processing

◦ Maintaining a topic of temperatures per postal code

◦ Tracking the progress of e-commerce orders

The compact cleanup policy is specific to keyed messages. It is designed for applications that

require only the freshest value of any given key, for example to help in-memory applications

recover from failure with the latest state.

Sample use cases:

• Database change capture: maintain a replica of the data stream by key (e.g., a search

index receiving real-time updates but needing only the most recent entry)

• Stateful stream processing: journaling arbitrary processing for high availability (e.g.,

Kafka Streams or anything with "group by"-like processing)

• Event sourcing: co-locates query processing with application design and uses a log of

changes as the primary store for the application

With keyed messages, all message of a given key land on the same partition unless a custom

partitioning strategy is used. The compact policy only guarantees the freshest value of a

given key on a per-partition basis; there still may be multiple messages with the same key if

the messages are on different partitions.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 89

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Log Compaction: What is it?

Notice here that we keep only the latest value for each key.

Notice also that after compaction, messages retain their offsets. In other words, offsets will

likely be non-contiguous after compaction.

Back to that idea that we can’t delete individual messages? Aren’t we doing that here? It

sure looks like it. However, as per implementation details beyond the scope of this course,

when compaction runs, it creates new copies of log segments with only the messages that

are kept. Then it moves file pointers around and deletes old segments as a whole. It does not

alter the existing segments directly.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 90

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Log Compaction: Implementation

offset 1371 - 2136

offset 1371 - 2895 offset 2896 - 4958 offset 4959 - nnnn

offset 2137 - 2895 offset 2896 - 3861 offset 3862 - 4958

1. build in-memory map
of key and offsets

2. scan and probe all segments

key offset

offset 4959 - nnnn

active segment

firstDirty

key 1 3500

key 7 3700

key 4 4200

key 3 4700

key offset

key 7 3100

key 1 3500

key 7 3700

key 4 4200

key 3 4700

discard

keep

keep

keep

keep

key offset

key 1 1500

key 5 2100

key 3 2400

key 6 2700

discard

keep

discard

keep

firstDirty

The top line of the diagram represents log segments, arranged from oldest to newest.

Everything to the right of the "firstDirty" marker is considered dirty. Dirty segments are

used to build an in-memory map of the newest instance of each key and its offset. The log

cleaner then makes another scan of all clean and dirty segments. Each message is checked

to see if its key has a match in the in-memory map.

• If a match is not found, that message is the latest version of that key, so it is preserved in

a new segment file.

• If a match is found and its offset is different from the matching record in the in-memory

map, then the map contains the latest version of the key and the old message is dropped.

• If a match is found and its offset is the same as the matching record in the in-memory

map, the message is preserved in a new segment file.

This process will generate a new set of segment files which only preserve the messages with

the freshest values, so the new segment files will be smaller and can be combined if

necessary. Once the scan finishes, the old segment files are replaced by the new segment

files, and the "firstDirty" pointer is moved.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 91

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Deleting Keys with Log Compaction

Compaction yields a log where there is at most one instance of any key in the inactive

segments.

But what if you don’t want a key at all anymore?

• Tombstone Messages:

◦ delete key K by sending {K:null}

◦ Consumer has log.cleaner.delete.retention.ms
time to consume K before it is deleted (default 1 day)

As keys are retired, many systems will send delete messages. The simplest approach would

be to retain delete messages forever. But since the purpose of deletes is typically to free up

space, this approach would have the problem that the commit logs would end up growing

forever if the keyspace keeps expanding and the delete markers consume some space.

Tombstones (the Kafka implementation of a delete message) are keyed messages with a

null value.

However, a delete message should not be removed too quickly, or it can result in

inconsistency for any consumer of the data reading the tail of the log. Consider the case

where there is a message with key K and a subsequent delete for key K. If log compaction

removes delete messages, there is a race condition between a consumer of the log and the

log compaction action. Once the consumer has seen the original message, we need to ensure

it also sees the delete message; this might not happen if the delete message happens too

quickly. As a result, the topic can be configured with a configurable SLO for delete retention

(delete.retention.ms). This SLO is in terms of time from the last cleaning. A consumer

that starts from the beginning of the log must consume the tail of the log in this time period

to ensure that it sees all delete messages.

If an application needs to be able to send null values that will not be mistaken as

tombstones, you need to introduce a null-type – like a NullInteger - so it looks like a

regular message with non-null value to Kafka.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 92

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Log Compaction: Important Configuration Values

• log.cleaner.min.cleanable.ratio (default 0.5)

Triggers log clean if the ratio of dirty/total is larger than this value

• log.cleaner.min.compaction.lag.ms (default 0)

The minimum time a message will remain uncompacted in the log

• log.cleaner.max.compaction.lag.ms (default infinite)

The maximum time a message will remain ineligible for compaction

• log.cleaner.io.max.bytes.per.second (default infinite)

throttle log cleaning

Common log cleaner configurations to tune:

• log.cleaner.min.cleanable.ratio: trigger the log cleaner when the percentage of

dirty data exceeds this value. Defaults to 50%.

• log.cleaner.io.max.bytes.per.second: throttles the amount of system resources

that the cleaner can use. Due to the amount of reads and writes, cleaning is I/O intensive.

Default is infinite.

Adjust these properties carefully — more frequent log cleaning means more I/O time, higher

disk utilization.

For partitions with “high cardinality” (many unique keys), the cleaner threads may take a

very long time to process a log compared to other logs with "low cardinality." Situations like

this may require an increase to the log.cleaner.dedupe.buffer.size or

log.cleaner.threads settings.

Here is some additional information about tuning log cleaning: The value of

log.cleaner.threads depends on whether the cleaner job is CPU bound or IO bound. In

general, it’s probably IO bound. So this can be set to the number of disks per broker.

However, if compression is enabled, CPU could be the bottleneck. In this case, it can be set

up to the number of cores on the broker. In either case, it may be useful to set

log.cleaner.io.max.bytes.per.second to avoid the cleaner consuming too many

resources. For log.cleaner.dedupe.buffer.size, in general, the higher it is, the fewer

rounds of cleaning are needed. If one knows the # of unique keys in a log, one can set it to

#keys * 24 bytes but bound it by the largest amount of memory one can afford in the

Broker.

You can monitor disk utilization with commands like iostat.

If the log.cleaner.max.compaction.lag.ms or the

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 93

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

log.cleaner.min.compaction.lag.ms configurations are also specified, then the log

compactor considers the log eligible for compaction as soon as either: (i) the dirty ratio

threshold has been met and the log has had dirty (uncompacted) records for at least the

log.cleaner.min.compaction.lag.ms duration, or (ii) if the log has had dirty

(uncompacted) records for at most the log.cleaner.max.compaction.lag.ms period.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 94

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Log Messages During Cleaning

When the cleaning process is taking place, you will see log messages like this:

Beginning cleaning of log my_topic,0

Building offset map for my_topic,0 ...

Log cleaner thread 0 cleaned log my_topic,0 (dirty section=[100111,200011])

Switching to the new segment files can be done quickly. Each broker retains an in-memory

list of which segment files the broker contains. After switching to the new segment files,

new fetch requests will see the new segment file list.

What if there are outstanding fetch requests working from the old segment files that have

not been finished? Older segments are preserved for an amount of time (1 minute, by

default) before they are deleted to allow the outstanding fetch requests to finish. If they do

not finish in this time, the consumer will get an error.

What if a consumer group pauses and comes back but the offset it is supposed to read from

has been removed by a clean-up policy? The broker will advance to the next highest offset

which follows the one requested.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 95

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Log Compaction

• JMX metrics:

kafka.log:type=LogCleanerManager,name=max-dirty-percent

kafka.log:type=LogCleaner,name=cleaner-recopy-percent

kafka.log:type=LogCleaner,name=max-clean-time-secs

In particular, watch cleaner-recopy-percent and max-clean-time-secs on compacted

topics. High values for either or both of these could indicate a high number of stale keys that

are not being updated. Consider using tombstones or the delete-compact combination

cleanup policy to get rid of the stale keys.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 96

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Deleting Topics

• Topic deletion is enabled by default on brokers in the server.properties file

◦ delete.topic.enable (Default: true)

• Caveats

◦ Stop all producers/consumers before deleting

◦ All brokers must be running for the delete to be successful

• Command:

$ kafka-topics \
 --bootstrap-server kafka-1:9092 \
 --delete \
 --topic my_topic

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 97

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

4c: How to Scale Storage Beyond Kafka

Servers?

Description

Tiered Storage

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 98

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Challenges with Traditional Kafka Storage

• Kafka (fast) storage can be costly as retention times increase

• Cluster scalability depends both on compute and storage

• Reading older data from segment files impact server performance

• Kafka storage should be fast for low-latency access to real-time data

◦ Kafka can store historical data too - it doesn’t need low latency but cheaper cost

• Data is stored in Kafka servers locally

◦ Cluster scalability depends both on compute and storage

• Reading older data from segment files impact server performance:

◦ Older segments aren’t in the page cache → data from disk

◦ Old data then is loaded into the page cache → decrease page cache efficiency

◦ This slow fetch is done by the worker threads → block some thread

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 99

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Tiered Storage

Leader

local
hotset

remote
reference

_confluent-tier-state

segment
metadata

4

2

local
hotset

remote
reference

_confluent-tier-state

segment
metadata

3

4

FollowerFollower

local
hotset

remote
reference

_confluent-tier-state

segment
metadata

3

4

1

Producer

Remote Object Storage
AWS S3, GCS, Azure ...

• With Tiered Storage, old data is offloaded to a Remote Object Storage

◦ This storage tier exchanges low-latency for lower cost

◦ Data from Remote Object Storage is retrieved asynchronously (no blocking)

• With Tiered Storage, Cluster scalability depends on compute needs only

When the Leader of a Partition rolls the active segment (it makes it inactive, and it creates

a new, empty, active segment), the following steps happen with Tiered Storage:

1. The Leader archives the segment in the Remote Object Storage

2. The Leader writes the segment metadata in the _confluent-tier-state topic

3. The Followers fetch that segment metadata from the topic

4. Brokers materialize the segment metadata and build a Remote Log View

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 100

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Tiered Storage Availability

• CP 6.0.0 introduces Tiered Storage

• CP 7.6.0 Tiered Storage supports compacted topics

• Out of the box support for major cloud object stores

◦ Other cloud stores and even on-prem stores are supported

AK 3.6.0 brings a limited "Kafka Tiered Storage". See KIP-405:

Non-Goals
[..]
It does not support compact topics with tiered storage.

For more information about supported stores, please look at:
https://docs.confluent.io/platform/current/clusters/tiered-storage.html[]

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 101

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Basic Configuration of Tiered Storage

• Brokers need to be configured first

◦ Sample (incomplete) to server.properties:

confluent.tier.feature=true
confluent.tier.enable=true
confluent.tier.backend=...

• Basic topic configuration

◦ retention.bytes and retention.ms control the delete policy, now on the remote

store

◦ New property confluent.tier.local.hotset.ms controls when inactive segments

are expunged from server local storage

◦ segment.bytes and segment.ms control active segment rolling (active segment is

always on local storage)

• Tiered Storage is part of Confluent Platform Enterprise, so appropriate licenses must be

installed.

• Broker configuration needs to be completed depending on the desired backend. Check

documentation here

• delete policy still applies, but now the parameters control when data will be deleted on

the remote storage:

◦ retention.bytes is a per-topic configuration that defaults to log.retention.bytes

◦ retention.ms is a per-topic configuration that defaults to log.retention.ms

• Data is sent to the remote storage as segments, so control of the segment roll may be

important:

◦ segment.bytes is a per-topic configuration that defaults to log.segment.bytes . We

recommend decrease the segment sizes from the default 1GiB, to, for example, 100MiB

(see recommendation)

◦ segment.ms is a per-topic configuration that defaults to log.roll.ms

• Configuration of compacted topics is not covered in this course, please check the

documentation.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 102

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/clusters/tiered-storage.html
https://docs.confluent.io/platform/current/clusters/tiered-storage.html#log-segment-sizes

5: Configuring a Kafka Cluster

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 103

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 2 lessons:

• How Do You Configure Kafka Nodes?

• What if You Want to Adjust Settings Dynamically or Topic-wise?

Where this fits in:

• Hard Prerequisite: Fundamentals course

• Recommended Prerequisites: Other Ways Kafka Provides Durability

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 104

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Describe the basics of how to configure Kafka

• Understand static vs. dynamic configurations

• Understand topic vs. node-level configurations

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 105

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

5a: How Do You Configure Brokers?

Description

Static node settings. Where to set. Examples of classes of node settings.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 106

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Where to Set Node Settings?

• Properties file: /etc/kafka/server.properties

◦ On each node

• File is only read when node (re-)starts

• Includes configuration for:

◦ Node itself

◦ Cluster Defaults

◦ Topics Defaults

 It is possible to override these node settings. More on that in the next lesson.

The server.properties file is used to set node-specific settings (node.id) as well as

cluster defaults (default.replication.factor). If the cluster defaults are not consistent

across the nodes in the cluster, you may experience unpredictable behavior.

Confluent Control Center (a.k.a. CCC or C3) provides a dashboard to inspect node

configuration.

Any change to server.properties requires a reboot of the broker to take effect.



It used to be the case that all Kafka Servers were Brokers but with AK 3.0 and

KRaft, there are also Controllers. Furthermore, the concept of a Node also

appears here (with node.id), meaning that the naming is currently in-flux.

Every Kafka Server is a Node, it may be a Broker or a Controller, but in some

contexts broker may still have the same meaning as node.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 107

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Some Node Properties

Some properties are clearly "this Node" things, e.g.,

• node.id

• log.dirs - where data directories for logs are

• num.network.threads - how many network threads

• num.io.threads - how many worker/IO threads

These are some properties that apply to the Node where they are configured.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 108

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Another "This Node" Config: Listeners

First off, recall, we use host:port pairs to describe connections, e.g., broker1:9092

Two node settings guide what ports are used and their security mechanism:

• listeners - host and port information from the local (server) endpoint

• advertised.listeners - host and port information from the remote (client) endpoint

You’d specify a listener something like listeners = [protocol]://[host]:[port]

So you might have settings like these (different examples):

• listeners = PLAINTEXT://broker1:9092

• listeners = PLAINTEXT://broker-1.intranet:9092,
SSL://broker1:9093

• advertised.listeners = SSL://broker1:9093

This is another example of a pair of properties that apply to a single broker.

We will revisit this concept in more detail in the security module.

Regarding listeners:

• specifying the host as 0.0.0.0 will bind to all local IPv4 interfaces e.g. listeners =
PLAINTEXT://0.0.0.0:9092

• leaving the host empty will bind to the default interface e.g. listeners =
PLAINTEXT://:9092 (which happens to be the default value)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 109

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Cluster Defaults

Some properties you set in server.properties are meant as cluster defaults for all nodes.

Examples:

• auto.create.topics.enable


But server.properties is for this one node. If the cluster defaults are not

consistent across the nodes in the cluster, you may experience unpredictable

behavior.

You set properties for each node in server.properties. On the previous slides, we looked

at properties that apply only to the current node. On this slide, we give some properties that

are meant to be cluster defaults that apply to all nodes. While the server.properties file

applies to a single node, this kind of property must be set the same on all nodes for proper

behavior.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 110

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Some Properties Related to Topics

Some node properties apply to topics:

• default.replication.factor

• num.partitions

• log rolling threshold: log.segment.bytes and log.roll.ms

 Some of these can be overridden at the topic level.

These two properties are configured in server.properties but they apply to topics.

We learned about log rolling in the last module.

What’s special about these properties is that it is possible to have topic overrides that take

precedence over these settings. We go into that mechanism in the next lesson.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 111

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if I Don’t Configure a Property?

Kafka defaults apply!

See documentation.

But, there’s more. See next lesson…

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 112

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example Config File

Here is an example of a server.properties file for a production Kafka cluster for

reference:

Log configuration
num.partitions=8
default.replication.factor=3
log.dirs=[List of directories. Kafka should have its own dedicated disk or SSD per
directory.]

CPU thread configurations
num.io.threads =[one per log directory]
num.network.threads =[increase from 3 for TLS]
num.replica.fetchers =[increase from 1 for many replicas]
log.cleaner.threads =[increase if log cleaning is IO bound]

Other configurations
node.id=[An integer]
listeners=[list of listeners]
auto.create.topics.enable=false
min.insync.replicas=2

For more configuration information, see

https://docs.confluent.io/current/installation/configuration/index.html.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 113

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/installation/configuration/index.html

5b: What if You Want to Adjust Settings

Dynamically or Apply at the Topic Level?

Description

Dynamic vs. static node settings. Cluster-wide vs. per-broker settings. Topic overrides. Order

of precedence.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 114

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

There Aren’t Only Static Node Settings…

Other options:

• Dynamic broker settings

• Dynamic cluster-wide settings

• Topic overrides

Dynamic changes will take effect immediately, but will not be updated in the

server.properties file. However, the changes will persist because the kafka-configs
command updates the configurations in the cluster metadata topic.

• Because static configuration is stored in files, it is easy to manage them using version

control systems or directly managed by a CI/CD pipeline.

• Using kafka-configs to change configuration dynamically has the benefit of not

requiring service restart (and thus avoiding some increased replication bandwidth and

data loss for non-replicated topics), but there isn’t a predefined way to control versions or

that CI/CD pipelines leverage this mechanism

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 115

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Order of Precedence

1. Topic settings

2. Dynamic per-broker config

3. Dynamic cluster-wide default config

4. Static server config in server.properties

5. Kafka default

As we expand beyond only static configurations, consider this order of precedence for all the

levels of configurations available.

Note that dynamic changes will be stored in the cluster metadata topic.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 116

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Viewing Dynamic Broker Configurations

Display dynamic broker configurations for broker with ID 103:

$ kafka-configs \
 --bootstrap-server kafka-1:9092 \
 --broker 103 \
 --describe

 To display all config settings, not just dynamic changes, specify --all.

The default --describe behavior for the kafka-configs command is to list dynamic config

settings for the current entity. To display all config settings, specify --all.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 117

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Changing Broker Configurations Dynamically

• Change a cluster-wide default configuration

$ kafka-configs \
 --bootstrap-server kafka-1:9092 \
 --broker-defaults \
 --alter \
 --add-config log.cleaner.threads=2

• Change a broker configuration

$ kafka-configs \
 --bootstrap-server kafka-1:9092 \
 --broker 101 \
 --alter \
 --add-config log.cleaner.threads=2

 To alter multiple config settings, use --add-config-file new.properties

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 118

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Deleting a Broker Config

Delete a broker configuration

$ kafka-configs \
 --bootstrap-server kafka-1:9092 \
 --broker 107 \
 --alter \
 --delete-config min.insync.replicas

Question: What will the value of min.insync.replicas be now?

"Delete a broker configuration" just means that you are resetting it to the cluster default.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 119

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Topic Overrides

Topic level configurations to override broker defaults

 The names are often different, but similar.

Examples:

Meaning Topic Override Broker Config

Threshold log segment size for

rolling active segment

segment.bytes log.segment.bytes

Maximum size of a message max.message.bytes message.max.bytes

There are several properties that can be set at the broker level and apply to all logs

managed by that broker. Additionally, many of these have topic-level overrides that can be

set to take precedence over broker-level settings. Put differently, you may want to set a

configuration to apply to all partitions of a topic, regardless of what brokers those

partitions live on. Topic-level overrides allow for that.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 120

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Setting Topic Configurations from the CLI (1)

Set a topic configuration at time of topic creation

$ kafka-topics \
 --bootstrap-server kafka-1:9092 \
 --create \
 --topic my_topic \
 --partitions 1 \
 --replication-factor 3 \
 --config segment.bytes=1000000

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 121

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Setting Topic Configurations from the CLI (2)

• Change a topic configuration for an existing topic

$ kafka-configs \
 --bootstrap-server broker_host:9092 \
 --alter \
 --topic my_topic \
 --add-config segment.bytes=1000000

• Delete a topic configuration

$ kafka-configs \
 --bootstrap-server broker_host:9092 \
 --alter \
 --topic my_topic \
 --delete-config segment.bytes

"Delete a topic configuration" just means that you are resetting it to the cluster default.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 122

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Viewing Topic Settings from the CLI

• Show the topic configuration settings

$ kafka-configs \
 --bootstrap-server broker_host:9092 \
 --describe \
 --topic my_topic
Configs for topic 'my_topic' are segment.bytes=1000000

• Show the partition, leader, replica, ISR information

$ kafka-topics \
 --bootstrap-server broker_host:9092 \
 --describe \
 --topic my_topic
Topic:my_topic PartitionCount:1 ReplicationFactor:3
Configs:segment.bytes=1000000
 Topic: my_topic Partition: 0 Leader: 101 Replicas: 101,102,103 Isr:
101,102,103

Note that only non-defaulted values are displayed. You will need to check the configurations

page (documentation) to see defaults. If the custom defaults were set for your cluster, you

can view the broker properties by looking at the start of the /var/log/kafka/server.log
file.

You can use the --help option with the kafka-topics and kafka-configs commands to

see the options that are available. Both of these commands can be used to modify running

topics without a restart.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 123

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/installation/configuration/broker-configs.html

Activity: Troubleshooting Configuration Confusion

Discussion:

• A colleague insists he changed the rollover time for the

active segment to 2 hours.

• But another colleague is reporting that she has seen some

log segments for topic t7, partition p12 are on broker 103 have

been the active log segment with timestamps 4 and 5 hours

in the past.

Another colleague wants answers and explanations. What do

you tell them?

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 124

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Labs: Configuring a Kafka Cluster

Please work on:

• Lab 5a: Exploring Configuration

• Lab 5b: Increasing Replication Factor

• (as per Instructor’s Guidance): Lab 6a -

Prerequisite section only

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 125

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

6: Managing a Kafka Cluster

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 126

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 5 lessons:

• What Should You Consider When Installing and Upgrading

Kafka?

• What is a Controller vs a Broker?

• What are the Basics of Monitoring Kafka?

• How Can You Move Partitions To New Brokers Easily?

• What Should You Consider When Shrinking a Cluster?

Where this fits in:

• Hard Prerequisite: Fundamentals course

• Recommended Prerequisite: Other Ways Kafka Provides Durability

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 127

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• List the monitoring capabilities in Kafka

• Perform common cluster administration tasks

• Explain what log compaction is, and why it is useful

• Expand and shrink the cluster size

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 128

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

6a: What Should You Consider When

Installing and Upgrading Kafka?

Description

Considerations for installation and upgrading.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 129

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Methods of Installation

• You can deploy Confluent Platform from

…

◦ A Tar archive

◦ DEB or RPM package

◦ Docker container

• Deploy in a distributed environment using

one of…

◦ Confluent for Kubernetes (formerly

called Confluent Operator)

◦ Ansible playbooks


Schema Registry needs to have

Kafka installed first

To adhere to the "Separation of Concerns" principle, multiple components should not be run

on the same machine. Just download the entire package and activate the component

appropriate for that system.

For reference, a list of services:

• Apache Kafka®

• Confluent Schema Registry

• REST Proxy

• Confluent Control Center

• Kafka Connect (distributed mode)

• Confluent Replicator

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 130

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Local vs. Distributed Installation

Local Distributed

• When installed on a single machine.

• Installed via zip, tar, or Docker images

• When services are installed across several

machines

• Installed via Kubernetes or Ansible

Docker is supported on:

• Linux amd64 & x86_64

• Linux arm64 & aarch64

Notes on distributed:

• Installs Confluent Platform using packages or archives.

• Starts services using systemd scripts.

• Provides variables for configuring security settings for Confluent Platform.

• Provides options for monitoring Confluent Platform

This simple wizard will help you launch a self-managed, multi-node deployment of Confluent

Platform using Ansible.

• Enterprise: Zip , Tar, Docker, Kubernetes, Ansible

• Community Edition: Installed via Zip, Tar or Docker

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 131

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/installer

Upgrading a Cluster (1)

There are many things to consider when upgrading the Confluent Platform:

• The order of upgrade for Kafka nodes (controllers and brokers) and the rest of the

Confluent Platform is very important.

• Always read the upgrade documentation on our website to get the full scope of what the

upgrades entail.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 132

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Upgrading a Cluster (2)

• Be aware of the broker protocol version and the log message format version between the

various releases.

• Apply a license key for the Confluent Platform.

◦ Know how to apply the key.

• Do rolling restart — the entire cluster stays up as you take down each broker one by one to

upgrade.

 See link in your guide!

Upgrading to a new version of Kafka can require special steps if there are fundamental

changes to Kafka like the message format or inter-broker protocol. To upgrade in these

cases (for example, upgrading to Kafka 2.2 from any older version), one must set

inter.broker.protocol.version and log.message.format.version equal to the

current Kafka version in the server.properties file.

 Refer to this upgrading documentation for more specific instructions

If using a configuration management tool, rolling restarts must be taken into account. The

CP Ansible Playbook supports graceful rolling restarts. The Confluent Kubernetes Operator

automatically performs a graceful rolling restart in response to applying a change.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 133

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/installation/upgrade.html#upgrade-cp

Controlled Shutdown

1. Administrator sends a SIGTERM to the Java process running Kafka, e.g., kafka-server-
stop

2. The node sends request to the Controller.

3. The Controller facilitates leader elections

4. The Controller responds to the node that it can now leave.

5. The node flushes file system caches to disk.

6. The node shuts down.

Relevant configuration settings:

• controlled.shutdown.enable (default true)

• controlled.shutdown.max.retries (default 3)

• controlled.shutdown.retry.backoff.ms (default 5 sec)

The sequence of events during a controlled shutdown is:

1. Administrator sends a SIGTERM to the Java process running Kafka, e.g., kill -SIGTERM
<pid>

2. The node sends a request to the Controller to inform it’s planning to shut down.

3. The Controller will determine which partitions the node contains a leader for and forces a

leader election for each of these partitions to other nodes.

4. Once the elections are complete, the Controller acknowledges the node’s shutdown

request.

5. The node explicitly flushes the file system caches to disk.

6. The node shuts down.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 134

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The key benefit of a controlled shutdown is minimized downtime for the partitions. When a

leader is elected, there is a brief outage for the clients between when the leader goes offline

and the client does a metadata update to determine which node is the new leader. During a

controlled shutdown, the Controller only takes a single partition offline at a time while that

partition’s leader is reelected. For the uncontrolled shutdown (or broker crash), all partitions

for which the node contained the leader will go offline at the same time. The Controller is

only able to elect one leader at a time. For example, assume the crashed node is the leader

for 10 partitions. The tenth partition (the last one whose leader is elected) will be offline

significantly longer than the first partition. A controlled shutdown would have provided

more reasonable outage time for all partitions.


if running a node in non-supported mix mode (controller + broker), `kafka-

server-stop`has a new `--process-role`option to stop only the relevant threads.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 135

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

6b: What is a Controller vs a Broker?

Description

KRaft. Kafka Roles. Controller Election. Metadata Topic.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 136

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Cluster Metadata and the Controller

Cluster Metadata

• Stored in __cluster_metadata topic

• Active Controller is its Leader

• Contains:

◦ Topic and Dynamic Configuration

◦ Partition Leader, ISR

◦ Quotas

◦ ACLs

◦ …

Active Controller

• Monitors Nodes' Health

• Controller Chooses Leaders

• High-Availability Role

Can you spot the problem?

You may have spotted a circular dependency in the second bullet points: the leader of the

Metadata Topic becomes the Controller, so the Controller cannot elect itself! Kafka needs

another method of electing the Controller: we will present the solution in the next slide.

The __cluster_metadata topic has a single partition 0, therefore a single leader. This is

because being the Active Controller is the same as being the Controller Leader (of a

partition of the metadata topic), and we cannot have multiple controllers at the same time.


Controller Leader is another name for the Active Controller. In this course we

use Active Controller or just Controller to avoid confusions like "the controller

leader chooses leaders" or what a controller follower is early in the course.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 137

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

KRaft

• Implementation of a Distributed Consensus Algorithm within Kafka

• Voting system with quorum (3 or 5 nodes)

• Quorum voters elect the leader of __cluster_metadata

KRaft (K-Raft) is a pull-mode variant of the Raft algorithm developed for Kafka. When the

algorithm initializes or the leader fails, the remaining quorum voters will elect a new leader

among themselves (in our case, the Controller Leader or Active Controller).

To avoid split vote when all voters are up, the cluster must have either 3 or 5 quorum voters.

This number will become, as a consequence, the replication factor of __cluster_metadata.

For further details on the algorithm, you can watch this video.



Older version of Kafka relied on Zookeeper for metadata management and

controller election. AK 4.0 is planned to stop supporting this mode, so you may

be interested in live-migration: https://docs.confluent.io/platform/current/

installation/migrate-zk-kraft.html

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 138

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://videos.confluent.io/watch/MNF8XK8ZgiYm8bEoinh1aC
https://docs.confluent.io/platform/current/installation/migrate-zk-kraft.html
https://docs.confluent.io/platform/current/installation/migrate-zk-kraft.html

Roles for Kafka Nodes

A Kafka cluster comprises a number of voter nodes plus some broker nodes.

Quorum voter process.roles=controller (for __cluster_metadata topic)

Broker process.roles=broker (for all the other topics)

All nodes must know how to locate the quorum voters:

controller.quorum.voters=nodeid1@host1:port1,nodeid2@host2:port2,nodeid3@ho
st3:port3

Metadata topic management is a critical job, so a subset of nodes is dedicated just to

controller election and management of this single topic.


Mixed-mode process.roles=controller,broker is meant for non-production

only clusters, and it is unsupported

All quorum voters need to know how to contact the others. On the other hand, all brokers

must have a way to find the Controller Leader, which is a quorum voter. That’s why all nodes

need the controller.quorum.voters configuration.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 139

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Metadata Topic Creation

The following steps should be taken when creating a new cluster:

1. Install Kafka on controllers and configure (minimum):

node.id=<unique integer for each node>
process.roles=controller
listeners=CONTROLLER://<host>:<port>
controller.listener.names=CONTROLLER
inter.broker.listener.name=PLAINTEXT
quorum.controller.voters=<node.id1>@<host1>:<port1>,...

2. On one controller voter, generate the Cluster ID:

$./bin/kafka-storage random-uuid
Nk018hRAQFytWskYqtQduw

3. On all controller nodes, format the metadata directory:

$./bin/kafka-storage format -c /etc/kafka/server.properties \
 -t Nk018hRAQFytWskYqtQduw

We again face a circular dependency problem: Kafka will not start with a metadata topic,

then how do we create that topic?

First of all, all Kafka clusters have unique Cluster IDs . It is a randomly-generated UUID and

the kafka-storage command allows you to generate one.


All nodes in the same cluster use the same Cluster ID. Different clusters must

use different Cluster IDs

The line inter.broker.listener.name=PLAINTEXT tells the controller to communicate

with brokers using the brokers' default listener (PLAINTEXT). More advanced listener

configuration is discussed in the Security module.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 140

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Broker Configuration for KRaft

The following steps should be taken when configuring a new broker:

1. Install Kafka and configure (minimum):

node.id=<unique integer for each node>
process.roles=broker
controller.listener.names=CONTROLLER
inter.broker.listener.name=PLAINTEXT
quorum.controller.voters=<node.id1>@<host1>:<port1>,...
metadata.log.dir=/var/lib/metadata_mount_point # optional

2. Format the metadata directory:

$./bin/kafka-storage format \
 --config /etc/kafka/server.properties \
 --cluster-id Nk018hRAQFytWskYqtQduw

Notice that the metadata directory must be formatted on brokers (

process.roles=broker). Brokers cache the topic locally, reducing the workload on the

Controller for certain operations (e.g. ACL validation)

While a controller only needs to store the metadata topic, the broker needs to do that on

top of storing they typical partition data (.log, .index, etc.) Storing both types of data

may create concerns regarding fault tolerance, storage isolation, and performance. A

possibility here is to store the metadata topic data on a different storage volume: in that

case, configure metadata.log.dir to the mount point of that storage volume.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 141

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

6c: What are the Basics of Monitoring Kafka?

Description

Basics of metrics and monitoring tools. Kafka logs vs. system logs.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 142

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Your Kafka Deployments

• You can use Confluent Control Center to

◦ Optimize performance

◦ Verify broker and topic configurations

◦ Identify potential problems before they happen

◦ Troubleshoot issues

• What else to monitor

◦ Kafka logs

◦ Kafka metrics (JMX)

◦ System logs

◦ System resource utilization

JMX (Java Management Extensions) is a Java technology used for monitoring applications.

The JmxReporter Java class is always included to register JMX statistics. Other custom

reporter classes can be plugged in by adding the .jar file to Kafka’s CLASSPATH (e.g.,

/usr/share/java/kafka/) and setting the metric.reporters broker property to use the

custom class. This requires a restart since a new class is added to the JVM.

If you ever run into problems with a Kafka deployment, whether you reach out to the

community or to Confluent for support, you may be asked for relevant metrics. It is better

to already be running with monitoring enabled.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 143

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Logs vs. Logs

• Kafka topic data

◦ log.dirs property in server.properties

• Application logging with Apache log4j

◦ LOG_DIR: configure the log4j files directory by exporting the environment variable

(Default: /var/log/kafka)

We often refer to topic data (events/messages/records) in Kafka as a log because it is

philosophically an append-only log of events, but Kafka also requires application level

logging (e.g., TRACE, DEBUG, INFO, ERROR, FATAL). Kafka uses the Apache log4j for

application-level logging.

The location for Kafka topic data is set using the log.dirs property which has a default

value of null. If log.dirs is not set, then the location is set by the log.dir property which

has a default value of /tmp/kafka-logs. In the lab environment for this class, log.dirs is

set to /var/lib/kafka.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 144

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Important log4j Files

• By default, the broker log4j log files are written to /var/log/kafka

◦ server.log: broker configuration properties and transactions

◦ controller.log: all broker failures and actions taken because of them

◦ state-change.log: every decision broker has received from the controller

◦ log-cleaner.log: compaction activities

◦ kafka-authorizer.log: requests being authorized

◦ kafka-request.log: fetch requests from clients

• Manage logging via /etc/kafka/log4j.properties

Configurations possible via the log4j.properties file:

• Format how the date appears in the logs

• Set destination path for log files

• Change logging level from WARN to TRACE to troubleshoot

The kafka-request.log file tracks every request and includes the metadata of the request

but not the messages themselves.

Due to the volume of data generated by kafka-authorizer.log and kafka-request.log,

both are set to WARN by default.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 145

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Tools for Collecting Metrics

• Confluent Control Center

• Other metrics tools:

◦ JConsole

◦ Graphite

◦ Grafana

◦ CloudWatch

◦ DataDog

• Starting with AK 3.7 (KIP-714), Kafka Metrics API can help centralizing clients' metrics

Kafka has metrics that can be exposed and inspected through clients. This is accomplished

with a combination of Yammer and internal Kafka metrics packages.

For Kafka clients (producers, consumers, Kafka Streams applications, Kafka Connect) the

applications must be configured and then the monitoring tool must connect to all of them to

gather metrics. This isn’t ideal in most scenarios ; starting with AK 3.7 a new Kafka Metrics

API allows clients' metrics to be gathered by Kafka servers and, through a MetricsPlugin,

exported to an external monitoring system. See KIP-714 and our tutorial for more

information.


Confluent does not specifically endorse any of the listed clients other than

Confluent Control Center.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 146

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-714%3A+Client+metrics+and+observability#KIP714:Clientmetricsandobservability-Clientmetricssubscription
https://developer.confluent.io/confluent-tutorials/client-telemetry-reporter-plugin/kafka/

Kinds of JMX Metrics

There are two kinds of JMX metrics:

• gauge - a measure of something right now

◦ e.g., number of offline partitions

• meter - a measure of event occurrence over a time sample

◦ e.g., count, weight, throughput

Various JMX metrics will come up in this course; this slide simply distinguishes between the

two classes of JMX metrics.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 147

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring the Cluster for Monitoring

• Enable JMX metrics by setting JMX_PORT environment variable

$ export JMX_PORT=9990

• Configure client.id on producers and consumers

◦ Monitor by application

◦ Used in logs and JMX metrics

The client.id is not required but can be used to represent one or more clients. It is usually

set to identify separate applications to allow for more granular monitoring. It is used for

monitoring (in JMX metrics and logs) and for bandwidth control (in the quotas feature of

Kafka).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 148

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Kafka at the OS Level

• Open file handles

◦ Set ulimit -n 100000

◦ Alert at 60% of the limit

• Disk

◦ Alert at 60% capacity

• Network bytesIn/bytesOut

◦ Alert at 60% capacity

Beyond monitoring CPU and memory usage, it is especially important to monitor the

number of open file handles, disk capacity, and network bandwidth on any machine running

as a Kafka broker. Consider:

• If you run out of file handles, it’s a hard failure.

• Alerting at 60% utilization of disk space gives you time to provision new hardware

• Network congestion can lead to ISR drops and increased latency, which could lead to

request timeouts

• Network congestion on all brokers typically means it is time to add more brokers

Why the conservative 60% threshold? This allows bandwidth for infrequent but high traffic

operations (e.g., rebalancing, recovery from broker failure) as well as to have failover

capacity in the event that a broker is offline. Additionally, alerting at 60% provides teams

enough time to fix the issues before they reach 100% utilization and have worse problems.

Regarding ulimit: the invocation of that command isn’t persistent. Please consider running

Confluent Platform through systemd (confluent-server.service augments the limit to

100,000) or through our containers (confluentinc/cp-server sets it up to 1,048,576). In

other types of deployments, please consider persisting the change in a systemd service file,

container configuration, or by editing /etc/security/limits.conf accordingly.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 149

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Troubleshooting Issues

• Check metrics

• Parse the log4j logs

• Avoid unnecessary restarts

• If needed, enable more detailed level of logging in log4j.properties (e.g. WARN → TRACE)

◦ Alternatively, logging priority can be changed as a dynamic node configuration with
kafka-configs

• Check metrics

◦ General Kafka metrics

◦ Specific producers, consumers, consumer groups, streams

◦ System resource utilization

• Check end-to-end metrics in Confluent Control Center (part of Confluent Enterprise)

• Do not troubleshoot problems by just rebooting nodes to see if the problem “goes away”

◦ A lot happens when a broker goes offline, e.g., leader elections, replica movement

◦ Extra load is put on the other brokers (CPU, memory, disk utilization)

◦ Leaders may not be in-sync with preferred replicas

The reference to "end-to-end metrics in Confluent Control Center" requires interceptors to

be installed in producers and consumers to track messages from creation to consumption.

That subject is beyond the scope of the course, but you can read more about it here.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 150

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/control-center/docs/installation/clients.html

6d: How Can You Move Partitions To New

Brokers Easily?

Description

Basics of Self-Balancing Cluster mechanism.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 151

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Self-Balancing Cluster Overview

• Applies when:

◦ You’ve added new (empty) brokers and want to move partitions to them

◦ You want to remove brokers from the cluster and want to move partitions from them

beforehand

◦ Disk usage among brokers is not balanced (optional)

• What it does:

◦ Calculates an optimal placement of partitions among brokers

◦ Automatically moves partitions

• SBC is part of Confluent Platform Enterprise (paid feature)

Self-Balancing Cluster (SBC) moves partitions by:

1. Adding a replica on the destination broker

2. Waiting until that replica is in-sync

3. Removing the replica on the source broker

This guarantees data isn’t at risk while data is being moved, but it also means that disk

utilization increases cluster-wide until partition movement finishes.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 152

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Basic configuration of Self-Balancing

Settings in server.properties in all brokers and controllers:

• confluent.balancer.enable (default false)

• confluent.balancer.heal.uneven.load.trigger

◦ EMPTY_BROKER (default): rebalance after adding a broker

◦ ANY_UNEVEN_LOAD: rebalance also on uneven workload

These two settings are dynamic and can be changed using kafka-configs or in Confluent

Control Center


After enabling Self-Balancing, the system needs to gather metrics for around

30 minutes: no balancing will happen during that initial period.

There are more settings that can be configured but the majority are static properties. That

advanced configuration allows, among others:

• changing the time it takes for a broker to be considered permanently failed (and trigger a

rebalance to other brokers if possible)

• excluding topics from being moved. Note that excluding too many topics can interfere

with Self-Balancing

• changing the network throttle to apply during rebalance

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 153

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Self-Balancing Configuration in Control Center

You can find this page in Cluster settings → Self-balancing:

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 154

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How to trigger Self-Balancing

Self-balancing starts a task when:

• A broker is added to the cluster (automatic)

• A broker is being prepared for removal from cluster (manually from CLI or CCC)

• A broker is considered permanently failed (automatic after threshold)

• Workload on brokers is uneven (automatic, only if ANY_UNEVEN_LOAD)

• Manually (only from CLI)

Some more details:

• New brokers are automatically detected, you can add them the same way as if Self-

Balancing was disabled.

• To remove a broker from Control Center:

◦ Select the cluster

◦ Go to Brokers and scroll down to the list of brokers

◦ Select the broker to remove

◦ Go to the broker’s Configuration tab

◦ Click the Remove broker button on the right side and confirm

• To remove a broker from the CLI:

$ kafka-remove-brokers \
 --bootstrap-server $BOOTSTRAPS \
 --broker-id <broker_id> \
 --delete

• To trigger a rebalance from the command line:

$ kafka-rebalance-cluster \
 --bootstrap-server $BOOTSTRAPS \
 [--rebalance-dry-run | --rebalance]

For more information, check our documentation here.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 155

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/clusters/sbc/configuration-options.html

Activity: Different strategies for Self-Balancing

Discuss:

1. What are the benefits and disadvantages of both types of

trigger modes? (EMPTY_BROKER, ANY_UNEVEN_LOAD)

2. What are the disadvantages of scheduling manual

rebalances? (running it as a cron job)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 156

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Self-Balancing vs kafka-reassign-partitions

Feature Self-Balancing Cluster kafka-reassign-partitions

Automated balancing cluster-wide,

no math required

Yes No, per topic

Runs internally in the Cluster Yes 24/7 No, CLI tool

Faster rebalancing with optimized

partition movement

Yes No, and risk running out of

interim disk space

Decommission brokers Yes, automatic on

selected brokers

Yes, manual reassignment

Increase replication factor No Yes, with manual work

Balance partitions across log dirs No Yes

This section demonstrated partition migration using the Self-Balancing Cluster mechanism

available through Confluent Platform Enterprise. Open-Source Kafka includes a tool called

kafka-reassign-partitions. If you are interested in this tool, look at the lab exercise

entitled "Appendix: Reassigning Partitions in a Topic - Alternative Method."

SBC gives the ability to automatically balance a cluster, but kafka-reassign-partitions
gives granular control over the number and placement of partitions. For example, kafka-
reassign-partitions can increase a Topic’s replication factor and even move partitions to

specific log directories (for example, to load balance Partitions across disks). See the

alternative lab exercise mentioned above, and/or the lab exercise entitled Increasing

Replication Factor exercise for more information about that tool.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 157

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

6e: What Should You Consider When

Shrinking a Cluster?

Description

Tips for shrinking a cluster. Replacing a server.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 158

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Shrinking the Cluster

• Why reduce the number of brokers in the cluster?

◦ Maintenance on a broker

◦ Reduce cost during periods of low cluster utilization

• Decommissioning a broker

◦ If using Self-Balancing Cluster, issue the broker removal from CLI or from Control

Center

◦ If using kafka-reassign-partitions, reassign all replicas that is currently hosting

(leaders and followers) to other brokers, then perform a controlled shutdown

Why shrink a cluster? An easy example is an online retailer hosting their Kafka cluster in a

cloud-based environment. During certain times of the year, they expect to handle larger

volumes of transactions. Spreading partitions across more brokers can increase available

throughput and enable them to handle the increased traffic. However, once traffic returns

to normal levels, it does not make sense to pay the cloud vendor for the extra capacity. SBC

can be used to decommission brokers easily with the kafka-remove-brokers command line

tool. The kafka-reassign-partitions tool, however, requires manually moving partitions

from brokers that are planned for decommission.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 159

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Replacing a Failed Node

• On new hardware/container, deploy a new Kafka Server with the same value for node.id

• The new Server will automatically bootstrap data on start-up

• If possible, start up the replacement Server at an off-peak time


Server will copy the data as fast as it can during recovery. This can have a

significant impact on the network.

Kafka does not migrate partitions if a broker fails. The procedure to recover a failed Server

is:

1. Replace the hardware

2. Install the OS and Kafka

3. Assign the Server the identity of the lost system (node.id and

controller.quorum.voters plus other configuration)

4. Start the Server and let the replication features rebuild the Partitions.



if using Confluent’s Self-Balancing Cluster mechanism, the failed node trigger

may have already activated, so there was a rebalance (if enough brokers

remained). Adding back the broker should trigger a second rebalance ("empty

broker"). This increases network utilization, but decreases data risk (the first

rebalance may have solved some under-replicated partitions).

Kafka does not care about the hostname or IP address where it runs - Node ID is all that

identifies the system to the cluster.

Be careful — the Server will copy the data as fast as it can during recovery and there is no

throttling tool. This can have a significant impact on the network. If possible, it is

recommended to avoid scenarios where a broker loses all of its data and has to recover

every partition via replication. For example, specify many log directories with log.dirs and

mount a separate disk to each log directory. That way, a disk failure means only some of a

Broker’s Partitions need to be recovered via replication over the network. If in a public cloud

environment, another example would be to mount a distributed file system to the log

directory specified with log.dirs (e.g., AWS Elastic Block Storage). These systems have

their own guarantees about preventing data loss, so brokers can come back online and only

recover a much smaller amount of data (only whatever was lost in the page cache and

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 160

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

whatever data has been produced while the Broker was down). These considerations will be

given more detail in a later module.

Throttling can be achieved during broker recovery using kafka-configs, but this requires

you to figure out which partitions belong on the failed broker. There is no tool for this as of

Kafka 3.9, but it could be accomplished by running kafka-topics --describe for each

topic in the cluster and parsing (e.g., with awk) to find all the topic-partitions that belong to

a specific broker. See this reference for more details.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 161

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-73+Replication+Quotas

Lab: Kafka Administrative Tools

Please work on:

• Lab 6a: Rebalancing the Cluster

• Lab 6b: Simulate a Completely Failed Broker

• Lab 6c: Deleting Topics in the Cluster

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 162

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

7: Balancing Load with Consumer

Groups and Partitions

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 163

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 5 lessons:

• What are the Basics of Scaling Consumption?

• How Do Groups Distribute Work Across

Partitions?

• How Does Kafka Manage Groups?

• How Do Partitions and Consumers Scale?

• How Does Kafka Maintain Consumer Offsets?

Where this fits in:

• Hard Prerequisite: Fundamentals Course

• Recommended Prerequisite: Storing the Records

Persistently

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 164

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Explain how consumer groups read messages from Kafka

• Explain the relationship between partitions and throughput

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 165

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

7a: What are the Basics of Scaling

Consumption?

Description

Consuming with one consumer vs. multiple consumers in a group vs. multiple groups.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 166

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Cardinality

• Cardinality: the number of elements in a set or other grouping, as a property of that

grouping.

• Key cardinality affects the amount of work done by the individual Consumers in a group.

Poor key choice can lead to uneven workloads.

• Keys in Kafka don’t have to be simple types like Integer, String, etc. They can be complex

objects with multiple fields. For example, in some cases, a compound key can be useful,

where part of the key is used for partitioning, and the rest used for grouping, sorting, etc.

So, create a key that will evenly distribute groups of records around the Partitions.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 167

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consuming from Kafka - Single Consumer

If you have a single consumer that consumes data from a topic, here with 4 partitions, then

this consumer will consume all records from all partitions of the topic.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 168

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consuming as a Group

A consumer group transparently load balances the work among the participating consumer

instances. In this image we have 4 consumers that consume a topic with 4 partitions. Thus,

each consumer consumes records from exactly one partition.

A partition is always consumed as a whole by a single consumer of a consumer group. A

consumer in turn can consume from 0 to many partitions of a given topic.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 169

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Multiple Consumer Groups

Any collection of consumers configured with the same group.id name will form a consumer

group. The consumers in a consumer group will split up the workload among themselves in a

somewhat even fashion. Note that, as indicated here on the slide, we can have multiple

consumer groups consuming from the same topic(s).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 170

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

7b: How Do Groups Distribute Work Across

Partitions?

Description

Assignment of partitions to consumers. Strategies: range, round-robin, sticky, cooperative

sticky.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 171

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partition Assignment within a Consumer Group

• Partitions are 'assigned' to consumers

• A single partition is consumed by only one consumer in any given consumer group

◦ Messages with same key will go to same consumer (unless you change number of

partitions)

◦ partition.assignment.strategy in the consumer configuration

The consumer group is managed by a process called a group coordinator.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 172

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partition Assignment Strategy: Range

• Range is the default partition.assignment.strategy

• Useful for co-partitioning across topics, e.g.:

◦ Package ID across delivery_status and package_location

◦ User ID across search_results and search_clicks

Broker(s)

A-0

A-1

B-0

B-1

There are four built-in partition assignment strategies: Range (default), RoundRobin, Sticky

and CooperativeSticky. These are set with partition.assignment.strategy in the

consumer code.

The Range strategy is useful for "co-partitioning" across topics with keyed messages.

Imagine that these two topics are using the same key — for example, a userid. Topic A is

tracking search results for specific user ids; Topic B is tracking search clicks for the same set

of user ids. If the topics have the same number of partitions and messages are partitioned

with the default hash(key) % number of partitions, then messages with the same key

would land in the same numbered partition in each topic. Therefore, the range strategy will

ensure messages with a given userid from both topics will be read by the same consumer.

The range strategy assigns matching partitions of different topics to the same consumer. In

the image shown, there are two 2-partition topics and three consumers. The first partition

from each topic is assigned to one consumer, the second partition from each is assigned to

another consumer, repeating until there are no more partitions to assign. Since we have

more consumers than partitions in any topic, one consumer will be idle.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 173

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Here’s a more complex version of the diagram showing keys and more intended for a

development audience where we get into needing to keep same-key messages together:

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 174

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partition Assignment Strategy: RoundRobin

• Partitions assigned one at a time in rotating fashion

Broker(s)

A-0

A-1

B-0

B-1

The RoundRobin partition.assignment.strategy is much simpler. Partitions are

assigned one at a time to consumers in a rotating fashion until all the partitions have been

assigned. This provides much more balanced loading of consumers than range.

An important note about Range and RoundRobin: Neither strategy guarantees that

consumers will retain the same partitions after a reassignment. In other words, if a

consumer 1 is assigned to partition A-0 right now, partition A-0 may be assigned to another

consumer if a reassignment were to happen. Most consumer applications are not locality-

dependent enough to require that consumer-partition assignments be static.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 175

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partition Assignment Strategy: Sticky and

CooperativeSticky

• Sticky

◦ Is RoundRobin with assignment preservation across rebalances

• CooperativeSticky

◦ Is Sticky without its "stop-the-world" rebalancing of all partitions

• Sticky

If your application requires partition assignments to be preserved across rebalances, use

the Sticky strategy. Sticky is RoundRobin with assignment preservation. The Sticky

strategy preserves existing partition assignments to consumers during rebalances to

reduce overhead:

◦ Kafka consumers retain pre-fetched messages for partitions assigned to them before a

rebalance

◦ Reduces the need to clean up local partition state between rebalances

See KIP 54 for a full description of this feature.

• CooperativeSticky

At a high level, it is very similar to Sticky, but it uses consecutive rebalances rather than

the single stop-the-world used by Sticky.

See KIP 429 for a full description of this feature.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 176

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-54+-+Sticky+Partition+Assignment+Strategy
https://cwiki.apache.org/confluence/display/KAFKA/KIP-429%3A+Kafka+Consumer+Incremental+Rebalance+Protocol

A Step Beyond

(Preview) Next Generation of the Consumer Rebalance

Protocol

• Major changes

1. New Consumer Rebalance Protocol (Server-Side Assignor)

2. New Group Coordinator (rebalance management)

3. New threading model for the Consumer

• Uniform strategy is an improved Cooperative Sticky

• Server-side Range is Uniform for co-partitioned topics

• Early Access: AK 3.7

While Cooperative Sticky solves the "Stop the World" problem, it still has two weak points:

1. It doesn’t handle co-partitioned topics (classic Range isn’t sticky nor cooperative)

2. There is still a group-wide synchronization barrier affecting offset commits.

For further details of what the synchronization barrier is and how the new assignor avoid it,

you can watch this presentation or the original KIP-848.

Regarding the new Group Coordinator, the main changes are handling the new server-side

assignors and taking the main functionality of the Group Leader.

If you want to test the new functionality, please don’t do it in production clusters ; there are

some limitations in Early Access:

• No support for upgrading the cluster

• kafka-consumer-group --describe may be limited or non-functional for consumer

groups using the new protocol

• Regular Expression subscription isn’t supported

• Transaction verification (KIP-890) isn’t supported and must be disabled

If you want to test it in your lab environment, follow these steps:

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 177

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/events/current/2022/the-next-generation-of-the-consumer-rebalance-protocol/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-848%3A+The+Next+Generation+of+the+Consumer+Rebalance+Protocol

1. With no cluster created, uncomment the following two lines to the environment of each

controller and broker in compose.yaml:

KAFKA_GROUP_COORDINATOR_REBALANCE_PROTOCOLS: classic,consumer
KAFKA_TRANSACTION_PARTITION_VERIFICATION_ENABLE: false

2. Start up the new cluster: docker compose up -d

3. Create a testing topic (same as in lab 1.b)

kafka-topics --bootstrap-server $BOOTSTRAPS \ --create \
 --partitions 1 \
 --replication-factor 1 \
 --topic testing

4. Create a consumer group that uses the new uniform assignor:

kafka-console-consumer \ --bootstrap-server $BOOTSTRAPS \ --from-beginning \
--topic testing \
--consumer-property group.id=test-consumer-group \
--consumer-property group.protocol=consumer

5. Describe the consumer group (this may not work on AK 3.7):

$ kafka-consumer-groups --bootstrap-server $BOOTSTRAPS --describe --group test-
consumer-group --state

GROUP COORDINATOR (ID) ASSIGNMENT-STRATEGY STATE
#MEMBERS
test-consumer-group kafka-1:19092 (1) uniform Stable
1

6. Confirm that the strategy is uniform

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 178

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

7c: How Does Kafka Manage Groups?

Description

Group management. Rebalances. Heartbeats and failure detection.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 179

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Rebalancing

Rebalance triggers:

• Consumer leaves consumer group

• New consumer joins consumer group

• Consumer changes its topic

subscription

• Consumer group notices change to

topic metadata (e.g., increase #

partitions)

Rebalance Process:

1. Group coordinator uses flag in heartbeat

to signal rebalance to consumers

2. Consumers pause, commit offsets

3. Consumers rejoin into new "generation"

of consumer group

4. Partitions are reassigned

5. Consumers resume from new partitions

 Consumption pauses during rebalance. Avoid unnecessary rebalances.

During rebalance, consumers will stop reading from their current partitions, commit their

consumer offsets, receive their new assignment, then resume reading from their newly

assigned partitions.

Once a rebalance has begun, the coordinator starts a timer which is set to expire after the

group’s session timeout. Each member in the previous generation detects that it needs to

rejoin with its periodic heartbeats sent to the coordinator. The coordinator uses the

REBALANCE_IN_PROGRESS error code in the heartbeat response so the consumer knows to

rejoin.

Partitions are reassigned in the same way they were assigned in the first place: with a dance

between group coordinator and group leader. There may be a new group leader on

rebalance.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 180

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Failure Detection

• Consumers send heartbeats in

background thread, separate from
poll()

◦ heartbeat.interval.ms (Default:

3 s)

• session.timeout.ms (Default: 45 s)

◦ If no heartbeat is received in this

time, consumer is dropped from

group

• poll() must still be called

periodically

◦ max.poll.interval.ms (Default:

5 minutes)

The consumer communicates to the brokers regularly to let them know that it is still alive. If

a consumer is believed to be dead, it is removed from the consumer group and a consumer

rebalance is performed.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 181

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Avoiding Excessive Rebalances

• Tune session.timeout.ms:

◦ Pro: gives more time for consumer to

rejoin

◦ Con: takes longer to detect hard

failures

• Tune max.poll.interval.ms

◦ Give consumers enough time to process

data from poll()

Static group membership:

• Assign each consumer in group unique

group.instance.id

• Consumers do not send
LeaveGroupRequest

• Rejoin doesn’t trigger rebalance for

known group.instance.id

• Rebalances are still triggered on

heartbeat and poll timeouts

 These configurations are set in consumer code.

Consumer group rebalances can be costly because each rebalance pauses consumption for

all consumers in the group. Furthermore, rebalances can also involve shuffling the partitions

assigned to each consumer, which is unacceptable in more stateful applications where sticky

partition assignment matters. The sticky assignment strategy can only be used with round-

robin assignment and only reduces assignment changes rather than avoiding rebalance.

In order to avoid unnecessary rebalances, you can tune session.timeout.ms and

heartbeat.interval.ms. Because the heartbeats are also used to propagate protocol

information, large changes in heartbeat.interval.ms are not currently advised.

Increasing session.timeout.ms means it will take longer for the group coordinator to

declare a consumer dead and remove it from the group, thus postponing the rebalance. This

gives time for the consumer to recover and pick up where it left off. The downside to this is

that it will now take longer for the group coordinator to detect hard consumer failures that

actually do require rebalance. The partitions assigned to the failed consumer will go

unconsumed for this time.



The session.timeout.ms property must be between the

group.min.session.timeout.ms (Default: 6 seconds) and

group.max.session.timeout.ms (Default: 5 minutes) properties on the

Broker.

The consumer must also poll() periodically to remain in the consumer group, so set

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 182

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

max.poll.interval.ms high enough to allow the consumer to process the data it receives

from poll(). Its value should always be larger than session.timeout.ms to avoid

interactions between both mechanisms.



Do not just turn max.poll.interval.ms up to a very high value, since in a case

where your main thread crashed but the background heartbeat continued, this

would result in waiting for that long amount of time before a consumer

rebalance could be triggered.

You might also consider enabling static group membership by configuring a unique

group.instance.id to each consumer in the group: Static group membership helps to

avoid unnecessary rebalances during rolling updates or restarts (e.g., ephemeral containers

in Kubernetes or the rollout of a new application version). This normally would involve two

rebalances: one rebalance when the consumer leaves the group, and another rebalance

when it rejoins the group. With static group membership, a consumer does not send a

LeaveGroupRequest to the group coordinator, thus avoiding the first rebalance. Then, when

the consumer rejoins the group, the group coordinator sees its group.instance.id and

does not trigger a rebalance. The consumer simply picks up where it left off.



Assigning a unique group.instance.id per consumer can itself be laborious

without automation. One strategy in Kubernetes would be to deploy the

consumer group as a StatefulSet and assign group.instance.id as the pod

name of the consumer. This can be accomplished by exposing the pod name to

the consumer container as an environment variable and setting

group.instance.id equal to that environment variable. For example, see

https://kubernetes.io/docs/tasks/inject-data-application/environment-

variable-expose-pod-information/.

Most features of static group membership were released in Apache Kafka 2.3. Kafka

Connect uses a version of it for cooperative task rebalancing. See:

• https://cwiki.apache.org/confluence/display/KAFKA/KIP-

345%3A+Introduce+static+membership+protocol+to+reduce+consumer+rebalances

• And the first 5 minutes of

https://www.youtube.com/watch?v=57Jf_9lrlwA&list=PLa7VYi0yPIH0snucuYWkuUXwas

Mr-HR7Y&index=4&t=0s.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 183

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/
https://kubernetes.io/docs/tasks/inject-data-application/environment-variable-expose-pod-information/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-345%3A+Introduce+static+membership+protocol+to+reduce+consumer+rebalances
https://cwiki.apache.org/confluence/display/KAFKA/KIP-345%3A+Introduce+static+membership+protocol+to+reduce+consumer+rebalances
https://www.youtube.com/watch?v=57Jf_9lrlwA&list=PLa7VYi0yPIH0snucuYWkuUXwasMr-HR7Y&index=4&t=0s
https://www.youtube.com/watch?v=57Jf_9lrlwA&list=PLa7VYi0yPIH0snucuYWkuUXwasMr-HR7Y&index=4&t=0s

A Step Beyond

Under Consumption and Over Consumption

• Under-consumption:

◦ Consumer offsets intentionally set to latest,

skipping old messages

◦ Misbehaving consumers, e.g., did not follow

shutdown sequence

• Over-consumption:

◦ Consumers reprocessing data, e.g., machine

learning model testing

• Monitor under/over-consumption in Confluent

Control Center

Confluent Control Center enables administrators to visually track over and under

consumption. This helps to troubleshoot issues if consumers are reporting missing or

repeated messages.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 184

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

When a Consumer Group is Empty

• When all consumers leave a group, the group metadata is deleted from coordinator

• Verify with:

$ kafka-consumer-groups --bootstrap-server=broker-101:9092
 --list

The consumer group metadata (e.g., offset information) for a given consumer group is

maintained by the group coordinator. We can discover the current group coordinator for a

group by issuing a "Group Coordinator Request." If the consumer group still has consumers,

then there will be a group coordinator to respond with metadata to the kafka-consumer-
groups call. If the consumer group does not have consumers, then the kafka-consumer-
groups call will not return anything.

• __consumer_offsets topic has its own retention policy:

◦ cleanup policy: compact, but

◦ offsets.retention.minutes (Default: 10080 minutes [=1 week]) applies after group

is empty

• View the __consumer_offsets topic:

$ kafka-console-consumer \
> --topic __consumer_offsets \
> --bootstrap-server kafka-1:9092,kafka-2:9092 \
> --formatter
"kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter"
...
[new-group,new-topic,0]::OffsetAndMetadata(offset=3, leaderEpoch=Optional[0],
metadata=, commitTimestamp=1565702696548, expireTimestamp=None)
...

After a consumer group loses all its consumers (i.e., becomes empty) its offsets will be kept

for the offsets.retention.minutes period (1 week by default) before getting discarded.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 185

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

7d: How Do Partitions and Consumers Scale?

Description

Scalability of consumer groups. Adding partitions. Benefits and challenges of adding

partitions.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 186

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Group Scalability

p
0

p
1

p
2

consumer group

c1

c2

c3

consumer group

p
0

p
1

p
2

c1

p
0

p
1

p
2

consumer group

c1

c2

c3

c4idle
c5idle

The number of useful consumers in a consumer group is constrained by the number of

partitions on the topic.

Example: If you have a topic with three partitions, and 10 consumers in a consumer group

reading that topic, only three consumers will receive data, one for each of the three

partitions.

If there are more consumers than partitions, the additional consumers will sit idle. The idea

of a hot-standby consumer is not required but can prevent performance differentials during

client failures.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 187

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Adding Partitions

Use the kafka-topics command, e.g.:

$ kafka-topics \
 --bootstrap-server broker_host:9092 \
 --alter \
 --topic my_topic \
 --partitions 30

Notes:

• Doesn’t move data from existing partitions

• Messages with the same key will no longer be on the same partition

◦ Workaround: Consume from old topic and produce to a new topic with the correct

number of partitions

Remember that key-based partitioning uses hash(key) mod <number-of-partitions>, so

increasing partition count means what used to go to, e.g., partition 0 might now go to

partition 15. So messages with a given key will no longer be on a single Partition.

For the workaround (new topic, copy data), you will have to update all the clients. Since you

will be copying data from the original topic into a new (larger) topic in the same cluster, the

topics cannot have the same name. There currently is not a way to rename a topic.


Kafka does not support reducing the number of partitions in a topic. Partitions

are append-only event logs, so there is no way for partition count to be reduced

(merging event logs would violate their append-only nature).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 188

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Groups: Caution When Changing Partitions

On this slide icons with same shapes represent records with same key.

Recall that semantic partitioning works on the idea that a message will be sent to the

partition determined by the formula hash(key) % n, where n is the number of partitions.

Changing the n number could change the output of the formula, resulting in messages with

the same key being sent to different partitions. This would defeat the purpose of semantic

partitioning.

Example: Using Kafka’s default partitioner, messages with key K1 were previously written to

partition 2 of a topic. After repartitioning, new messages with key K1 may now go to a

different partition. Therefore, the consumer which was reading from partition 2 may not get

those new messages, as they may be read by a new consumer

There are strategies to mitigate this problem (e.g., migrating to a larger topic rather than

just expanding the existing topic) but the best option is to plan appropriately so that you do

not have to resize your topic.



In the lower part of the slide the intent to show is that the partitions may after

the change contain values with the keys that were assigned prior to the change

and new key values, after the change. The downstream consumers might be

confused by that…

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 189

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Number of Partitions

• Minimum number of partitions: max(t/p, t/c)

◦ t: target throughput

◦ p: Producer throughput per Partition

◦ c: Consumer throughput per Partition

• Other considerations:

◦ A number with many divisors

◦ Same number of partitions as other related topics

As mentioned previously, the limiting factor is likely to be the consumers, so the number of

partitions will likely be t/c. Topics should be sized so that consumers can keep up with the

throughput from a physical (NIC speed) and computational (processing time per poll)

standpoint.

Another lesson and lab will address how to measure throughput on a per-producer and per-

consumer level.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 190

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Improving Throughput With More Partitions

• More partitions → higher throughput

• Rule of thumb for maximums:

◦ Up to 4,000 partitions per broker

◦ Up to 200,000 partitions per cluster

One of the most common questions asked about Kafka is "How many partitions should my

topic have?"

There is no simple answer. More partitions generally means higher throughput for

consumers (assuming you have enough consumers to assign to all the partitions). For

producers of keyed messages, there is keyspace to consider. If there are only 100 unique

keys, and all messages of the same key are guaranteed to land on the same partition, then

having more than 100 partitions doesn’t make sense.

There are downsides to arbitrarily large partition counts that we will discuss on the next

slide. The soft limits shown on the slide (<4K partitions/broker, <200 K partitions per

cluster) were calculated on AK2.0 and Zookeeper: we don’t have updated information for

KRaft-based clusters yet. In any case, most environments are well below these values

(typically in the 1000-1500 range or less per broker).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 191

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Downside to More Partitions

• More open file handles

• Longer leader elections → more downtime after broker failure

• Higher latency due to replication

• More client memory (buffering per partition)


When producing keyed messages: avoid unbalanced key utilization. This leads to

"hot partitions."

• Downsides with too many partitions:

◦ You need more open file handles: More partitions means more directories and segment

files on disk.

◦ Availability issue: Planned failures move Leaders off of a broker one at a time, with

minimal downtime per partition. In a hard failure all the leaders are immediately

unavailable. The Controller needs to detect the failure and choose other leaders, but

since this happens one at a time, so it can take a long time for them all to be available

again. The first partition will be offline for significantly less time than the nth Partition.

Additionally, if the Controller itself fails, the first thing that has to happen is a

Controller election.

◦ Latency impact: only really matters when you’re talking about millisecond latency. For

the message to be seen by a consumer it must be committed. The broker replicates

data from the leader with a single thread, resulting in overhead per partition. If you

have 1000 Partitions the overhead is about 20 milliseconds. This effect can also be

reduced by increasing the number of "replication" threads (as shown in the Deploying

Kafka in Production module)

◦ Client memory: Both the producer and consumer buffer per-partition. Increasing the

number of partitions would increase the memory requirements on the clients. Memory

utilization on brokers may increase too.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 192

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

7e: How Does Kafka Maintain Consumer

Offsets?

Description

Consumer offsets topic: uses, special properties. Viewing offsets.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 193

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Offset Management

• Consumption is tracked per topic-partition

• Each consumer maintains an offset in its memory for each partition it is reading

• As a consumer processes messages, it periodically commits the offset of the next

message to be consumed

◦ Offsets are committed to an internal Kafka topic __consumer_offsets

◦ Offsets can be committed automatically or manually by the consumer

Consumer groups need to keep track of offsets to avoid rereading data after a restart. Each

consumer will track the offsets it has read from its assigned Partition(s). The Consumers

need to commit (checkpoint) the offsets to the __consumer_offsets topic as they read

data so that the partition can be read from where they left off in case of a failure.

Consumers can be configured to commit offsets automatically (default) or manually by the

application developer.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 194

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Important Configuration Settings for Offsets

• __consumer_offsets auto-created upon first consumption

• Scalability: offsets.topic.num.partitions (Default: 50)

• Resiliency: offsets.topic.replication.factor (Default: 3)


If there aren’t enough brokers, auto-creation of __consumer_offsets fails.

Consumers should only begin consuming after all brokers are running.

The setting offsets.topic.replication.factor will be enforced during auto topic

creation for the offsets topic. If the number of brokers is fewer (e.g., 2), then there will be a

"GROUP_COORDINATOR_NOT_AVAILABLE" error until 3 brokers come online.

If you need to build a smaller, non-production cluster (e.g., for development), the

__consumer_offsets Topic can be created manually.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 195

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumers and Offsets (Kafka Topic Storage)

657

721

key value

Offsets Cache

Offsets Topic

Kafka

When a Consumer commits its offsets to the offsets topic, it sends four data points:

• Consumer group name

• Topic name

• Partition number

• Next offset to be read

Note that the consumer name is not included. This is because consumers with in a consumer

group are meant to be interchangeable for high availability. It should not matter which

consumer read from a specific partition. Because the consumer name is not part of the

offsets topic data, even single consumers need to be part of a consumer group.

Consumer offset data MUST be read in order, else it is useless. The order of the offsets is

maintained by fact that the __consumer_offsets topic uses semantic (key-based)

partitioning, using the consumer group name as the key. This ensures all consumer offset

information for a given consumer group lands on the same partition of the

__consumer_offsets topic.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 196

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Checking Consumer Offsets (1)

Consumer group lag can also be tracked in Confluent Control Center. View consumer-

partition lag across topics for a consumer group. Alert on max consumer group lag across all

topics.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 197

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Checking Consumer Offsets (2)

Look for the current offset and lag:

$ kafka-consumer-groups --group my-group \
 --describe \
 --bootstrap-server=broker101:9092,broker102:9092,broker103:9092

TOPIC, PARTITION, CURRENT OFFSET, LOG END OFFSET, LAG, CONSUMER-ID
my_topic, 0, 400, 500, 100, consumer-1_/127.0.0.1
my_topic, 1, 500, 500, 0, consumer-1_/127.0.0.1

The lag shown by this command depends on the offset commit interval, so it is essentially

reflecting the last commit value. It is useful to make sure the members of the group are

what you’re expecting.

For real-time lag, the MaxLag JMX metric is a better tool.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 198

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Modifying Partitions and Viewing

Offsets

Please work on Lab 7a: Modifying Partitions and

Viewing Offsets

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 199

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

8: Optimizing Kafka’s Performance

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 200

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 7 lessons:

• How Does Kafka Handle the Idea of Sending Many Messages at

Once?

• How Do Produce and Fetch Requests Get Processed on a Broker?

• How Can You Measure and Control How Requests Make It Through a

Broker?

• What Else Can Affect Broker Performance?

• How Do You Control It So One Client Does Not Dominate the Broker

Resources?

• What Should You Consider in Assessing Client Performance?

• How Can You Test How Clients Perform?

Where this fits in:

• Hard Prerequisite: Managing a Kafka Cluster

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 201

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Explain why batching helps performance

• Describe the anatomy of requests on a broker

• Performance-tune the cluster

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 202

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The Meaning of Performance

• Throughput

◦ amount of data moving through Kafka per second

• Latency

◦ The delay from the time data is written to the time it is read

• Recovery Time

◦ The time to return to a “good” state after some failure

Throughput is often measured in megabytes per second (MB/s). Even a small three-broker

cluster with modest hardware can achieve on the order of 10-100 MB/s. The more data

pushed through the cluster, the better.

Latency is often measured in milliseconds (ms). Depending on how a cluster is tuned, end-

to-end latency between when a message is produced to when it is consumed can be

anywhere from single digit ms to a few seconds. Interactive and proactive applications

require very low latency, while asynchronous applications can tolerate much longer latencies.

Recovery time is important to operations because it has the greatest effect on availability

calculations. Availability is the fraction of the time that a service meets its predefined

requirements. Availability is typically defined as F/(F+R) where F is the mean time to failure

and R is the mean time to recovery. In this equation, lowering R by some fixed percentage

has a much greater effect on availability than increasing F by the same percentage.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 203

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

8a: How Does Kafka Handle the Idea of

Sending Many Messages at Once?

Description

Batching. Pipelining. Tuning batching. Compression.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 204

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Batching for Higher Throughput

Imagine there is a line of 50 kids trying to get to school. Think about two strategies for

getting them to school:

1. There is a steady flow of SmartCars. The first student enters the SmartCar and goes to

school at the speed limit. After that car leaves, there is another SmartCar that the second

student takes, and so on.

2. One big bus comes to pick up all the students at once before heading to school at the

speed limit.

Here are some questions to consider:

• If you were a student, which option would get you to school the fastest?

◦ The SmartCar would be faster for an individual student because they don’t have to wait

for all students to load before taking off.

• If you were the school administrator, which option would get the whole batch of students

to school the fastest?

◦ The bus would be faster because each SmartCar has a "preparation time" per student

(the car pulls up, the student walks to the door, opens it, gets in, buckles seat belt, etc.),

whereas the bus opens its door once and loads everyone more efficiently and then goes.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 205

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Producer Architecture

• Pipelining: multiple in-flight send requests per broker

◦ max.in.flight.requests.per.connection (default: 5)

network
IO thread

batch

binary queues

batch

batch

batch

When a producer creates a message, pushing that data to the cluster is a two-stage

process:

1. A method called send() places messages into binary queues in RAM on the producer

system

2. An internal thread will push the messages to broker containing the leader for the specific

partitions.

Requests are pipelined, which means there can be multiple in-flight send requests per

broker. The producer setting that governs this is

max.in.flight.requests.per.connection (default: 5), which is set in the producer code.

But why use a two-stage process to get message into the brokers? This enables the

producer to send messages in real-time or as batches.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 206

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Batching Messages (1)

T1-P1: msg1, msg3

ProduceRequest

Producer

Broker 1

Broker 2

ProduceRequest

T1-P2: msg2

T2-P1: msg4

serializer

partitioner

accumulator

1. First, batch messages by partition

2. Then, collect batches into ProduceRequests to brokers

Though Kafka is designed to handle messages in real-time, it can also be tuned to use

batching for higher throughput at the cost of higher latency. When multiple messages are

sent to the same partition, a producer may attempt to batch them. If multiple partitions

have leaders on the same broker, the producer collects the appropriate batches together

into a ProduceRequest to that broker. Batching provides better throughput since grouping

together reduces the number of RPCs (remote procedure calls) and so the brokers have less

to process. Batching also typically makes compression more effective.

The arrows pointing to brokers each represent a ProduceRequest. A single

ProduceRequest can contain one or more batches of records. The ProduceRequest includes

the topic and partition metadata for each RecordBatch so that brokers know exactly how

to handle the incoming data.


Not shown is the fact that there is a separate buffer for each partition as the

producer accumulates messages into batches.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 207

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Batching Messages (2)

• batch.size (Default: 16 KB):

◦ The maximum size of a batch before

sending

• linger.ms (Default: 0, i.e., send

immediately):

◦ Time to wait for messages to batch

together

When a message is pushed from the queue to the brokers is determined by either how long

the messages have been in the queue (linger.ms) or the amount of data (batch.size).

The default behavior is for the producer to push messages in real-time so linger.ms
defaults to 0, i.e., send message as soon as they arrive.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 208

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

End-To-End Batch Compression

Producer Consumer

1. Producer batches messages and compresses the batch

2. Compressed batch stored in Kafka

3. Consumer decompresses and un-batches messages

The compression type used by a producer is noted as an attribute in the messages that it

produces. This allows multiple producers writing to the same topic to use different

compression types. Consumers will decompress messages according to the compression

type denoted in the header of each message.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 209

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Tuning Producer Throughput and Latency

• batch.size, linger.ms

◦ High throughput: large

batch.size and

linger.ms, or flush

manually

◦ Low latency: small

batch.size and
linger.ms

• buffer.memory

◦ Default: 32 MB

◦ The producer’s buffer

for messages to be sent

to the cluster

◦ Increase if producers are

sending faster than

brokers are

acknowledging, to

prevent blocking

• compression.type

◦ gzip, snappy, lz4, zstd

◦ Configurable per

producer, topic, or

broker

A typical setting for batching is linger.ms=100 and batch.size=1000000.

The buffer.memory should be larger than your target batch size accumulated across all

target partitions. For example, if the topic has 10 partitions and an expected 16 KB batch

size, the minimum size for the buffer is 160 KB. This should typically be set larger to allow

for buffering in the event of retries when pushing data to the brokers.

The compression.type can be set on brokers, topics, or producers. On brokers and topics,

the default is compression.type=producer, which means the compression codec of the

producer is respected. This can result in a single topic containing messages of various

compression types. If the broker or topic has its own compression type set, then all

messages will be compressed with the specified codec. This puts extra work on the broker,

but will save resources on producers. Producers typically have enough CPU and memory for

compression, so usually it is best to leave broker and topic compression.type settings to

producer.

Compression level can be configured (except for snappy) through the

compression.<codec>.level config added in AK 3.8 by KIP-390 (there you can find the

configurable values and some benchmark information).

 Batch size refers to the compressed size if compression is enabled.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 210

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-390%3A+Support+Compression+Level

Tuning Consumer Throughput and Latency

• High throughput:

◦ Large fetch.min.bytes (Default: 1)

◦ Reasonable fetch.max.wait.ms
(Default: 500)

• Low latency:

◦ fetch.min.bytes=1

With the fetch.min.bytes consumer property, the broker waits until this amount of data

accumulates before sending a response to the consumer. The broker will not wait longer

than fetch.max.wait.ms, however.

The consumer can be tuned for real-time or batch behavior, just like the producer. As with

the producer, the thresholds to choose the behavior are based on time (

fetch.max.wait.ms) and size (fetch.min.bytes). The default behavior is real-time, as set

by fetch.min.bytes=1. These settings are analogous to the producer’s linger.ms and

batch.size settings.



As of Apache Kafka 2.5, there is a related broker-side configuration,

fetch.max.bytes. The effective maximum size of any fetch request will be the

minimum of fetch.min.bytes and this value. The default value for

fetch.max.bytes is 55 megabytes. Fetch requests from replicas will also be

affected by the fetch.max.bytes limit.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 211

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Exploring Producer Performance

Please work on Lab 8a: Exploring Producer

Performance

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 212

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

8b: How Do Produce and Fetch Requests Get

Processed on a Broker?

Description

Thread pools. Queues. Purgatory. The path of a produce request from broker receipt to

acknowledgement. The path of a fetch request from broker receipt to response with data.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 213

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Review

We know:

• Producers prepare messages to send.

• Producer settings like linger.ms and batch.size control how messages get grouped in

batches to send.

• Batches of messages may be compressed, according to producer setting

compression.type.

• We can configure producer property acks to have producers request to hear back from

Kafka when messages are successfully written.

When a producer sends a batch, we say it is creating a produce request. So…

• What does a broker do when it receives a produce request?

• How exactly does a broker satisfy a producer’s acks request?

Let’s find out…

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 214

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Anatomy of a Produce Request

Kafka
Producer

Kafka
Producer

Network

Page
Cache

Request
Queue

Network
Threads

Response
Queue

Worker Threads /
IO Threads

Purgatory Map

Kafka Brokers

Do other
replicas need

to be
acknowledged?

NO

YES

Brokers have network threads to receive incoming requests.

The broker may not be able to process requests the moment they are received, so the

network threads write requests into a request queue.

Another thread pool, worker threads or IO threads, contains threads to process the request

queue and write messages to the page cache.

There is also a response queue.


Network threads handle the response queue and the request queue.

Notice some arrows are two-way.

Finally, there is a structure called purgatory for holding produce requests that are not yet

complete

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 215

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Handling Replication and acks = all: Purgatory

Purgatory

Structure in memory for holding produce requests that are not yet complete

Purgatory is a waiting area for requests that are waiting for other replicas to confirm. The

only time this will be used is if the producer was configured with acks=all and the broker

has to wait until the data is committed (written to all members of the ISR list) before

sending a response back to the producer.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 216

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Anatomy of a Fetch Request

Kafka
Consumer

Replica
Follower

Network

Page
Cache

Request
Queue

Network
Threads

Response
Queue

Worker Threads /
IO Threads

Purgatory Map

 The queues and thread pools here are exactly the same as we saw before.

 The produce purgatory and fetch purgatory are separate.

The anatomy is similar.

Note that the purgatory for fetch requests is a separate structure from that for produce

requests. The fetch purgatory is for requests waiting for more data to satisfy the fetch

request parameters.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 217

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Looking for Broker Performance Concerns

Discuss:

1. You might hear someone say or read that one should pay

attention to garbage collection on Kafka brokers. Why do

you think this is a concern?

2. Study the anatomy of a produce request figure on the

previous pages. Where do you see there being potential

problems/bottlenecks?

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 218

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

8c: How Can You Measure and Control How

Requests Make It Through a Broker?

Description

Metrics and tuning settings for thread pools and queues in the broker’s request anatomy.

Measuring request latency overall and at stages.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 219

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Network Threading on the Broker

• Brokers process requests as follows:

Operation Request Type Metric Name

Producers write data to the cluster ProduceRequest Produce

Consumers read data from the cluster FetchRequest FetchConsumer

Followers read data from their leaders FetchRequest FetchFollower

• JMX metrics:

kafka.network:type=RequestMetrics,name=RequestsPerSec,request=Produce
kafka.network:type=RequestMetrics,name=RequestsPerSec,request=FetchConsumer
kafka.network:type=RequestMetrics,name=RequestsPerSec,request=FetchFollower

There are three types of network threads on the brokers:

• ProduceRequests: write requests from producers

• FetchRequests: read requests from consumers

• ReplicaFetchRequests: replication requests from brokers hosting followers

Brokers process these requests in parallel using threads.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 220

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Performance Tuning the Thread Pools

requests

network
threads

request queue io
threads

• Each thread pool is configurable

◦ num.network.threads (default: 3, increase for TLS)

◦ num.io.threads (default: 8)

Kafka
Producer

Kafka
Producer

Network

Page
Cache

Request
Queue

Network
Threads

Response
Queue

Worker Threads /
IO Threads

Purgatory Map

Kafka Brokers

Do other
replicas need

to be
acknowledged?

NO

YES

The num.network.threads setting is per listener (except for controller listener). The default

value is 3. This configuration should be increased for TLS because of the increased CPU cost

due to encryption/decryption over the wire.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 221

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Thread Capacity

• JMX metrics:

kafka.server:type=KafkaRequestHandlerPool,name=RequestHandlerAvgIdlePercent (meter)
kafka.network:type=SocketServer,name=NetworkProcessorAvgIdlePercent (gauge)

◦ 0 indicates all resources are used

◦ 1 indicates all resources are available

• Alert if the value drops below 0.4

◦ If it does, consider increasing the number of threads

Kafka
Producer

Kafka
Producer

Network

Page
Cache

Request
Queue

Network
Threads

Response
Queue

Worker Threads /
IO Threads

Purgatory Map

Kafka Brokers

Do other
replicas need

to be
acknowledged?

NO

YES

I/O threads and network threads impact parallelism and performance. Knowing how much

capacity is left in the thread pools is important to prevent running out of resources.

Brokers maintain metrics which report the percentage of idle capacity in the network thread

pool (NetworkProcessorAvgIdlePercent) and I/O thread pool

(RequestHandlerAvgIdlePercent). The value for these metrics range between 0 and 1,

where 1 means all resources are available/idle and 0 means all resources are used. Set your

monitoring tools to alert if these values drop below 0.4 or 0.3 (40% or 30% idle; 60% or

70% used). Dropping below these levels indicate heavy utilization and may require

additional capacity - either increase the size of the pool or grow the cluster.

 The metrics occasionally show values >1.0 due to rounding errors.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 222

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Performance Tuning the Request Queue

requests

network
threads

request queue io
threads

• The size of the request queue is queued.max.requests (default: 500)

• If the request queue is filled, the network threads stop reading in new requests

• So, consider the number of clients and brokers

Kafka
Producer

Kafka
Producer

Network

Page
Cache

Request
Queue

Network
Threads

Response
Queue

Worker Threads /
IO Threads

Purgatory Map

Kafka Brokers

Do other
replicas need

to be
acknowledged?

NO

YES

Sizing the request queue to number of clients connecting to the broker gives every client the

chance to buffer a request. By default, the queue size is about 500, which is plenty for most

use cases.

If the request queue is full, it can affect the response processing since the inbound and

outbound network connections share the network thread pool. If an incoming

ProducerRequest (write) is blocked because the queue is full, the request will occupy one of

the network threads as it retries. If the network threads are all occupied, the Broker will not

be able to take additional incoming requests, but also cannot process outgoing responses

even if they are ready. A small request queue will affect all aspects of the Broker’s network

connections.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 223

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring The Request Queue

• JMX metrics:

kafka.network:type=RequestChannel,name=RequestQueueSize
kafka.network:type=RequestMetrics,name=RequestQueueTimeMs

• Congested request queue can’t process incoming or outgoing requests

Kafka
Producer

Kafka
Producer

Network

Page
Cache

Request
Queue

Network
Threads

Response
Queue

Worker Threads /
IO Threads

Purgatory Map

Kafka Brokers

Do other
replicas need

to be
acknowledged?

NO

YES

As discussed earlier, a full request queue will affect all types of network requests through

the broker, including both produce and fetch. The default setting of 500 for

queued.max.requests should be good enough for most use cases. If the listed metrics show

the maximum request queue size is being reached or that requests are spending too long in

queue, then it may be necessary to consider:

• Finding ways to reduce the frequency of page cache flushing to disk

◦ e.g., increasing log.segment.bytes on the brokers

• Increasing queued.max.requests at the cost of added memory pressure

• Increasing num.io.threads

• Investigating other possible IO issues

• Scaling the cluster horizontally with more brokers

• Scaling the cluster vertically with faster IO disks

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 224

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Metrics for Monitoring Requests

• Monitor the total time for produce and fetch requests

kafka.network:type=RequestMetrics,name=TotalTimeMs,request=Produce

kafka.network:type=RequestMetrics,name=TotalTimeMs,request=FetchConsumer

kafka.network:type=RequestMetrics,name=TotalTimeMs,request=FetchFollower

The first metric to check when troubleshooting latency issues is to look at the time it takes

for a request to travel through the broker. The TotalTimeMs metric exposes this

information and can show differences between the different types of requester: Producer,

Consumer, Replica (Follower).


It is important to have benchmarks for your environment to know whether the

observed readings are within expected performance for your specific

environment. Benchmarking performance is discussed later in this chapter.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 225

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Requests on the Broker

Kafka
Producer

Kafka
Producer

Network

Page
Cache

Request
Queue

Network
Threads

Response
Queue

Worker Threads /
IO Threads

Kafka Request JMX Metrics

Purgatory Map

Kafka Brokers

YES

[producers]
Do other replicas need

to acknowledge?
[consumers]

Is server ready to reply
to the fetch request?

Because the ProduceRequest is handled by multiple components within the broker, a

slowdown at any of them will increase the overall latency for the request.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 226

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Request Lifecycle and Latencies

Break down TotalTimeMs further to see the entire request lifecycle:

Metric Description

RequestQueueTimeMs Time the request waits in the request queue

ResponseSendTimeMs Time to send the response

ResponseQueueTimeMs Time the request waits in the response queue

LocalTimeMs Time the request is processed at the leader

RemoteTimeMs Time the request waits for the follower

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 227

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Request Lifecycle and Latencies

Confluent Control Center:

 Each metric is a percentile, and percentile metrics don’t add associatively.

Once you have determined that the total time for the request is too large, isolate the

bottleneck by viewing the metrics for each of the components. Since downstream backups

can affect components earlier in the sequence, consider checking the metrics in the order:

• ResponseSendTimeMs

• ResponseQueueTimeMs

• RemoteTimeMs

• LocalTimeMs

• RequestQueueTimeMs

These metrics can display the values as averages and some percentiles (50th, 95th, 99th,

99.9th).

In the producer case, kafka.network:type=RequestMetrics,name=ResponseSendTimeMs
time should be pretty small.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 228

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring Requests on the Broker

[producers]
Do other replicas need

to acknowledge?
[consumers]

Is server ready to reply
to the fetch request?

Network

Kafka
Producer

Kafka
Producer

Page
Cache

Request
Queue

Network
Threads

Worker Threads /
IO Threads

Kafka Request Configuration

Response
Queue

Purgatory Map

Kafka Brokers

YES

NO

Once you determine where the bottleneck is, consider making changes to the broker to fix

the issue. This slide lists some of the properties that can be changed for each of the

components in the request flow.


Kafka level log flushing is disabled by default because modern Linux operating

systems are more optimized for page cache flushing. If IO is a bottleneck, see

again the previous slide about request queue metrics.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 229

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

8d: What Else Can Affect Broker

Performance?

Description

Other monitoring on the broker. Message size. Garbage collection considerations.

Troubleshooting exercise.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 230

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Leaders and Partitions

• Monitoring with JMX Metrics

◦ LeaderCount (gauge)

kafka.server:type=ReplicaManager,name=LeaderCount

◦ PartitionCount (gauge)

kafka.server:type=ReplicaManager,name=PartitionCount

 Leadership and partitions should be spread evenly across brokers

LeaderCount and PartitionCount are critical to monitor performance. The number of

leaders should be relatively similar across all brokers.

PartitionCount includes all replicas, regardless of role (leader or follower).

LeaderCount is not an absolute measure of balanced performance. A heavily-used leader

and a leader with no client requests carry the same weight in this metric.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 231

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Message Size Limit


Avoid changing maximum message size. Kafka is not optimized for very large

messages.

Brokers or Topics Replication on Brokers Consumers

• message.max.bytes (B)

• max.message.bytes (T)

◦ maximum size of

message that the broker

can receive from a

producer (Default: 1 MB)

• replica.fetch.max.byt
es

◦ maximum amount of

data per-partition that

brokers send for

replication (Default: 1

MB)

• max.partition.fetch.b
ytes

◦ maximum amount of

data per-partition the

broker will return

(Default: 1 MB)

B → Broker Setting | T → Topic Override

The configurations shown are the settings related to message size. The "B" indicates the

broker setting and the "T" indicates the topic override. Kafka is optimized for the default 1

MB maximum message size. If a broker receives a large message, a byte buffer must be

allocated to receive the entire message, which could cause problems such as fragmentation

in the heap. If a larger message size is required, consider alternatives such as compression,

breaking the message into smaller pieces, or sending a reference to the object (e.g., a

storage location for a file).

The settings max.partition.fetch.bytes (maximum bytes returned per broker, per

partition) and replica.fetch.max.bytes (similar but for replication) are soft limits. If the

first message in the partition of the fetch is larger than this limit, the message will still be

returned to ensure that the consumer or replica can make progress.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 232

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Avoiding Soft Failures from Garbage Collection

• Garbage Collection (GC) can cause:

◦ unnecessary consumer group rebalances

◦ unnecessary partition leader elections on brokers

• Enable GC logging in the broker JVM

◦ set environment variable GC_LOG_ENABLED="true" and restart broker

• Monitor server timeouts with JMX:

kafka.controller:type=KafkaController,name=TimedOutBrokerHeartbeatCount

Garbage Collection (GC) is a background Java thread that pauses processes to reclaim

unused memory. Long garbage collection periods in the broker should be avoided. If GC

exceeds the Controller property broker.session.timeout.ms (9 seconds by default), the

broker will appear to be offline and all partitions it was hosting a leader will go through

elections.

Also, if a consumer has a session timeout with the broker running its consumer group

coordinator, it will leave and rejoin its consumer group, potentially triggering a consumer

group rebalance.

The broker setting broker.session.timeout.ms determines how long a broker can be

offline before it is considered dead (default 9 seconds). Monitor

TimedOutBrokerHeartbeatCount on the Active Controller for any value increase.

Recommendations:

• Use the G1 Garbage Collector (available since Java 7). This may or may not change in AK

4.0+ running JDK 21-LTS and the new Generational Z Garbage Collector, but we don’t

have information as of writing this.

• Alternatively, Open Source Apache Kafka is available as GraalVM based Native Docker

image as of AK 3.8 (no Confluent Platform images at this time).

• Enable GC Logging for troubleshooting. If brokers are timing out from the Controller

(shown as session expiration errors in the server.log), there is likely a connection

problem. Enabling GC logging will help determine if long GC times are the cause. Long GC

times are one of the most common reasons for session expiration (the other common

reason is network issues).

• Parse and analyze the GC logs.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 233

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

• Check that the connection between brokers and Controller Quorum Voters is good.

Otherwise, the Active Controller may falsely detect a broker as dead.

For more information about tuning garbage collection, see this documentation.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 234

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka/deployment.html#jvm

Recovering from a Broker Failure

If cluster lives on:

• New partition leaders elected

◦ time ~ #P/#B

• Sometimes new Controller elected

◦ time ~ network

When broker gets back in the game:

• Administrator replaces failed hardware

• Broker automatically recovers partition

data starting from checkpoint


Broker recovery is CPU, I/O, and bandwidth intensive, especially if there are

many partitions per broker. If possible, recover a broker or perform data

rebalances during off-peak times.

Kafka is highly resilient to failures. If a broker fails, any partition whose leader was on the

broker must find a new leader through leader election. There is some temporary

degradation in performance while the Controller facilitates leader elections, but otherwise

the cluster will continue to function. The time to complete all the elections is proportional to

the number of partitions per broker. In the case that the failed node was in mixed mode

(controller+broker roles), and it was the Active Controller, a new Active Controller (or

Controller Leader) is elected using the KRaft algorithm, which is based on sending vote

messages between members of the quorum, so the time is proportional to network latencies

(note that in the legacy Zookeeper mode, the newly appointed Controller would have to

download the complete metadata from Zookeeper, so recovery time would be proportional

to the number of partitions).

If a broker had a hard failure, the first thing it needs to do is log recovery. The broker doesn’t

know when it failed or what state the log is in. For each partition, the Broker will read the

last flushed offset from the recovery-point-offset-checkpoint file and read every

message from that offset to the end of the commit log to verify the CRC. At the first offset

where the CRC doesn’t match, the broker will truncate the log from that point on and start

replicating from the Leader.

Because of the amount of reads and writes, log recovery can be I/O intensive. Recovery may

also be CPU intensive if the logs are compressed. Recovery time will be improved by using

multiple threads, one per partition. By default, the Broker starts one recovery thread per

Partition directory, which is sufficient for deployments where there is one disk per log

directory. For RAID environments, change num.recovery.threads.per.data.dir to

match the number of disks you have in the RAID set or number of CPU cores. For cloud-

based hosting environments where the number of disks used for storage is unknown, match

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 235

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

the setting to the number of CPU cores. Matching the setting to number of CPU cores is

also a useful recommendation when using SSDs for storage.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 236

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Assessing Production Problems

Discussion:

Scenario:

• You notice that produce requests keep stalling. This happens

regularly.

• Stalls are for 6-10 seconds.

• Your users have noticed that there are several duplicate

messages after the stalls.

• enable.idempotence is set to false.

What do you think might be going on, and how would you

investigate further?

Take several minutes to consider the question. Consider consulting configuration and

metrics documentation:

• configuration reference

• monitoring reference

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 237

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/installation/configuration/index.html#configuration-reference
https://docs.confluent.io/current/kafka/monitoring.html

8e: How Do You Control It So One Client Does

Not Dominate the Broker Resources?

Description

Client quotas: motivation, configuration, monitoring.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 238

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Ensure High Performance with Quotas

• High volume clients can result in:

◦ Monopolizing broker resources

◦ Network saturation

◦ Denial of Service (DoS) to other

producers and consumers

◦ DoS brokers themselves

• Use quotas to throttle clients or groups of

clients from overloading a broker

◦ Quotas are per-broker, not cluster-wide

Controlling the amount of bandwidth allowed for each client can be important if your

environment has limited network resources. However, larger environments can also benefit

since bandwidth throttling can be used for QoS style control over your cluster.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 239

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Quotas Work

• Quotas can be applied to:

◦ Client-id: logical group of clients,

identified by the same client.id

◦ User: authenticated user principal

◦ User and client-id pair: group of clients

belonging to a user

• If quota exceeded, broker will:

1. Compute a delay time for the client

2. Instruct client to not send more

requests during delay

3. Mute client channel so its requests are

not processed during delay

"User" can also be a grouping of unauthenticated users chosen by the broker using a

configurable PrincipalBuilder and is currently used for ACLs.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 240

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configure Quotas (1)

• Quotas can be defined by network bandwidth or request rate:

◦ Network bandwidth: producer_byte_rate, consumer_byte_rate

◦ Request rate: request_percentage (percentage of time a client can utilize the request

handler I/O threads and network threads)

• Network bandwidth quota defaults, for example, to 1 KBps

$ kafka-configs \
 --bootstrap-server broker_host:9092 \
 --alter \
 --add-config 'producer_byte_rate=1024,consumer_byte_rate=1024' \
 --client-defaults

The best practice is to create a cluster-wide default quota and then adjust as necessary for

specific user/client-id combinations. The examples on the slide illustrate how this could be

implemented.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 241

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configure Quotas (2)

• Request rate quota override for a specific client-id, user, or user and client-id pair

$ kafka-configs --bootstrap-server broker_host:9092 \
 --alter \
 --add-config 'request_percentage=50' \
 --client clientA \
 --user user1

• To describe the quota for a specific user and client-id pair

$ kafka-configs --bootstrap-server broker_host:9092 \
 --describe \
 --client clientA \
 --user user1

Quotas are typically configured with over-subscription. Total allocated quota for all clients is

larger than capacity, but not all clients will go beyond the quota at the same time

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 242

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Quota Metrics - Broker

kafka.server:type={Produce\|Fetch},client-id=([-.\w]+)

• Attribute throttle-time indicates the amount of time in milliseconds the client-id was

throttled (0 if not throttled)

• Attribute byte-rate indicates the data produce/consume rate of the client in

bytes/second

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 243

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Quota Metrics - Producer

kafka.producer:type=producer-topic-metrics,client-id=([-.\w]+)

• Attributes produce-throttle-time-max and produce-throttle-time-avg: Maximum

and average times in milliseconds a request has been throttled

Checking quota metrics periodically is recommended. If clients are showing high throttle

times, investigate why. In some cases, the quota may have been underestimated for a

specific application and may need to be increased.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 244

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Quota Metrics - Consumer

kafka.consumer:type=consumer-fetch-manager-metrics,client-id=([-.\w]+)

• Attributes fetch-throttle-time-max and fetch-throttle-time-avg: Maximum and

average times in milliseconds a request has been throttled

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 245

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Assessing Consumption Problems

Discussion

You get a call from a customer who says one of their newly-

written Kafka consumers is slow. What do you do to

investigate the problem?

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 246

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

8f: What Should You Consider in Assessing

Client Performance?

Description

IO ratio and IO wait ratio. Implications. Other JMX metrics for clients.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 247

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Client Performance

io-wait-ratio ~ 1

io-ratio ~ 1

io-ratio + io-wait-ratio ~ 0

1

io-ratio The fraction of time that the client does network I/O

io-wait-
ratio The fraction of time that the client is idle

(the rest) The fraction of time the client processes data

Sometimes, a producer/consumer client may appear slow. The slowness could be caused by

either the client or the broker. Before tuning the system, it is recommended to first identify

where the bottleneck is. There are 2 JMX metrics in Kafka producer/consumer:

• io-ratio: The fraction of the time that the client is spent on producing/retrieving the

data to/from the broker.

• io-wait-ratio: The fraction of the time that the client is idle.

Both values are between 0 and 1, and the sum of the two values is no more than 1. The rest

of the time is spent by the client application.

Here are some guidelines to help analyze io-ratio and io-wait-ratio:

• If io-wait-ratio is close to 1, it indicates that the client is mostly idle and the bottleneck

is likely on the broker.

• If io-ratio is close to 1, it indicates that the client is mostly busy interacting with the

brokers. If the client is a producer, it may be appropriate to do more batching or

compression to increase throughput. If the client is a consumer, it may be appropriate to

increase max.partition.fetch.bytes or increase the size of the consumer group to

achieve higher throughput. Remember that the most consumers that one can run in a

consumer group is limited by the number of partitions in the consumed Topics.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 248

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

• If io-ratio and io-wait-ratio are both close to 0, it indicates that the client is the

bottleneck. For producers, make sure that the producer callback is not doing expensive

operations (e.g., writing to a log4j file). For consumers, make sure that there is no

expensive step in processing each returned record.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 249

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Client Performance Metrics

• Client-level JMX metrics:

kafka.producer:type=producer-metrics,client-id=my_producer
kafka.consumer:type=consumer-metrics,client-id=my_consumer

• Producer-only metrics:

batch-size-avg

compression-rate-avg

• Per-topic metrics:

kafka.producer:type=producer-topic-metrics,client-id=my_producer,topic=my_topic

record-send-rate

byte-rate

record-error-rate

The batch-size-avg and compression-rate-avg metrics can verify the effectiveness of

your tuning:

• A batch-size-avg much smaller than batch.size indicates inefficient batching, so

consider increasing linger.ms.

• A low compression-rate-avg would indicate that compression is not creating much

space savings and so may not be worth the system resources to run the compression.

Terminology note: Though most of the documentation refers to the key-value pairs as

"messages" or "events," the APIs and metrics frequently refer to them as "records."

For an exhaustive list of both broker and client metrics, see this documentation.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 250

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://kafka.apache.org/documentation/#monitoring

Monitoring Consumer Performance

• Proactively monitor for slow consumers

• kafka.consumer:type=consumer-fetch-manager-metrics,client-id=XXX

◦ records-lag-max and fetch-rate

▪ Ideal: records-lag-max = 0 and fetch-rate > 0

◦ records-consumed-rate and bytes-consumed-rate

• Confluent Control Center can show slow, lagging consumers (left) compared to good

consumers (right)

The records-lag-max metric calculates lag by comparing the offset most recently seen by

the consumer to the most recent offset in the log. This metric is important for real-time

consumer applications where the consumer should be processing the newest messages with

as low latency as possible.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 251

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Understanding Client Metrics

Review the Monitoring Client Performance information a few pages

back. Consider these scenarios:

1. Suppose io-wait-ratio is 0.85. Does this indicate everything is

happy? If not and you think this indicates a problem, would you

investigate brokers, consumers, or producers?

2. Suppose you have a consumer that takes a very long time to process

records that it receives from fetches and everything else is working

smoothly. In the pictures, which color would you expect to dominate?

3. A producer has batching turned off.

a. Which producer setting/value would cause this?

b. In the pictures on the referenced page, which color would

dominate? Also express this in terms of a number for one of the

named metrics.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 252

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

8g: How Can You Test How Clients Perform?

Description

CLI client performance testing tools and their use.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 253

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Why Test Kafka Performance At All?

• Benchmarks establish baseline for performance

◦ Broker and client benchmarks → capacity planning

◦ Analyze effect of cluster/client changes against baseline

Establishing benchmarks is an important task for planning and troubleshooting. Unless you

know the expected performance of your brokers and clients, it is very difficult to size your

environment and respond to performance issues. Without a baseline, you can’t understand

the impact of generating higher volumes of data, adding producers, consumers, etc.


Remember that not all environments are created equal! Your test/dev

environment may have different performance characteristics than your

production environment so make sure to test both.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 254

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How to Test Performance

Determine p: producer throughput per

partition

Determine c: consumer throughput per

partition

• Run a single producer on a single server • Run a single consumer on a single server

• kafka-producer-perf-test • kafka-consumer-perf-test

Kafka comes with producer and consumer benchmarking tools. These are a great place to

start, but it is also important to test instances of your actual producers and consumers in a

controlled way that avoids cluster bottlenecks.

Producer throughput is typically easy to benchmark. Run the application at a steady state to

determine how much data the system can pass.

Consumers can be more challenging. How much data can be processed depends on many

factors, e.g., processing time per message, number of messages fetched per poll, message

size (maximum or average). Test with as many combinations of these types of variables as

is reasonable for your environment to get an accurate throughput number for your

consumer.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 255

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Measuring Throughput

• All topics bytes/messages in (meter)

kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec
kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec
kafka.server:type=BrokerTopicMetrics,name=ReplicationBytesInPerSec

• All topics bytes out (meter)

kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec
kafka.server:type=BrokerTopicMetrics,name=ReplicationBytesOutPerSec

• Confluent Control Center provides per-broker and per-topic throughput metrics

Kafka provides inbound and outbound metrics for bytes and messages on a broker. These

data points are also available on a per-topic basis.

LeaderCount and PartitionCount are critical to analyze performance, i.e., make sure

leaders are balanced across the Brokers.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 256

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Performance Tuning

Please work on:

• Lab 8b: Performance Monitoring in Brokers

• Lab 8c: Tune Consumer Performance

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 257

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

9: Securing a Kafka Cluster

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 258

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 4 lessons:

• What are the Basic Ideas You Should Know about Kafka

Security?

• What Options Do You Have For Securing a Kafka/Confluent

Deployment?

• How Can You Easily Control Who Can Access What?

• What Should You Know Securing a Deployment Beyond Kafka

Itself?

Where this fits in:

• Hard Prerequisite: Fundamentals Course

• Recommended Prerequisite: Managing a Kafka Cluster

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 259

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Configure encryption, authentication, and authorization on a

cluster

• Discuss tradeoffs of various security configurations

• Migrate from an insecure to a secure cluster

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 260

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

9a: What are the Basic Ideas You Should

Know about Kafka Security?

Description

Overview of security in Kafka. Authentication vs. authorization. Encryption. Points of

vulnerability.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 261

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Security Overview

Authentication

Confluent RBAC
Mutual SSL

SASL

Authorization

Confluent RBAC
Simple ACLs

Encryption in
Transport

SSL (aka TLS)
Plaintext

Authentication:

• One party verifies the identity of another party.

◦ Example: The bank is giving a loan to a customer. The customer provides a valid

passport for identification. The bank trusts the government as an authority to confirm

that the customer is who they claim to be. To make this fully analogous, the bank would

be able to compute a hash of the passport and check with the government ("certificate

authority") that the passport hasn’t been altered.

Authorization:

• Given that identity has been established, the authorizing party decides whether the other

party’s request should be granted.

◦ Example: Now that the bank believes the customer’s identity, they decide whether the

customer’s request for a loan should be granted.

Transport Security:

• Can an uninvited guest listen to the information being transferred?

◦ Example: If the bank and the customer are exchanging all of this information in plain

view and speaking out loud, an eavesdropper can gather quite a lot of information. To

prevent this, the bank and the customer could agree to send coded messages to each

other that only they know how to read.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 262

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

In this module, you will consider how Kafka clients authenticate with brokers, how brokers

authenticate with each other, how brokers authenticate with clients, and how to use an

authorizer plugin to enforce access rules on the cluster.

• Transport

◦ Data can be transported without encryption as PLAINTEXT, or with encryption using

SSL (Secure Socket Layer).

• Authentication

◦ By default, the SSL protocol authenticates a server to a client(one-way authentication),

but it also allows the client to authenticate to the server as well, which is called mutual

SSL and, for superseding protocol TLS, mutual TLS or simply mTLS.

◦ Kafka supports several authentication mechanisms which will be discussed in various

levels of depth in later slides. These mechanisms use the SASL protocol (Simple

Authentication Security Layer).

• Authorization

◦ Kafka comes with a simple authorizer plugin to allow or deny access to cluster resources

with Access Control Lists (ACLs).

◦ Confluent Enterprise offers an LDAP authorizer plugin so that an enterprise can easily

integrate Kafka into an existing LDAP infrastructure



Although the documentation and Kafka configuration settings refer to SSL, the

protocol used is actually TLS (Transport Layer Security). The SSL protocol was

deprecated in favor of TLS in June 2015. Kafka and Java refer to transport

layer security as SSL, and these materials will follow with that convention.

TLS 1.3 is the default TLS protocol when using Java 17 or higher. TLS 1.2 was the default for

earlier Java versions but TLS 1.3 is still recommended. TLS 1.0 and 1.1 are disabled by default

due to known security vulnerabilities.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 263

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Security - Architecture

HTTP Clients

Other Components

Schema
Registry

Kafka
Connect

REST
Proxy

Native Clients

Consumer
Group

Kafka
Streams App

Producer

Broker 101

Broker 103

Broker
104

Broker
102

Here we show an overview over a potential Confluent real-time streaming platform. We

have the following components:

• At the center lies the Kafka cluster with its one to many brokers

• On the left hand side we have the so-called native Kafka clients: producers, consumer

groups and Kafka Streams applications (they only use the Kafka Protocol)

• On top, we have other components that expose some HTTP/REST protocol on one side

and use the Kafka Protocol on another: Kafka Connect, Confluent Schema Registry and

Confluent REST Proxy.

• At the very top, in purple we have the HTTP clients that use the previous REST APIs

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 264

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Security - Encryption at Rest & in Transit

HTTP Clients

Other Components

Schema
Registry

Kafka
Connect

REST
Proxy

Native Clients

Consumer
Group

Kafka
Streams App

Producer

Broker 101

Broker 103

Broker
104

Broker
102

Encryption at rest:
- OS level disk encryption
- 3rd party solutions

3

Encryption in transit:
- Encrypted data
- TLS/SSL

1

Encryption in transit:
- Encrypted data
- (Mutual) TLS

2

The Kafka cluster can be secured as follows:

1. Encryption between HTTP clients and Confluent Platform services such as Schema

Registry happens in the following ways

◦ Using TLS/SSL

◦ Using End-To-End Encryption (not managed by Kafka)

2. In-Flight Encryption (or in-transit) is mainly achieved in the following 2 ways:

◦ End-to-End Encryption: the Producer encrypts the data before sending it to the Broker.

The Consumer decrypts this data (KMS etc. not managed by Kafka)

◦ using (mutual) TLS. This applies for both situations:

◦ client → broker

◦ broker → broker

3. Encryption at rest is implemented either by using OS level disk partition encryption or by

using 3rd party services


End-to-End encryption involves correct management of key distribution, and

extra code in all the clients involved.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 265

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Authentication

HTTP Clients

Other Components

Schema
Registry

Kafka
Connect

REST
Proxy

Native Clients

Consumer
Group

Kafka
Streams App

Producer

Broker 101

Broker 103

Broker
104

Broker
102

1 Authenticate REST API:
- HTTP Basic Auth
- Mutual TLS

2 Authenticate with:
- Mutual TLS
- SASL/GSSAPI (kerberos)
- SASL/Plain
- SASL/SCRAM-SHA-256 | 512
- 0Auth2

Confluent Control Center, Schema Registry, Kafka Connect, and REST Proxy all have REST

APIs and can all be configured with basic username/password authentication over HTTP

(plaintext over the wire). They should be further configured so requests are encrypted in-

flight (HTTPS). This module focuses on security with Kafka clients and brokers rather than

REST API clients, so we only briefly mention REST API security here.


Confluent Control Center is not pictured, but it is also a REST API server for the

monitoring UI.

Here are further resources on securing the various REST API services:

• HTTP Basic AuthN for all REST API services

• Confluent Control Center HTTPS

• Kafka Connect HTTPS *https://docs.confluent.io/current/schema-

registry/security.html#additional-configurations-for-https[Schema Registry HTTPS]

• REST Proxy HTTPS

Kafka clients (including the REST API servers just mentioned) can authenticate with the

Kafka cluster with SASL or Mutual SSL.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 266

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/security/basic-auth.html
https://docs.confluent.io/current/control-center/security/authentication.html#ui-https
https://docs.confluent.io/current/kafka/encryption.html#encryption-ssl-rest
https://docs.confluent.io/current/kafka/encryption.html#rest-proxy

Security of Server Ports

• Plain text (no wire encryption, no

authentication)

listeners=PLAINTEXT://kafka-1:9092

• SSL (wire encryption, authentication)

listeners=SSL://kafka-1:9093

• SASL (authentication)

listeners=SASL_PLAINTEXT://kafka-
1:9094

• SSL + SASL (SSL for wire encryption,

SASL for authentication)

listeners=SASL_SSL://kafka-1:9095

• Clients choose only one port to use



Brokers may need to set up

advertised.listeners in

addition to listeners when

the hostname/IP/port resolved

by clients is different from

those resolved by brokers

themselves (e.g. NAT, aliasing,

…)

As we think about the various means of authentication and authorization we should

understand the ports used by the various services.

Kafka servers can listen on multiple ports at the same time so that different clients can be

authenticated appropriately. This is done using a comma-separated list for the listeners
property. Clients must choose one port; they cannot fail over automatically if their preferred

login method is unavailable.

With a SSL listener, configuration and enablement of encryption is mandatory, but

authentication using Mutual SSL is optional and depends on adding the corresponding

configuration.

SASL refers to any number of mechanisms such as Plain, SCRAM or Kerberos

authentication using usernames and passwords.

This may be a good time to ask students about the difference between the listeners and

advertised.listeners properties. If there is confusion on this point, explain that

listeners is the interface for connecting to a kafka server locally, whereas

advertised.listeners is the interface that is advertised for clients outside a local

network use to connect to the server. For an illustrated explanation of listeners, see this blog

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 267

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://rmoff.net/2018/08/02/kafka-listeners-explained/

post.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 268

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://rmoff.net/2018/08/02/kafka-listeners-explained/

An Advanced Listeners Config Example

We can configure different listeners for different sources of traffic

• Useful to designate one interface for clients and one interface for replication traffic:

listeners = CLIENTS://kafka-1a:9092,REPLICATION://kafka-1b:9093

• Listeners can have any name as long as listener.security.protocol.map is defined to

map each name to a security protocol:

listener.security.protocol.map = CLIENTS:SASL_SSL, REPLICATION:SASL_PLAINTEXT

When configuring the controllers, inter.broker.listener.name needs to point at the

listener name for inter-broker communication (i.e. the replication listener). In this example,

we must configure the controllers with inter.broker.listener.name=REPLICATION.

Also, we have seen this type of configuration when discussing the controller configuration. If

we want to apply security to the controller listener (as we should), then the controller

configuration must change accordingly. E.g.:

server.properties on a controller node.
process.roles=controller
listeners=CONTROLLER://<host>:<port>
listener.security.protocol.map = CONTROLLER:SASL_PLAINTEXT
controller.listener.names=CONTROLLER
inter.broker.listener.name=REPLICATION

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 269

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

9b: What Options Do You Have For Securing

a Kafka/Confluent Deployment?

Description

Survey of security options.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 270

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

SSL/TLS or SASL Manual Configuration

• Free

• Based on configuration: no need to develop code

• But you have to do all the work

• You will experience this in lab.

 See the appendix for examples and details regarding SSL/TLS and SASL.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 271

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example - Simple TLS Configuration

• server.properties on brokers:

listeners = SSL://<host>:<port>
inter.broker.listener.name = SSL
ssl.keystore.location = /var/private/ssl/kafka.server.keystore.jks
ssl.keystore.password = password-to-keystore-file
ssl.key.password = password-to-private-key

• Client *.properties Files:

ssl.truststore.location = /var/private/ssl/kafka.server.truststore.jks
ssl.truststore.password = password-to-truststore-file
security.protocol = SSL

This example shows simple TLS configuration: encryption and broker authentication, but not

client configuration ; for that you’d need:

• More "SSL" configuration for mTLS ("mutual SSL"). See the appendix.

• SASL configuration to authenticate clients (plain passwords/ SCRAM / GSSAPI)

The configuration uses *.jks files to carry public and private credentials (depending on the

file). Kafka allows to set up ssl.keystore.type and ssl.truststore.type to be JKS
(default), PKCS12 or PEM.


security.protocol=SSL must match the protocol name for the brokers'

listener: listeners = SSL://… . Client finds listener by protocol name, not

hostname/port.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 272

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent RBAC

• Role Based Access Control

• Paid Confluent feature

• Includes both authentication and authorization…

• …by defined roles

RBAC is a relatively simple concept that has been around for some time. A user is bound to a

Role and the Role has a set of privileges. We do not cover RBAC in this course, but you have

it documented here

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 273

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/security/rbac/index.html

Example - Security on Confluent Cloud

• Security enabled out-of-the-box

• User → Cloud communication secured by TLS

• Data encrypted in motion & at rest

• CCloud is hosted in multiple AWS, GCP, and Azure regions

• Confluent Cloud has all security features enabled out-of-the-box, with no extra effort and

at no extra cost, and provides full SOC-2 and PCI Level-1 compliance (HIPAA coming

soon!).

• Confluent Cloud Enterprise customers also have storage isolation, and they can choose to

create VPC peering connection between Confluent Cloud and their own VPCs for an extra

layer of security.

• Customers access Confluent Cloud via three main interfaces:

◦ Confluent Cloud web-based user interface

◦ Confluent Cloud command line client

◦ Apache Kafka protocol

All communication between users and Confluent Cloud is secured using TLS encryption.

• Encryption: Confluent Cloud encrypts all data in motion and at rest.

• Physical security: Confluent Cloud is hosted in multiple AWS, GCP, and Azure regions

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 274

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

9c: How Can You Easily Control Who Can

Access What?

Description

Components of Kafka ACL entries. How to add and remove ACLs. Wildcards.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 275

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Access Control Lists (ACLs)

ACL example: Alice is allowed to read data from topic T1 from host Host1

Principal

Alice

Permission

Allow

Operation

Read

Resource

Topic: T1

Host

Host1

The default authorization plugin implements permissions based on Access Control Lists

(ACLs). Authorization is based on a 5-tuple match. We will examine each part individually.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 276

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Principal

• Type + name

• Supported types: User

◦ User:Alice

• Extensible, so users can add their own types (e.g., group)

The default authorizer plugin only allows the use of the User type. For other types,

administrators will have to install a different authorizer (e.g., Confluent LDAP Authorizer)

on all the brokers.

Both the type name (User) and the principal names are case-sensitive. The principal shows

above wouldn’t match user alice.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 277

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Permissions

• Allow and Deny

◦ Deny takes precedence

◦ Deny makes it easy to specify "everything but"

• By default, anyone without an explicit Allow ACL is denied

Once the first ACL is created, the cluster will deny all access that is not explicitly allowed by

the ACLs. This is standard security practice since it is easy to identify users who are

accidentally locked out of their objects; users granted too much access rarely report the

misconfigurations.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 278

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Operations and Resources

• Operations:

◦ Read, Write, Create, Describe, ClusterAction, All

• Resources:

◦ Topic, Cluster, and ConsumerGroup

Operations Resources

Read, Write, Describe
Read and Write imply Describe

Topic

Read ConsumerGroup

Create, ClusterAction
intra-cluster operations (leader election,

replication, etc.)

Cluster

For a user to auto-create a topic if auto.create.topics.enable is true, the user will need

to issue Create as a Cluster operation.

The complete list of operations is here: https://docs.confluent.io/platform/current/kafka/

authorization.html#operations

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 279

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/kafka/authorization.html#operations
https://docs.confluent.io/platform/current/kafka/authorization.html#operations

Hosts

• Allows firewall-type security, even in a non-secure environment

◦ Without needing system/network administrators to get involved

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 280

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Permission Check Sequence

Deny

Allow

Super
User?

NO

Deny
ACL?

NO

Allow
ACL?

NO

YES

YES

YES

Deny

Allow

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 281

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring a Broker ACL

SimpleAclAuthorizer is the default authorizer implementation

authorizer.class.name=kafka.security.auth.SimpleAclAuthorizer

• Provides a CLI for adding and removing ACLs

• ACLs are stored in the cluster metadata topic and propagated to brokers asynchronously

• ACLs are cached in the broker for better performance

• Make Kafka principal superusers

◦ Or grant ClusterAction and Read on all Topics to the Kafka principal

If a different authorizer is needed, install the plugin on the broker and configure the

authorizer.class.name to use the new authorizer.

If students need LDAP integration to provide group permissions, they can use the

LdapAuthorizer from Confluent Enterprise. Modify the server.properties file on the

Brokers to use the setting
authorizer.class.name=io.confluent.kafka.security.ldap.authorizer.LdapAutho
rizer. Complete instructions on implementing this change can be found at here.

ACLs are stored in the metadata topic and cached on each broker so that look-ups can be

done locally.

Superusers are configured using the super.users setting in server.properties (in all

nodes).



Active Directory (AD) can integrate with Kerberos for authentication and with

Confluent Enterprise LDAP Authorizer Plugin for authorization. This means that

all authentication and authorization is handled by a single infrastructure (AD).

This is a common use case.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 282

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/5.0.0/confluent-security-plugins/docs/kafka/introduction.html

Configuring ACLs - Producers

• kafka-acls can be used to add authorization

• Producer:

◦ Grant Write on the topic, Create on the Cluster (for topic auto-creation)

◦ Or use --producer option in the CLI

$ kafka-acls \
 --bootstrap-server kafka-1:9092 \
 --add \
 --allow-principal User:Bob \
 --producer \
 --topic my_topic

The Create operation on the Cluster (versus on the topic) is not a typo. For a user to auto-

create a topic if auto.create.topics.enable is true, need to issue Create as a Cluster

action. If you try to add a Create operation to a topic, you will get an error message

ResourceType Topic only supports operations Read,Write,Describe,All.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 283

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring ACLs - Consumers

• Consumer:

◦ Grant Read on the topic, Read on the ConsumerGroup

◦ Or use the --consumer option in the CLI

$ kafka-acls \
 --bootstrap-server kafka-1:9092 \
 --add \
 --allow-principal User:Bob \
 --consumer \
 --topic my_topic \
 --group group1

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 284

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Removing Authorization

• kafka-acls can be used to remove or change authorization

◦ May use additional options, e.g., deny-principal, remove, etc

• If needed, also useful to revoke authorization after connections are established

◦ SSL and SASL authentication happens only once during the connection initialization

process

◦ Since no re-authentication occurs after connections are established:

▪ Use kafka-acls to remove all permissions for a principal

▪ All requests on that connection will be rejected

▪ Reset connections as needed

Whether using SSL or SASL, performance would be terrible if every connection were

authenticated. However, leaving the connection open means that there has to be a way to

disable a client’s access if we cannot end the connection immediately. The most immediate

way to affect a client is to remove their authorization using ACLs.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 285

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Wildcard Support (1)

• Allow user Jane to produce to any topic whose name starts with "Test-"

$ kafka-acls \
 --bootstrap-server kafka-1:9092 \
 --add \
 --allow-principal User:Jane \
 --producer --topic Test- \
 --resource-pattern-type prefixed

• Allow all users except BadBob and all hosts except 198.51.100.3 to read from Test-
topic:

$ kafka-acls \
 --bootstrap-server kafka-1:9092 --add \
 --allow-principal User:'*' \
 --allow-host '*' \
 --deny-principal User:BadBob \
 --deny-host 198.51.100.3 \
 --operation Read --topic Test-topic

The first example shows that we can pattern match prefixes by using --resource-pattern
-type prefixed.

The second example shows that you can allow access to a resource for everyone except

certain specific hosts or principals.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 286

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Wildcard Support (2)

• List all ACLs for the topic Test-topic:

$ kafka-acls \
 --bootstrap-server kafka-1:9092,kafka-2:9092 \
 --list --topic Test-topic \
 --resource-pattern-type match

In this example, notice --resource-pattern-type match. This matches any ACLs created

with literal, wildcard ('*'), or prefixed resource patterns ('Test-', like the first example). If we

don’t use this option, it will only match ACLs that were created that literally spell out Test-
topic rather than using a prefix or wildcard.

It is possible to make an ACL for everyone in the cluster using the --cluster option.

Remember that you can make "allow" ACLs and "deny" ACLs that affect the same entity,

and the permission check sequence will ensure the "deny" rule is checked before any "allow"

rules.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 287

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Troubleshooting Kafka Authorization

• Verify all broker security configurations

• Verify client security configuration

• Enable DEBUG level in Kafka authorizer in /etc/kafka/log4j.properties

◦ Logs the decision on every request

◦ Can serve as an audit log

log4j.logger.kafka.authorizer.logger=DEBUG, authorizerAppender

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 288

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

9d: What Should You Know Securing a

Deployment Beyond Kafka Itself?

Description

Securing the whole environment.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 289

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Securing Schema Registry and REST Proxy

HTTP Clients

Other Components

Schema
Registry

Kafka
Connect

REST
Proxy

Native Clients

Consumer
Group

Kafka
Streams App

Producer

Broker 101

Broker 103

Broker
104

Broker
102

1 Authenticate REST API:
- HTTP Basic Auth
- Mutual TLS

2 Authenticate with:
- Mutual TLS
- SASL/GSSAPI (kerberos)
- SASL/Plain
- SASL/SCRAM-SHA-256 | 512
- 0Auth2

This slide reminds us of the various connections that need to be secured. The next two slides

focus on Schema Registry and REST Proxy since they have specific Confluent Enterprise

security plugins that make it possible to authorize REST Proxy and Schema Registry REST

API clients.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 290

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Securing the Schema Registry

• Secure communication between REST client and Schema Registry (HTTPS):

◦ HTTP Basic Authentication

◦ SSL (transport)

• Secure transport and authentication between the Schema Registry and the Kafka cluster:

◦ SSL (transport)

◦ SASL (authentication)

◦ Mutual SSL (transport + authentication)

• Confluent Enterprise security plugin:

◦ Restricts schema evolution to administrative users

◦ Client application users get read-only access

Resources:

• HTTP Basic AuthN for all REST API services

• Schema Registry documentation

• Schema registry security plugin

• Schema Registry configuration reference

Version notes:

• The Schema Registry security plugin was introduced in CP 4.0

• As of CP 5.0, Schema Registry can use Kafka itself to facilitate its leader elections, and

thus does not need ZooKeeper.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 291

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/security/basic-auth.html
https://docs.confluent.io/current/schema-registry/
https://docs.confluent.io/current/confluent-security-plugins/schema-registry/introduction.html
http://docs.confluent.io/current/schema-registry/docs/config.html

Securing the REST Proxy

• Secure communication between REST clients and the REST Proxy (HTTPS)

◦ HTTP Basic Authentication

◦ SSL (transport)

• Secure communication between the REST Proxy and Apache Kafka

◦ SSL (transport)

◦ SASL (authentication)

◦ Mutual SSL (transport + authentication)

• Confluent Enterprise security plugin:

◦ Propagates client principal authentication to Kafka brokers

◦ More granular than single authentication for all clients

Resources:

• HTTP Basic AuthN for all REST API services

• REST Proxy HTTPS

• REST Proxy security plugin

• REST Proxy configuration reference

Version notes:

• Since Confluent Platform 4.0: REST proxy security plugin propagates client principal

authentication to Kafka brokers

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 292

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/security/basic-auth.html
https://docs.confluent.io/current/kafka/encryption.html#rest-proxy
https://docs.confluent.io/current/confluent-security-plugins/kafka-rest/introduction.html
http://docs.confluent.io/current/kafka-rest/docs/config.html

Migrating Non-Secure to Secure Kafka Cluster

1. Configure brokers with multiple ports

listeners=PLAINTEXT://host.name:port,SSL://host.name:port

2. Gradually migrate clients to the secure port

3. When done, turn off PLAINTEXT listener on all Brokers

This procedure assumes that the cluster’s mission-critical topics are replicated so that a

rolling reboot can be performed to implement the changes to the server.properties files.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 293

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Securing the Kafka Cluster

Please work on Lab 9a: Securing the Kafka Cluster

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 294

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

10: Understanding Kafka Connect

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 295

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 4 lessons:

• What Can You Do with Kafka Connect?

• How Do You Configure Workers and

Connectors?

• Deep Dive into a Connector & Finding

Connectors

• What Else Can One Do With Connect?

Where this fits in:

• Hard Prerequisite: Fundamentals Course

• Recommended Prerequisite: Consumer Groups and

Load Balancing

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 296

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Explain the motivation for Kafka Connect

• List commonly used Connectors

• Explain the differences between standalone and distributed

mode

• Configure and use Kafka Connect

• Use Single Message Transforms (SMTs)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 297

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

10a: What Can You Do with Kafka Connect?

Description

Motivating what Connect can do and why to use it over self-made solutions. Motivating how

it can “factor out” common behavior yet leverage Connectors. Connectors vs. tasks vs.

workers. Relating Connect to other components of Kafka and how it works at a high level,

e.g., scalability, converters, offsets.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 298

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Wanted: Data From Another System in Kafka; Kafka

Data To Another System

Suppose you have

• Some data in some other system and you want to get it into Kafka

• Some data in Kafka and want to export it to another system

Your development team could program custom producers or consumers with hooks into the

other system to make this happen…

But… there’s a better way…

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 299

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka Connect to the Rescue!

Kafka Connect does the work for

us!

All copying behavior is in Kafka

Connect.

Plugins called Connectors contain

the logic specific to particular

external systems.
External

Data Source

Source
Connector

Sink
Connector

External
Data Sink

Kafka
Connect

(Cluster)

(Cluster)

The Kafka Connect API is part of core Kafka.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 300

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Sources and Sinks

Two kinds of connectors…

Source Connector Sink Connector

Connect Kafka ClusterData
Source

Kafka Cluster Connect Data
Sink

Uses producer API under the hood Uses consumer API under the hood

We note the two kinds of Connectors here.

In fact, Kafka Connect is built on top of what we already know - producers and consumers.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 301

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Players in the Kafka Connect World

Kafka Connect

logic for copying regardless of the external system

Connector

logic for copying specific to/from a given external

system

Task

unit of parallelism into which connector copying logic is

broken up

Worker

process that runs connectors and/or tasks

• A connector has

◦ one or more tasks

• A worker runs

◦ zero or more connectors

◦ zero or more tasks

We’ll use these terms throughout the module. An objective of this lesson is to learn them

and the relationships between them. The activity at the end of the lesson will reinforce this.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 302

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example of a Connect Cluster

connector 1
HDFS sink connector

Worker 2

Connect Cluster

connector 1
task 0

connector 0
task 2

connector 0
task 3

connector 0
JDBC source connector

Worker 0

connector 2
task 0

connector 1
task 1

connector 2
S3 sink connector

Worker 1

connector 0
task 0

connector 0
task 1

Here is an example illustrating a Connect cluster. We see workers running connectors - both

source and sink connectors - and tasks. Kafka’s group management protocol handles which

connector(s) and task(s) are running on each worker.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 303

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Groups Again!

Before Scaling After Scaling

Consumer

Group

Kafka

Consumer Group

Worker

Group


Like with consumers, we can add workers to groups and get automatic

balancing.

Recall the module Groups, Consumers, and Partitions, especially the first two lessons.

Workers live in groups just like consumers, and group management happens in the same

way. There is automatic rebalancing when we scale up or a worker dies. Workers heartbeat

to Kafka in the same way as consumers, governed by the same heartbeat.interval.ms
and session.timeout.ms settings. (Defaults are 3 and 45 seconds, respectively, for

consumers, but there is the inconsistency that the default session.timeout.ms for workers

is 10 seconds).

Technically, the workers are running tasks, which in turn are connected to the tables.

We’ll go into configuring how many tasks in the next section.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 304

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example: Suppose we start with a situation like this:

Then a worker fails:

Automatic rebalancing might yield this:

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 305

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Powered by Kafka, and Behaving Like Kafka

• Same group management protocol

◦ Failure detection

◦ Scaling up and down

• Producer and consumer under the hood

• Sink connectors maintain consumer offsets → sink offsets

• Source connectors track source offsets

• Data must be serialized and deserialized → converters

Here we see many of the ideas we know from producers and consumers showing up in the

Kafka Connect world.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 306

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Use Cases

SQL

CDC

batch processing

Integrate
Legacy APP

CSV
FILES

secondary indices

data archival

• Example use cases for Kafka Connect include:

◦ Stream an entire SQL database into Kafka

▪ Bulk - load entire table

▪ Change data capture (CDC) - load table changes as they happen

◦ Import CSV files generated by legacy app into Kafka

◦ Stream Kafka Topics into Hadoop File System (HDFS) for batch processing

◦ Stream Kafka Topics into Elasticsearch for secondary indexing

◦ Archive older data in low cost object storage

▪ e.g., Amazon Simple Storage Service (S3)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 307

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Reviewing Kafka Connect Concepts

Quick Matching Game

For each item on the left, identify which items on the right

apply

1. Connector

2. Task

3. Worker

4. Converter

a. unit of parallelism

b. can be part of a group

c. like a serializer

d. relates to one or more tasks

e. like a deserializer

f. specific to an external system

g. could run a connector


Not all connectors support multiple tasks and parallelism. For example, the

syslog source connector only supports one task.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 308

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

10b: How Do You Configure Workers and

Connectors?

Description

Configuration of workers in distributed mode and configuration of connectors in general.

Quick overview of standalone mode differences.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 309

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Providing Parallelism & Scalability

external database Kafka BrokerConnect Cluster

Kafka Connect Stream Kafka

Table 0

Table 1

Table 2

Table 3

Task 1
Tables: 0, 1

Task 2
Tables: 2, 3

Topic A
Kafka Partitions:
0, 1, 2, 3, 4, 5

Topic B
Kafka Partitions:
0, 1, 2, 3

Topic C
Kafka Partitions:
0, 1

So

• Splitting the workload into smaller pieces provides the parallelism and scalability.

• Connector jobs are broken down into tasks that do the actual copying of the data.

• Workers are processes running one or more tasks, each in a different thread.

Pictured, we see an external system whose data is imported to Kafka by a source connector.

The source connector defines 2 tasks. The tables are assigned to those tasks. The tasks are

the threads that actually move the data. In this case, Task 1 produces data from the

external system to topics A and B in Kafka. In parallel, Task 2 produces data to topics B and

C. Notice that the number of "Connect Partitions" and the number of "Kafka Partitions"

are unrelated. Also, notice that the task threads are running in a "connect cluster," not on

Kafka brokers.

This image is in terms of a database source connector. We could generalize to "Connect

Partitions" from the tables of the database.

We can generalize the above graphic:

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 310

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

external system Kafka BrokerConnect Cluster

Kafka Connect Stream Kafka

Partition 0

Partition 1

Partition 2

Partition 3

Task 1
Connect Partitions: 0, 1

Task 2
Connect Partitions: 2, 3

Topic A
Kafka Partitions:
0, 1, 2, 3, 4, 5

Topic B
Kafka Partitions:
0, 1, 2, 3

Topic C
Kafka Partitions:
0, 1

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 311

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Do We Need to Configure?

Remember:

• A connector applies to a particular external source or sink

• A connector may be broken into one or more parallel tasks

• A worker…

◦ … runs zero or more connectors

◦ … runs zero or more tasks

◦ … is generally part of a group, managed by Kafka’s group management protocol

Activity: Brainstorming Connector Configurations

What do you think we need to specify to configure a connector? Discuss

with a small group for 2 minutes.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 312

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring Connectors

Name Description Default

name Connector’s unique name

connector.class Name of the Java bytecodes file for the

connector

tasks.max Maximum number of tasks to create - if possible 1

key.converter Converter to (de)serialize keys (worker

setting)

value.converter Converter to (de)serialize values (worker

setting)

topics For sink connectors only, comma-separated list

of topics to consume from

Note that tasks.max is a limit and is restricted by the shape of the data. If Kafka Connect

cannot achieve the desired number of tasks, then it will create as many as possible. For

example, if you have a database source connector for a database with 4 tables but set

tasks.max to 6, you will get 4 tasks, because the copying cannot be parallelized further.

It is also possible to define custom topic configurations for the topics that are created by

source connectors using the following properties:

Property Description

topic.creation.groups A list of group aliases that will be used to define per group topic

configurations for matching topics. The group default always

exists and matches all topics.

topic.creation.$alias.include Regular expressions that identify topics to include.

topic.creation.$alias.exclude Regular expressions that identify topics to exclude.

topic.creation.$alias.
replication.factor

>= 1 for a specific valid value, or -1 to use the broker’s default

value

topic.creation.$alias.partitions >= 1 for a specific valid value, or -1 to use the broker’s default

value

topic.creation.$alias.
${kafkaTopicSpecificConfigName}

List of input topics to consume from

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 313

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Do We Need to Configure? (2)

Remember:

• A connector applies to a particular external source or sink

• A connector may be broken into one or more parallel tasks

• A worker…

◦ … runs zero or more connectors

◦ … runs zero or more tasks

◦ … is generally part of a group, managed by Kafka’s group management protocol

We’ve established what we need for connectors. So…

Activity: Brainstorming Worker Configurations

What do you think we need to specify to configure a worker? Discuss

with a small group for 2 minutes.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 314

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring a Worker

Name Description Default

bootstrap.servers List of host:port pairs to connect

group.id Identifier of what group this worker is a member of

heartbeat.interval.ms How frequently heartbeats are sent 3 sec.

session.timeout.ms Time after which a worker that does not heartbeat is

deemed dead

10 sec.

key.converter Converter to (de)serialize keys

value.converter Converter to (de)serialize values

topic.creation.enable Whether source connectors are permitted to create

topics

true

For more: this documentation.

We see converter configs here and for connectors. Converter configs can be set at the

worker level to apply to all connectors running on a worker. They can be overridden at the

connector level too.

Another configuration setting to consider is client.id; like with producers and consumers,

this is a way of naming the client, worker in this case, so it is distinguished in monitoring

tools and system logs.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 315

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/installation/configuration/connect/index.html

Configuring a Worker: Topics

Name Stores Default Num

Partitions

config.storage.topic Connector and task configuration 1

offset.storage.topic Source and sink offsets 25

status.storage.topic Current status of connectors and tasks, e.g.,

running, paused, etc.

5

Kafka Connect uses a few internal topics for configuration settings too. You can configure

what those topics are called.

The topics are automatically configured with recommended replication factor and partition

count values, and they are compacted. The number of partitions is shown in the table.

If you manually configure these topics, keep the relative partition counts in mind.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 316

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Running the Config

• Create a properties file for Connect, e.g., connect-distributed.properties

• Run on each worker node:

$ connect-distributed connect-distributed.properties

• Can configure Connectors via REST API

◦ Or, indirectly, via Confluent Control Center

◦ You will see this in lab!

In your configuration file, list off properties and their values, e.g.,

bootstrap.servers=kafka1:9092,kafka2:9092,kafka3:9092

Connect REST Interface documentation

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 317

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/connect/references/restapi.html

Standalone Mode

• We’ve looked at Kafka Connect in distributed mode

→ Wanted in production in most cases

• There is a standalone mode too

◦ Good for development and testing

◦ Needed for certain connectors

• Standalone config differences:

◦ Offsets are stored in a file rather than in a Kafka topic. Filename is set in
offset.storage.file.filename

Some connectors, e.g., the Syslog Source Connector require being run in standalone mode.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 318

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/kafka-connect-syslog/current/overview.html

10c: Deep Dive into a Connector & Finding

Connectors

Description

Details of the JDBC Source Connector, configuration details, working through why one

would do certain configs with examples. Finding Connectors on Confluent Hub.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 319

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

JDBC Source Connector

• Java Database Connectivity (JDBC) API is common amongst databases.

• JDBC Source Connector is a great way to get database tables into Kafka topics.

• JDBC Source periodically polls a relational database for new or recently modified rows.

◦ Creates a record for each row, and produces that record as a Kafka message.

• Each table gets its own Kafka topic.

• New and deleted tables are handled automatically.

The JDBC source connector allows you to import data from any relational database with a

JDBC driver into Kafka topics. By using JDBC, this connector can support a wide variety of

databases without requiring custom code for each one.

Data is loaded by periodically executing a SQL query and creating an output record for each

row in the result set. By default, all tables in a database are copied, each to its own output

topic. The database is monitored for new or deleted tables and adapts automatically. When

copying data from a table, the connector can load only new or modified rows by specifying

which columns should be used to detect new or modified data.

Note that the JDBC source connector does not generate keys by default, according to this

documentation. (That link provides a workaround too.)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 320

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/kafka-connectors/jdbc/current/source-connector/overview.html#message-keys
https://docs.confluent.io/kafka-connectors/jdbc/current/source-connector/overview.html#message-keys

Query Mode (1)

Incremental query mode Description

Bulk Load all rows in the table. Does not detect new or updated

rows.

The connector can detect new and updated rows in several ways, but let’s start simple: for a

one-time load, not incremental, unfiltered, we just use bulk mode.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 321

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Query Mode (2)

Incremental query mode Description

Incrementing column Check a single column where newer rows have a larger,

auto-incremented ID. Does not capture updates to existing

rows.

Timestamp column Checks a single ‘last modified’ column to capture new rows

and updates to existing rows. If task crashes before all rows

with the same timestamp have been processed, some

updates may be lost.

Timestamp and

incrementing column

Detects new rows and updates to existing rows with fault

tolerance. Uses timestamp column, but reprocesses current

timestamp upon task failure. Incrementing column then

prevents duplicate processing.

The connector can detect new and updated rows in several ways as described on the slide.

For the reasons stated on the slides, many environments will use both the timestamp and

the incrementing column to capture all updates.

Because timestamps are not necessarily unique, the timestamp column mode cannot

guarantee all updated data will be delivered. If two rows share the same timestamp and are

returned by an incremental query, but only one has been processed before the Connect task

fails, the second update will be missed when the system recovers.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 322

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Query Mode: Custom Query

We can also define a custom query to use in conjunction with the previous options for

custom filtering.

The custom query option can only be used in conjunction with one of the other incremental

modes as long as the necessary WHERE clause can be appended to the query. In some cases,

the custom query may handle all filtering itself.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 323

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuration

Property Description

connection.url The JDBC connection URL for the database

mode The mode for detecting table changes. Options are bulk,

incrementing, timestamp, timestamp+incrementing

query The custom query to run, if specified

poll.interval.ms The frequency in milliseconds to poll for new data in each table

(Default: 5000)

topic.prefix Prefix to prepend to table names to generate the Kafka topic name

table.blacklist A list of tables to ignore and not import.

table.whitelist A list of tables to import.

 See JDBC Connector docs for a complete list

One particular config you might also find interesting is table.types. You could set this to

VIEW if you are trying to source from a view.

Setting both table.whitelist and table.blacklist does not fail any upfront

configuration validation checks but will fail when starting the connector at runtime.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 324

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/connect/connect-jdbc/docs/index.html
https://docs.confluent.io/kafka-connectors/jdbc/current/source-connector/source_config_options.html#connector

JDBC Source Connector Config Example

 1 {
 2 "name": "Driver-Connector",
 3 "config": {
 4 "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
 5 "connection.url": "jdbc:postgresql://postgres:5432/postgres",
 6 "connection.user": "postgres",
 7 "table.whitelist": "driver",
 8 "topic.prefix": "",
 9 "mode": "timestamp+incrementing",
10 "incrementing.column.name": "id",
11 "timestamp.column.name": "timestamp",
12 "table.types": "TABLE",
13 "numeric.mapping": "best_fit"
14 }
15 }

The goal of this connector is to take the driver table of a Postgres database and produce

its records to Kafka. We would like each Kafka record to have a string key for the driver ID

(driver-1, driver-2, etc.) We would also like the value of each Kafka record to be an Avro

record with id, driverkey, firstname, lastname, make, model, and timestamp.

Unfortunately, the configurations shown will not result in the schema we want. First, the

topic name would be driver rather than driver-profiles-avro. Second, the record keys

would be NULL and the values would include a field that looks like {"driverkey": "driver-
3"}. We can modify these minor details using something called SMTs:

14 "transforms": "suffix,createKey,extractKey",
15 "transforms.suffix.type": "org.apache.kafka.connect.transforms.RegexRouter",
16 "transforms.suffix.regex": "(.*)",
17 "transforms.suffix.replacement": "$1-profiles-avro",
18 "transforms.createKey.type": "org.apache.kafka.connect.transforms.ValueToKey",
19 "transforms.createKey.fields": "driverkey",
20 "transforms.extractKey.type":
21 "org.apache.kafka.connect.transforms.ExtractField$Key",
22 "transforms.extractKey.field": "driverkey"

This lesson is not meant to be your formal introduction to SMTs, but this is provided as an

example.

The connector takes the driver table of a Postgres database and produces its records to

Kafka. We would like each Kafka record to have a string key for the driver ID (driver-1,

driver-2, etc.) The value of each Kafka record will be an Avro record with id, driverkey,

firstname, lastname, make, model, and timestamp.

• In line 14, we define three transformations: suffix, createKey, and extractKey. These

names can be anything, but it is recommended that they succinctly describe the

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 325

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

transformations.

• In line 15, we define the class that will be used for the suffix transformation. In this case,

we use the RegexRouter class, which is a class that sets the Kafka topic name. Normally,

the topic name would be "prefix" + "table." Earlier, we set topic.prefix to the empty

string. So the topic name should just be the name of the table, which is driver. This

transformation replaces driver with driver-profiles-avro.

• In line 18, we define the class used for the createKey transformation. In this case, we use

the ValueToKey class, which is a class that replaces the default Kafka record key with a

new key from a field in the table. In this case, we use the driverkey field as the key.

Without this transformation, the keys would be null. With this transformation, an

example key would be {"driverkey": "driver-3"}.

• In line 20, we further refine the key with the ExtractField$Key class. We extract the string

associated with driverkey. Before this transformation, an example Kafka record key

would be {"driverkey": "driver-3"}. After this transformation, the Kafka record key

is simply the string "driver-3."

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 326

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Other Connectors

Search Confluent Hub at confluent.io/hub for connectors!

You can find many more connectors, along with their documentation, on Confluent Hub.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 327

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

http://confluent.io/hub

10d: What Else Can One Do With Connect?

Description

Case studies of using a Connector to read in data from a source, transform the data, and

write it to a sink. SMTs vs. Kafka Streams as options for transforming data.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 328

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Development Power

Kafka Connect can be leveraged along with other tools to solve various development

problems.

Common classes of problems include:

• ETL = Extract, Transform, Load

• CDC = Change Data Capture

In both cases, developers can leverage Kafka Connect to get data into Kafka.

The "transform" may be achieved either via:

• Kafka Streams (Streaming applications)

• Single Message Transforms…

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 329

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Single Message Transforms

Data Source Data Sink

Kafka
Connect

Kafka
Connect

Broker

SMT

SMT

Here are several SMTs:

Transform Description

InsertField insert a field using attributes from message metadata or from a

configured static value

ReplaceField rename fields, or apply a blacklist or whitelist to filter

MaskField replace field with valid null value for the type (0, empty string,

etc)

ValueToKey replace the key with a new key formed from a subset of fields in the

value payload

HoistField wrap the entire event as a single field inside a Struct or a Map

ExtractField extract a specific field from Struct and Map and include only this

field in results

SetSchemaMetadata modify the schema name or version

TimestampRouter modify the topic of a record based on the original topic name and

timestamp

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 330

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transform Description

RegexRouter update a record topic using the configured regular expression and

replacement string

For more information on SMTs, see

https://docs.confluent.io/current/connect/transforms/index.html

See your student handbook in the JDBC source connector lesson for an extension of the

JDBC source connector example with SMTs added.

In the Developer class, we consider this problem to motivate SMTs as a simple alternative to

streaming applications:

Say we

• Have access to a hospital’s database.

• Want to extract information on patients who’ve been diagnosed with cancer.

• Want to load this information to CSV files that will be given to medical researchers

studying correlations between diagnoses and patient traits.

In this case, an SMT can be used to mask PII in transforming the data.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 331

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/connect/transforms/index.html

Lab: Running Kafka Connect

Please work on Lab 10a: Running Kafka Connect

Refer to the Exercise Guide

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 332

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

11: Deploying Kafka in Production

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 333

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains 6 lessons. Each lesson enables you to answer what

Confluent advises for deploying each of the following in production:

• Kafka

• Kafka Connect

• Confluent Schema Registry

• Confluent REST Proxy

• Kafka Streams

• Confluent Control Center

Where this fits in:

• Hard Prerequisite: All modules of this Administration course

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 334

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Deploy highly available services:

◦ Kafka

◦ Kafka Connect

◦ Confluent Schema Registry

◦ Confluent REST Proxy

◦ Kafka Streams

◦ Confluent Control Center

• Do capacity planning

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 335

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent’s Reference Architecture for Kafka

Applications Microservices

(optional)
Sticky Load Balancer

ProxyProxyProxy

Confluent REST Proxy

SecondaryPrimary

Confluent Schema Registry

Worker +
Connectors +

Replicator

Worker +
Connectors +

Replicator

Kafka Connect

CCCCCC

Control Center
Confluent

VoterVoterVoterVoter

Active Controller

KRaft Quorum

BrokerBroker

BrokerBroker

BrokerBroker

Kafka

App InstanceApp Instance

Kafka Streams App

= cluster

Microservices

Applications

While Kafka began as a highly durable, high-throughput message queue, it has grown into

an ecosystem that can act as the central nervous system of an event-driven business. This

production-level architecture was built to scale. Each component is given its own servers (as

noted by blue boxes), and if any layer becomes overloaded, it can be scaled independently

simply by adding nodes to that specific layer. For example, when adding applications that

use the Confluent REST Proxy, you may find that the REST Proxy no longer provides the

required throughput while the underlying Kafka Brokers still have spare capacity. In that

case, you only need to add REST Proxy nodes in order to scale your entire platform.

Confluent’s multi data center replication tool Replicator is itself a specialized Connector and

thus is deployed in the Kafka Connect cluster in the destination cluster.


Not shown in the diagram is the fact that producer/consumer applications also

interact with Confluent Schema Registry, not just Kafka Connect and Kafka

Streams applications. This will also be discussed in more detail later.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 336

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

11a: What Does Confluent Advise for

Deploying Servers in Production?

Description

Best practices and capacity planning for Kafka nodes in production.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 337

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Reference Architecture: Kafka Nodes

Applications Microservices

(optional)
Sticky Load Balancer

ProxyProxyProxy

Confluent REST Proxy

SecondaryPrimary

Confluent Schema Registry

Worker +
Connectors +

Replicator

Worker +
Connectors +

Replicator

Kafka Connect

CCCCCC

Control Center
Confluent

VoterVoterVoterVoter

Active Controller

KRaft Quorum

BrokerBroker

BrokerBroker

BrokerBroker

Kafka

App InstanceApp Instance

Kafka Streams App

= cluster

Microservices

Applications

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 338

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka Node Design

• Run on dedicated servers

• 5 controllers

◦ In multi-DC / multi-AZ deployment, distribute controllers

• n brokers → replication factor up to n

• Can use virtual IP + load balancer

as bootstrap.servers

◦ Pro: don’t have to change client config code when cluster changes

◦ Con: More infrastructure to worry about

Best practice is to separate broker and controller nodes (dedicated KRaft). Deploy 5 KRaft

controller nodes (3 is for non-production clusters). Also, if deploying a multi-AZ / multi-

datacenter cluster, distribute controllers too. Obviously brokers should be distributed too,

but start with the distribution of controllers first.

When configuring clients, a property bootstrap.servers is required. This broker list is only

used for the initial metadata pull when the client initializes (hence the "bootstrap" part of

the name). Once the first metadata response is received, the producer will send produce

requests to the broker hosting the corresponding topic/partition directly, using the IP/port

the broker registered inn listeners / advertised.listeners. For metadata update

requests, the client can contact any broker. The bootstrap.servers property should list

multiple brokers so that a single offline broker does not prevent the client initialization. An

alternative is to use a VIP in a load balancer. If brokers change in a cluster, one can just

update the hosts associated with the VIP.

The discussion questions are review of earlier durability concepts. Breaking them down:

1. Mission-critical topics should have replication factor 3 or greater.

◦ Replication factors higher than 5 or so begin to have diminishing returns because the

probability of simultaneous data loss decreases exponentially with the number of

replicas, while the cost of provisioning more storage increases linearly.

2. Assuming a replication factor of 3 for mission-critical topics, there would need to be at

least 3 brokers.

3. Two of these could fail without resulting in permanent data loss.

◦ However, if only 2 brokers are available, then new topics with replication factor 3 cannot

be created.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 339

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

◦ Write access may also be blocked depending on the min.insync.replicas Topic

configuration.

◦ For these reasons, it is usually a good idea to have more brokers than the highest

expected replication factor. Read access will continue, but perhaps there will be

downtime while new leader replicas are elected.



If using SASL GSSAPI, virtual IPs present a challenge since authentication has

to happen against the actual Broker hostname/IP address. It may be possible to

configure the load balancers and Kerberos to handle this scenario, but that is

beyond the scope of this course.



The client.dns.lookup client property exists to modify the behavior in clients'

DNS resolution. KIP-602 (AK 2.6) changed the default value for

client.dns.lookup to be use_all_dns_ips so that it will attempt to connect

to the broker using all the possible IP addresses of a hostname. This new default

is intended to reduce connection failure rates and is more important in cloud

and containerized environments where a single hostname may resolve to

multiple IP addresses.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 340

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Capacity Planning: Brokers

• Disk space and I/O

• Network bandwidth

• RAM (for page cache)

• CPU

The most heavily used resource in a broker is disk space. Kafka commit logs store a large

amount of data on disk.

The second most heavily used resource is network bandwidth. Every message is typically

used multiple times. At LinkedIn, the ratio is 1:5 - each message is read five times, including

internal replication.

Brokers do not need a lot of RAM for the JVM heap space since the Broker does not cache

messages there. Kafka relies on the page cache for its commit logs so the more RAM you

have on the Broker, the more buffer space will be available for those messages.

Brokers are not CPU-intensive by default, but Kafka is highly multithreaded, so brokers will

benefit more from many cores than from faster cores.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 341

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Broker Disk

• 12 x 1TB filesystems mounted to data directories for topic data + separate disks for OS

◦ A single partition can only live on one volume

◦ Partitions are balanced across log.dirs in round-robin

◦ RAID-10 optional

• Use XFS or EXT4 filesystems

◦ Mount with noatime

A typical production grade broker has 6-12 1TB disks for topic data (and perhaps RAID-1 on

the OS volume for fault-tolerance). The exact amount of storage you will need depends on

the number of Topics, Partitions, the rate at which applications will be writing to each Topic,

and the retention policies you configure.

Kafka can use either EXT4 or XFS for the mounted file systems. Some environments have

reported better performance with XFS.

Access time, or atime, is the way that Linux maintains file system metadata that records

when each file was last accessed. As a result, every read operation on a filesystem is not just

a read operation; it is also a write operation since the atime needs to be updated. noatime
disables atime collection and improves performance.

There are two strategies for local storage:

1. Put a filesystem on each physical disk and mount one filesystem to each log directory

listed in log.dirs (broker property), or

2. Use RAID-10 (stripe, then mirror)

Here are some ideas related to the discussion questions:

• Local storage:

◦ Using multiple physical disks provides means a single disk failure will not cause the

Broker to fail. Just replace that disk and Kafka’s automatic replication will recover the

data (although this will impact network bandwidth).

◦ If you list multiple directories in log.dirs, the broker will assign Partitions using round-

robin. If some partitions are bigger than others, you’ll end up with uneven disk usage.

This would need to be monitored and manually balanced with kafka-reassign-
partitions. As of this writing, The Confluent Auto Data Balancer does not yet have

the ability to automatically balance storage load between log directories on individual

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 342

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

brokers.

◦ RAID-10 combines striping and mirroring. Striping gives much better write performance

while mirroring protects a single disk failure from taking out the whole RAID array. RAID

systems also typically have additional benefits such as online resizing and hot

swappable disks to minimize system downtime. If the RAID array is a single filesystem,

then you don’t have to worry about unevenly distributed data. The downside of RAID-10

is that it requires at least twice as much storage, depending on how disks are mirrored.

• Distributed storage:

◦ Distributed storage like SAN and NAS can severely and adversely impact Kafka’s

performance and availability.

◦ Cloud storage solutions like Elastic Block Storage from AWS can offer good enough

performance to use as a log directory, and the durability guarantees that come with

cloud storage may be enough for some customers to consider lowering replication

factor for topics within the Kafka cluster. This will be discussed in more detail later in

the module.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 343

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Network Bandwidth

• Gigabit Ethernet sufficient for smaller applications

• 10Gb Ethernet needed for large installations

• Enable compression on producers

• Optional: Isolate Inter-Broker traffic to separate network

When provisioning for network capacity, you will want to take into account replication

traffic between brokers and leave some overhead for rebalancing operations and bursty

clients. Network is one of the resources that is most difficult to provision since adding nodes

will eventually run against switch limitations. Therefore, consider enabling compression to

get better throughput from existing network resources. Note that a Kafka producer will

compress messages in batches, so configuring the producer to send larger batches will result

in a better compression ratio and improved network utilization.

Isolating Inter-Broker communication was already common, but with the new KRaft model

it also inherits advantages of the Broker-Zookeeper network isolation.The benefits are

twofold:

• Less contention on the network between Broker-Client and Broker-Broker traffic

• Isolation of KRaft controllers from clients (and users) for security (e.g. DOS-ing the

controllers)

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 344

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Broker Memory

• JVM heap ~ 6 GB

• OS ~ 1 GB

• Page cache:

◦ Lots and lots!

◦ What might your consumer lag be?

The broker software itself does not have heavy memory requirements. Any RAM beyond

what is needed for the OS and the JVM Heap will be available for page cache. The page

cache is what gives Kafka such amazing performance; it allows for zero copy transfer, where

data is sent directly to the network buffer without context switching between kernel space

and user space.

The amount of memory used for the page cache depends on the rate that this data is

written and how far behind you expect consumers to get. If you write 20GB per hour per

Broker and you allow consumers to fall 3 hours behind in normal scenario, you will want to

reserve 60GB to the OS page cache. In cases where consumers are forced to read from disk,

performance will drop significantly.

At minimum, a production broker should have 32 GB of RAM. Typically, they will use 64 GB or

more.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 345

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Tuning the Java Heap (1)

• Java heap memory is allocated for storing Java objects

• By default kafka-server-start configures heap size to 1 GB

◦ Xmx: maximum Java heap size

◦ Xms: start Java heap size

$ export KAFKA_HEAP_OPTS="-Xms6g -Xmx6g"

• Recommended JVM performance tuning options:

-Xms6g -Xmx6g -XX:MetaspaceSize=96m -XX:+UseG1GC -XX:MaxGCPauseMillis=20
 -XX:InitiatingHeapOccupancyPercent=35 -XX:G1HeapRegionSize=16M
 -XX:MinMetaspaceFreeRatio=50 -XX:MaxMetaspaceFreeRatio=80

The JVM heap and garbage collection tuning recommendations given on this page are taken

directly from https://docs.confluent.io/current/kafka/deployment.html#jvm. These were

tested in a large deployment on JDK 8. It is recommended to use the G1 garbage collector,

which is shown as -XX:+UseG1GC. The main options to concentrate on are -Xms and -Xmx.

The 6 GB setting shown here is explained on the next slide. The kafka-server-start script

uses the recommended options other than its default to 1 GB, so KAFKA_HEAP_OPTS will

have to be set in production.

The kafka-server-start invokes a script called kafka-run-class.sh which takes options

as environment variables. Here are several kinds of options that are declared with

environment variables and translated in kafka-run-class:

• Heap options like -Xms and -Xmx: $KAFKA_HEAP_OPTS

◦ Other performance tuning options like those on the slide:
$KAFKA_JVM_PERFORMANCE_OPTS

• log4j’s application logging options: KAFKA_LOG4J_OPTS

• JMX options: $KAFKA_JMX_OPTS

• Metrics port: $JMX_PORT

• Generic JVM parameters like pointing to a JAAS file: $KAFKA_OPTS

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 346

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka/deployment.html#jvm

Tuning the Java Heap (2)

• Suggested formula for determining the broker’s heap size:

(message.max.bytes * num Partitions per Broker) + log.cleaner.dedupe.buffer.size +
500MB

• Property defaults

◦ message.max.bytes default is 1MB

◦ log.cleaner.dedupe.buffer.size default is 128MB

• Consider tuning the Java heap size

Java Heap Size Deployment Type

1 GB (default) Testing and small production deployments

6 GB Typical production deployments

12 GB+ Deployments with very large messages or many partitions per

broker

Why is message size important when sizing the heap? As data is transferred between

brokers, the replication traffic will use the heap.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 347

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Tuning Virtual Memory Settings

• Minimize memory swapping:

◦ vm.swappiness=1 (Default: 60)

• Decrease the frequency of blocking flushes (synchronous)

◦ vm.dirty_ratio=80 (Default: 20)

• Increase the frequency of non-blocking background flushes (asynchronous)

◦ vm.dirty_background_ratio=5 (Default: 10)

 Set these parameters in /etc/sysctl.conf and load with sysctl -p

The native Linux mechanism of swapping processes from memory to disk can cause serious

performance limitations in Kafka. Setting vm.swappiness=1 prevents the system from

swapping processes too frequently but still allows for emergency swapping instead of killing

processes.

Configure when unflushed (i.e., “dirty”) memory is flushed to disk with

vm.dirty_background_ratio and vm.dirty_ratio.

The vm.dirty_ratio is the highest percentage of memory that can remain unflushed

before Linux blocks I/O. If the ratio is set low, these blocking flushes happen more

frequently, which degrades Kafka’s performance and prevents Consumers from benefiting

from zero copy transfer. High ratios cause less frequent flushes, so we set the value to 80.

Be aware that if a Broker has a sudden failure, all unflushed data is lost on that Broker.

However, since production data is typically being replicated to other Brokers, this should not

usually be a concern.

The vm.dirty_background_ratio is the percentage of system memory that can be dirty

before the system can start writing data to disks in the background without blocking I/O. By

decreasing this setting, we increase the frequency of non-blocking background flushes. On

the one hand, we want to hold a large page cache to take advantage of zero copy transfer,

but on the other hand, we also want to avoid building up too much dirty memory and forcing

a blocking flush. These settings were tested extensively at LinkedIn, and it was found to be

better to encourage more frequent background flushes and to discourage blocking flushes.

Students are encouraged to run their own tests to monitor the effect of tuning these

properties.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 348

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m



The recommendation used to be to set vm.swappiness=0. However, since RHEL

6.4 setting vm.swappiness=0 more aggressively avoids swapping which

increases the risk of OOM (out of memory) killing under strong memory and I/O

pressure. Using vm.swappiness=1 avoids this situation.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 349

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Open File Descriptors and Client Connections

• Brokers can have a lot of open files

◦ $ ulimit -n 100000

• Brokers can have a lot of client

connections:

◦ max.connections.per.ip (Default: 2

billion)

Linux limits the number of open files it can support to preserve system resources. The

default setting is ~1000 or ~4000 open files, depending on the kernel. This is insufficient for

a Broker due to the requirements of the Partitions. Each Partition requires a minimum of

four file descriptors (socket, .log, .index, .timeindex), but typically maintains multiple

sets of segment files depending on the roll settings. Since Brokers support a large number of

partitions, the number of open file handles could easily exceed the defaults, even in a

relatively small deployment. The systemd unit files included in CP 5.3 automatically set the

file descriptor limit to 100,000. To set this manually, use the ulimit -n <large number>
command in Linux.

The max.connections.per.ip broker property was added because of a real issue. A

customer had a buggy, runaway application. Under some error conditions, the application

created new connections to the broker without closing old ones. Eventually, the broker ran

out of open file handles, causing the broker to crash. As new leaders were elected for the

partition, the application repeated the process until it crashed the whole cluster. The

max.connections.per.ip setting prevents this situation by limiting the number of

connections a single IP address can make to a broker. Tuning this setting is almost never

necessary, but it is interesting to note its historical importance.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 350

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Broker CPU

• Dual 12-core sockets

• Relevant broker properties:

◦ num.io.threads (Default: 8)

◦ num.network.threads (Default: 3)

◦ num.recovery.threads.per.data.di
r (Default: 1)

◦ background.threads (Default: 10)

◦ num.replica.fetchers (Default: 1)

◦ log.cleaner.threads (Default: 1)

• Discussion:

◦ Given 12 data disks and dual 12-core

CPU sockets, how would you modify the

default broker threading properties?

Most of the Confluent Platform components are not particularly CPU bound. If you notice

high CPU, it is usually a result of misconfiguration, insufficient memory, or a bug. This is also

true for brokers, although Brokers are highly multithreaded and will benefit from tuning

Broker thread properties, e.g., background.threads, num.io.threads,

num.network.threads, num.replica.fetchers, log.cleaner.threads, and so on.

Considerations:

• Typically, we would want to set num.io.threads to greater than the number of data

disks since data will be hitting the page cache as well as disk.

• num.network.threads should be doubled if using TLS

• It’s common to put extra threads into num.replica.fetchers

• log.cleaner.threads can be set up to the number of disks or the number of cores

depending on whether log cleaning is I/O bound or CPU bound (it is usually I/O bound)

◦ In either case, it is good to also set log.cleaner.io.max.bytes.per.second (Default:

unbounded) to throttle log cleaning if it is degrading Broker performance.


As mentioned in a previous module, TLS overhead can increase CPU overhead

(handshake, encryption/decryption).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 351

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Capacity Planning: Number of Brokers

• Storage

Number of brokers =
(messages per day * message size * Retention days * Replication) / (disk space per
Broker)

• Network bandwidth

Number of brokers =
(messages per sec * message size * Number of Consumers) / (Network bandwidth per
Broker)


Recommended limits: 4,000 partitions per broker and 200,000 partitions per

cluster.

We can take the maximum of these estimates for number of brokers. These calculations

provide reasonable first estimates based on what the limited resource is in your

environment. Use this to set initial cluster size, but be prepared to adjust this once you are

using Kafka in production.

Whatever number is derived from these calculations should then be rounded up to account

for:

• Future growth

• Traffic spikes

• Failover capacity (i.e., if you have 3 brokers and 1 fails, the other 2 need to have enough

capacity to compensate for the failed broker)

While tests have shown much better scalability of KRaft-based Kafka cluster over legacy

Zookeeper-based ones, we currently don’t have updated values for the soft limits shown

above. To be on the safe side, it may be advisable to still keep these limits. For reference,

below is the excerpt that was used for Zookeeper-based-clusters:

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 352

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Typically, very large brokers can sustain a maximum of 2000-4000 partitions; most

installations will be in the 1000s range. As a rule of thumb, we recommend each broker

to have no more than 4,000 partitions and each cluster to have no more than 200,000

Partitions. The main reason for the latter cluster-wide limit is to accommodate for the

rare event of a hard failure of the controller (i.e., a crash of the broker system, rather

than a software failure). This means the minimum deployment of a cluster with

200,000 partitions is 50 Brokers of 4,000 partitions each.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 353

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Deploying Kafka in the Cloud

• Self-managed cloud deployment:

◦ Memory optimized compute instances

◦ Multiple availability zones (broker.rack)

◦ Private subnet for inter-broker traffic

◦ Lockdown firewall rules, Kafka security

◦ For AWS: "EBS optimized" instances

• Or consider:

 Virtual cores are weaker than physical cores

Leverage Kafka’s rack awareness feature by assigning broker.rack value according to

availability zone. More specific guidelines about placement of brokers are discussed in the

appendix.

Distributed storage is discouraged for Kafka on-premises deployments because of the

importance of disk I/O, but "EBS optimized" instances on AWS have proven to be stable

and performant. AWS Elastic Block Store (EBS) is a distributed storage system that is

automatically replicated within its availability zone to protect from hardware failure. The

EBS tier chosen could be SSDs or throughput optimized HDDs (st1), depending on

price/performance needs. As aforementioned, HDDs tend to be a good choice for Brokers

because of the heavy use of the in-memory page cache. Keep in mind that entire availability

zones can fail, so Kafka’s own replication mechanism is still incredibly important to prevent

data loss and maintain high availability.

Confluent offers a managed cloud product that incorporates the entire reference

architecture studied in this module, not just Apache Kafka.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 354

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

11b: What Does Confluent Advise for

Deploying Kafka Connect in Production?

Description

Best practices and capacity planning for Kafka Connect in production.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 355

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Reference Architecture: Kafka Connect

Applications Microservices

(optional)
Sticky Load Balancer

ProxyProxyProxy

Confluent REST Proxy

SecondaryPrimary

Confluent Schema Registry

Worker +
Connectors +

Replicator

Worker +
Connectors +

Replicator

Kafka Connect

CCCCCC

Control Center
Confluent

VoterVoterVoterVoter

Active Controller

KRaft Quorum

BrokerBroker

BrokerBroker

BrokerBroker

Kafka

App InstanceApp Instance

Kafka Streams App

= cluster

Microservices

Applications

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 356

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Connect Workers for High Availability

• Deploy machines with same group.id to form cluster

• Deploy at least 2 machines behind load balancer

• Add machines with same group.id to add capacity

Kafka Connect workers should not be run on brokers. They are deployed on servers separate

from the Kafka cluster itself.


Cooperative rebalancing in Kafka 2.3 improves Connect cluster rebalances since

there is less pausing during rebalance. See: this reference.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 357

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-415%3A+Incremental+Cooperative+Rebalancing+in+Kafka+Connect

Tune tasks.max for Scalability

• tasks.max is a config sent to Connect via REST API

• Set to minimum of:

◦ Number topic-partitions (for sink connectors)

◦ Desired throughput / Throughput per task

◦ Machines * Number of cores per machine

• The more cores in the Connect cluster, the better

Connect workers are designed to be multithreaded and so will benefit from multicore

servers.

The more cores, the more threads can run simultaneously. You can configure the worker to

take advantage of the multicore environment by tuning the tasks.max property. This

property is specified in the REST http request. For example:

curl -X POST -H "Content-Type: application/json" --data \
 '{
 "name": "local-file-sink",
 "config": {
 "connector.class":"FileStreamSinkConnector",
 "tasks.max":"1",
 "file":"test.sink.txt",
 "topics":"connect-test"
 }
 }' http://connect-1:8083/connectors

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 358

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

11c: What Does Confluent Advise for

Deploying Schema Registry in Production?

Description

Best practices and capacity planning for Schema Registry in production.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 359

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Reference Architecture: Confluent Schema Registry

Applications Microservices

(optional)
Sticky Load Balancer

ProxyProxyProxy

Confluent REST Proxy

SecondaryPrimary

Confluent Schema Registry

Worker +
Connectors +

Replicator

Worker +
Connectors +

Replicator

Kafka Connect

CCCCCC

Control Center
Confluent

VoterVoterVoterVoter

Active Controller

KRaft Quorum

BrokerBroker

BrokerBroker

BrokerBroker

Kafka

App InstanceApp Instance

Kafka Streams App

= cluster

Microservices

Applications

Notice the primary/secondary architecture of Schema Registry. There can be one primary

node that accepts reads and writes, and many read-only secondary nodes.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 360

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema Registry Overview

As business changes or more applications want to leverage the same data, there is a need

for the existing data structures to evolve. We need what’s called a schema evolution. Poor

planning can mean that each schema change could potentially break an application that

wasn’t aware something changed.

The Confluent Schema Registry manages changing schemas so that those changes don’t

break Consumers. Messages are serialized using a serializer and the schema is sent via a

REST API to Schema Registry with a schema ID. There is a special single-partition Kafka

Topic (_schemas) where schema information persists and is replicated. This topic has the

compact retention policy. Schema Registry machines also cache schema data locally.

The schemas assigned to the key and value of the messages in a topic can be viewed by

examining the Topic in Confluent Control Center. The interface also shows the version

history if the schema has changed over time.

Confluent Platform 5.5 now supports Protocol Buffers, JSON and Avro, the original default

format for Confluent Platform. Support for these new serialization formats is not limited to

Schema Registry, but provided throughout Confluent Platform. Additionally, as of Confluent

Platform 5.5, Schema Registry is extensible to support adding custom schema formats as

schema plugins.

The Schema Registry is covered in more detail in the Developer course and in these

references:

• https://docs.confluent.io/current/avro.html

• https://docs.confluent.io/current/schema-registry/docs/operations.html#

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 361

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/avro.html
https://docs.confluent.io/current/schema-registry/docs/operations.html#



If the kafkastore.topic.replication.factor (Default: 3) property in the

Schema Registry’s properties file is greater than the number of brokers,

_schemas, topic creation will still succeed. This is different from the behavior of

the __consumer_offsets topic, where offsets.topic.replication.factor
is enforced upon auto topic creation.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 362

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Capacity Planning: Schema Registry

• Minimal system requirements

• Deploy 2+ servers behind load balancer

• Single-primary architecture

◦ One primary node at a time

◦ Primary node responds to write requests

◦ Secondary nodes forward write requests to primary node

◦ All nodes respond to read requests

The Schema Registry is just a very simple lookup service, so it does not require many

resources. For example, it just needs a 1 GB JVM heap. State is stored in Kafka, so there are

minimal storage requirements. There is little load on the CPU.

Schema Registry is mission-critical once deployed, so it should be deployed as a cluster for

high-availability. The Schema Registry cluster should be placed behind a load balancer for

ease of configuration (basically virtualizing the schema.registry.url value across all

clients).

The cluster works in a primary/secondary setup. Only the primary node can write to the

_schemas Topic in Kafka. Secondary nodes can forward write requests to the primary node.

Primary election is handled by Kafka by setting kafkastore.bootstrap.servers to a

comma-separated string of Kafka endpoints.


It is recommended to set min.insync.replicas to 2 or greater and

unclean.leader.election.enable=false on the _schemas Topic from the

Kafka cluster. These configurations are not set from Schema Registry itself.



older versions relied on ZooKeeper if kafkastore.connection.url was set. If

both this and kafkastore.bootstrap.servers are set, ZooKeeper will handle

primary election. Kafka-based primary election was introduced in CP 4.0, and is

discussed in detail in this talk: https://youtu.be/MmLezWRI3Ys?t=1776

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 363

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://youtu.be/MmLezWRI3Ys?t=1776

11d: What Does Confluent Advise for

Deploying the REST Proxy in Production?

Description

Best practices and capacity planning for the REST Proxy in production.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 364

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Reference Architecture: Confluent REST Proxy

Applications Microservices

(optional)
Sticky Load Balancer

ProxyProxyProxy

Confluent REST Proxy

SecondaryPrimary

Confluent Schema Registry

Worker +
Connectors +

Replicator

Worker +
Connectors +

Replicator

Kafka Connect

CCCCCC

Control Center
Confluent

VoterVoterVoterVoter

Active Controller

KRaft Quorum

BrokerBroker

BrokerBroker

BrokerBroker

Kafka

App InstanceApp Instance

Kafka Streams App

= cluster

Microservices

Applications

The Kafka REST Proxy is a part of Confluent Community. It provides a way to have producer

and consumer style interaction with the brokers through HTTP calls. This is beneficial for:

• Companies that use languages that don’t have first-class Kafka client library support

• Prototyping application logic without worrying about the Java API

• Easily viewing cluster information or other administrative actions

Any language that can make HTTP requests can now be used to write producers and

consumers!

Following the pattern of other components, REST Proxy configuration settings are located

at /etc/kafka-rest/kafka-rest.properties. For more information, see

http://docs.confluent.io/current/kafka-rest/docs/config.html.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 365

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

http://docs.confluent.io/current/kafka-rest/docs/config.html
http://docs.confluent.io/current/kafka-rest/docs/config.html
http://docs.confluent.io/current/kafka-rest/docs/config.html
http://docs.confluent.io/current/kafka-rest/docs/config.html
http://docs.confluent.io/current/kafka-rest/docs/config.html
http://docs.confluent.io/current/kafka-rest/docs/config.html
http://docs.confluent.io/current/kafka-rest/docs/config.html
http://docs.confluent.io/current/kafka-rest/docs/config.html
http://docs.confluent.io/current/kafka-rest/docs/config.html

What is the Confluent REST Proxy?

Producer

Consumer

Confluent
REST Proxy

native Java
Kafka libraries

your
app

Confluent Community includes a REST Proxy for Kafka. This allows any language to access

Kafka via a REST interface over HTTP.

REST Proxy API reference: https://docs.confluent.io/current/kafka-rest/api.html#crest-

long-api-reference

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 366

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka-rest/api.html#crest-long-api-reference
https://docs.confluent.io/current/kafka-rest/api.html#crest-long-api-reference

Capacity Planning: REST Proxy

• Memory: Buffers both producers and consumers

◦ 1000 MB RAM + (P * 64MB) + (C * 16 MB)

• 16+ CPU cores

• "Sticky load balancer" needed for consumers

• Stateless → Container orchestration!

REST Proxy buffers data for both producers and consumers. Consumers use at least 2MB

per consumer and up to 64MB in cases of large responses from brokers (typical for bursty

traffic). Producers will have a buffer of 64MB each. Start by allocating 1GB RAM and add

64MB for each producer and 16MB for each consumer planned.

We recommend at least 16 cores, which provides sufficient resources to handle HTTP

requests in parallel and background threads for the producers and consumers. However, this

should be adjusted for your workload. Low throughput deployments may use fewer cores,

while a proxy that runs many consumers should use more because each consumer has a

dedicated thread.

The REST Proxy is typically deployed as a cluster for performance and high-availability. If

using a load balancer, make sure to enable the “sticky session” feature (also known as

“session affinity”). This feature enables the load balancer to bind a user’s session to a

specific instance. This ensures that all requests from the user during the session are sent to

the same instance. This is required for consumers.



From a security perspective, REST Proxy collapses the identities of all clients to

a single identity. By default, all the requests to the broker use the same

Kerberos Principal or the SSL certificate to communicate with the Broker when

the client.security.protocol is configured to be either of SSL, SASL_PLAIN,

or SASL_SSL. Confluent Enterprise Security Plugins are required to set fine-

grained ACLs for individual clients. For more information, see this reference.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 367

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka-rest/security.html

11e: Deploying Kafka Streams applications in

Production

Description

Best practices and capacity planning for Kafka Streams applications in production.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 368

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Reference Architecture: Kafka Streams

Applications Microservices

(optional)
Sticky Load Balancer

ProxyProxyProxy

Confluent REST Proxy

SecondaryPrimary

Confluent Schema Registry

Worker +
Connectors +

Replicator

Worker +
Connectors +

Replicator

Kafka Connect

CCCCCC

Control Center
Confluent

VoterVoterVoterVoter

Active Controller

KRaft Quorum

BrokerBroker

BrokerBroker

BrokerBroker

Kafka

App InstanceApp Instance

Kafka Streams App

= cluster

Microservices

Applications

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 369

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka Streams Applications

Deploy multiple instances,

multiple clusters

• Load balancing via Kafka

• Failover via Kafka

• One cluster per application

Configure num.standby.replicas

• Pro: Faster task failover

• Con: More load on Kafka cluster


Consider using Kafka quotas to apply a throttling mechanism to ensure high

performance for all clients

At its core, Kafka Streams API is a Java library that can be used inside a company’s business

applications. Applications running with the Kafka Streams API will benefit from being run on

many servers, each with many cores, all identified together by the application.id
configuration setting in the application code. The library itself handles load balancing and

failover of tasks across instances. Each instance of the application maintains state stores in

local filesystem via RocksDB library.

Standby replicas are shadow copies of local state stores. Kafka Streams attempts to create

the specified number of replicas per store and keep them up to date as long as there are

enough instances running. Standby replicas are used to minimize the latency of task failover.

A task that was previously running on a failed instance is preferred to restart on an instance

that has standby replicas so that the local state store restoration process from its

changelog can be minimized. If there are no standby replicas, then the state store is rebuilt

from data persisted in Kafka itself.

Kafka Streams applications read in from and write out to topics. This will increase the

number of topics per Cluster in many cases, requiring administrators to plan for more

broker capacity. Standby replicas put added pressure on the cluster as well since they are

redundant consumers that take up network bandwidth.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 370

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

11f: What Does Confluent Advise for

Deploying Control Center in Production?

Description

Best practices and capacity planning for Confluent Control Center in production.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 371

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Reference Architecture: Confluent Control Center

Applications Microservices

(optional)
Sticky Load Balancer

ProxyProxyProxy

Confluent REST Proxy

SecondaryPrimary

Confluent Schema Registry

Worker +
Connectors +

Replicator

Worker +
Connectors +

Replicator

Kafka Connect

CCCCCC

Control Center
Confluent

VoterVoterVoterVoter

Active Controller

KRaft Quorum

BrokerBroker

BrokerBroker

BrokerBroker

Kafka

App InstanceApp Instance

Kafka Streams App

= cluster

Microservices

Applications

Each component in the architecture can be equipped with monitoring interceptors in its

configuration to publish metrics to a Kafka cluster. Confluent Control Center connects to a

primary Kafka cluster that holds all of these metrics.

 Remember that CCC requires an enterprise license.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 372

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Highly Available Confluent Control Center

• Deploy a separate Kafka cluster

dedicated for metrics

• Deploy 2+ machines and load balancer

dedicated to CCC

• Configure each UI server with a

unique confluent.controlcenter.id

In the reference architecture diagram, it shows a single CCC instance connected to a Kafka

cluster that is also used to handle other business logic. This may be acceptable in early

stages of a company’s infrastructure, but best practices dictate that metrics analysis should

be separate from the system it is analyzing. That means there should be a Kafka cluster

dedicated to metrics. For the UI itself to be highly available, there should be multiple UI

servers deployed behind a load balancer with virtual IP.

Like other components in the Kafka + Confluent ecosystem, CCC has a /etc/confluent-
control-center/control-center.properties file that can be used to configure

connection to a dedicated metrics Kafka cluster, metrics retention, and connections to

named Kafka clusters and components (e.g.,

confluent.controlcenter.kafka.production-nyc.bootstrap.servers or

confluent.controlcenter.connect.production-nyc.cluster).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 373

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Conclusion

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 374

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Course Contents

Now that you have completed this course, you should have the

skills to:

• Describe how Kafka servers, producers, and consumers work

• Describe how replication works within the cluster

• Understand hardware and runtime configuration options

• Monitor and administer your Kafka cluster

• Integrate Kafka with external systems using Kafka Connect

• Design a Kafka cluster for high availability & fault tolerance

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 375

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Other Confluent Training Courses

• Confluent Developer Skills for Building Apache Kafka®

applications

• Confluent Stream Processing Using Apache Kafka® Streams

• Mastering Flink SQL on Confluent Cloud

• Setting Data in Motion with Confluent Cloud

For more details, see https://confluent.io/training

• Confluent Developer Skills for Building Apache Kafka® applications has these objectives:

◦ Write Producers and Consumers to send data to and read data from Apache Kafka

◦ Create schemas, describe schema evolution, and integrate with Confluent Schema

Registry

◦ Integrate Kafka with external systems using Kafka Connect

◦ Write streaming applications with Kafka Streams

◦ Describe common issues faced by Kafka developers and some ways to troubleshoot

them

◦ Make design decisions about acks, keys, partitions, batching, replication, and retention

polices

• Confluent Stream Processing Using Apache Kafka® Streams has these objectives:

◦ Identify common patterns and use cases for real-time stream processing

◦ Understand the high level architecture of Apache Kafka Streams

◦ Write real-time applications with the Kafka Streams API to filter, transform, enrich,

aggregate, and join data streams

◦ Test, secure, deploy, and monitor Kafka Streams applications

• Mastering Flink SQL on Confluent Cloud covers:

◦ Understand the fundamentals of Apache Flink and its relevance to stream processing

◦ Write and execute Flink SQL queries on Confluent Cloud

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 376

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://confluent.io/training

◦ Differentiate between streaming and batch processing

◦ Work with dynamic tables and understand stream-table duality

◦ Manage time attributes and windows for effective stream processing

◦ Perform complex windowed aggregations in real-time with Flink SQL

◦ Utilize Flink SQL for efficient joining of streaming data

◦ Apply pattern-matching techniques to identify complex event sequences

• Setting Data in Motion with Confluent Cloud covers:

• Apply best practices when designing your Confluent Cloud Organization

• Use Confluent CLI and APIs to perform common operations

• Integrate Schema Registry in your workloads and enable Schema Validation to prevent

poisoning your data pipelines

• Mirror data between Kafka clusters using Schema Linking and Cluster Linking

• Discover your streams and their relationships using Stream Lineage and Stream Catalog

• Integrate external data systems in Confluent Cloud using managed connectors

• Automate the infrastructure deployment in Confluent Cloud using Terraform

• Examine the Audit Logs and evaluate the Metrics API and Notifications

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 377

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent Cloud Certified Operator

Duration: 90 minutes

Qualifications: Solid understanding of Confluent

Cloud platform, and 6-to-9 months hands-on

experience

Availability: Live, online, 24-hours a day!

Cost: $150

Register online:
training.confluent.io/examdetail/confluent-
cloud-certified-operator®

Benefits:

• Recognition for your Confluent skills with an official credential

• Digital certificate and use of the official Confluent Cloud Certified Operator Associate

logo Exam Details:

• Multiple choice questions

• 90 minutes

• Designed to validate professionals with a minimum of 6-to-9 months hands-on experience

• Remotely proctored on your computer

• Available globally in English

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 378

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent Certified Developer for Apache

Kafka

Duration: 90 minutes

Qualifications: Solid understanding of Apache Kafka

and Confluent products, and 6-to-9 months hands-on

experience

Availability: Live, online, 24-hours a day!

Cost: $150

Register online: www.confluent.io/certification

Benefits:

• Recognition for your Confluent skills with an official credential

• Digital certificate and use of the official Confluent Certified Developer Associate logo

Exam Details:

• The exam is linked to the current Confluent Platform version

• Multiple choice questions

• 90 minutes

• Designed to validate professionals with a minimum of 6-to-9 months hands-on experience

• Remotely proctored on your computer

• Available globally in English

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 379

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent Certified Administrator for Apache

Kafka

Duration: 90 minutes

Qualifications: Solid work foundation in Confluent

products and 6-to-9 months hands-on experience

Availability: Live, online, 24-hours per day!

Cost: $150

Register online: www.confluent.io/certification

This course prepares you to manage a production-level Kafka environment, but does not

guarantee success on the Confluent Certified Administrator Certification exam. We

recommend running Kafka in Production for a few months and studying these materials

thoroughly before attempting the exam.

Benefits:

• Recognition for your Confluent skills with an official credential

• Digital certificate and use of the official Confluent Certified Administrator Associate logo

Exam Details:

• The exam is linked to the current Confluent Platform version

• Multiple choice and multiple select questions

• 90 minutes

• Designed to validate professionals with a minimum of 6 - 12 months of Confluent

experience

• Remotely proctored on your computer

• Available globally in English

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 380

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

We Appreciate Your Feedback!

Please complete the course survey now.

Your instructor will give you details on how to access the survey.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 381

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Thank You!

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 382

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix: Additional Content

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 383

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Overview

This appendix contains a few additional lessons. These lessons are for additional information

for you, but are not designed the same as the rest; namely, they do not have activities or

labs to reinforce the content like the rest.

Some lessons that were part of modules of a previous version of this course. Some are

lessons taken from another course.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 384

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix A: Detailed Transactions Demo

Description

This section presents a more detailed demo of a consume-process-produce application that

uses transactions.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 385

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions (1/14)

Pictured is a stream processing application called FundsTransfer that follows the consume-

process-produce paradigm. The idea is to read a financial transaction from the "transfers"

topic and produce balance updates to the "balance-update" topic.

A Transaction Coordinator is a module that is available on any Broker. The Transaction

Coordinator is responsible for managing the lifecycle of a transaction in the "Transaction

Log" — the internal Kafka Topic __transaction_state partitioned by transactional.id.

The Broker that acts as the Transaction Coordinator is not necessarily a Broker that the

Producer is sending messages to. For a given Producer (identified by transactional.id),

the Transaction Coordinator is the leader of the Partition of the Transaction Log where

transactional.id resides. Because the Transaction Log is a Kafka Topic, it has durability

guarantees.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 386

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Initialize Consumer Group (2/14)

The consumer and producer are initialized before stream processing is started. Here we see

the consumer subscribe to the "transfers" topic and identify its Consumer Group

Coordinator using hash(group.id) % n, where n is the number of partitions of the

consumer offsets topic (Default: 50). Here, the p6 indicates that this Consumer Group

Coordinator is the broker that holds the lead replica for partition 6 of the consumer offsets

topic.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 387

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Transaction Coordinator (3/14)

Here we see the producer initiating the transaction. The producer identifies the Transaction

Coordinator using hash(transactional.id) % m, where m is the number of partitions of

the __transaction_state topic (Default: 50).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 388

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Initialize (4/14)

During the initiation, the Producer registers itself to the Transaction Coordinator with its

transactional.id. The Transaction Coordinator records a mapping { Transactional ID
: Producer ID }. The Transaction Coordinator also increments an epoch associated with

the transactional.id.

The epoch is an internal piece of metadata stored for every transactional.id. Once the

epoch is bumped, any producers with same transactional.id and an older epoch are

considered zombies and are fenced off and future transactional writes from those

producers are rejected. This enables reliability semantics which span multiple producer

sessions since it allows the client to guarantee that transactions using the same

TransactionalId have been completed prior to starting any new transactions.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 389

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Consume and Process (5/14)

The Consumer polls for messages from the input Topic. Here, the consumer reads an event

that transfers $10 from Alice to Bob. The goal of the FundsTransfer app is to

transactionally write events to the "balance-update" topic that credits Bob with $10 and

debits $10 from Alice.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 390

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Begin Transaction (6/14)

The Producer begins the transaction.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 391

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Send (7/14)

The Producer sends a message to a partition. Here, the message is to credit Bob with $10.



The first time a new TopicPartition is written to as part of a transaction, the

producer sends a "Register Partitions" request to the transaction coordinator

and this TopicPartition is logged. The transaction coordinator needs this

information so that it can write the commit or abort markers to each

TopicPartition. If this is the first partition added to the transaction, the

coordinator will also start the transaction timer.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 392

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Send (8/14)

The Producer sends a message to a second partition. Here, the message is to debit $10 from

Alice. This message happens to land on a different partition from the previous message, so

this partition is also added to the transaction log.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 393

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Track Consumer Offset (9/14)

The sendOffsetsToTxn() method sends the consumer’s offset and consumer group

information to the transaction coordinator via an AddOffsetCommitsToTxnRequest. This

makes the consumer’s offset become a part of the transaction. If the transaction fails, the

consumer’s offset doesn’t move forward and the transaction can start over.

Of course, the consumer may be subscribed to multiple partitions across multiple topics, in

which case all relevant consumer offsets are included in the transaction state log. In this

simple example, there is only one partition’s offset to track.


To take advantage of the sendOffsetsToTxn() method, the consumer should

have enable.auto.commit=false and should also not commit offsets

manually. See the Java API documentation

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 394

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/clients/javadocs/org/apache/kafka/clients/producer/KafkaProducer.html#sendOffsetsToTransaction-java.util.Map-java.lang.String-

Transactions - Commit Consumer Offset (10/14)

Also as part of sendOffsetsToTxn(), the producer will send a TxnOffsetCommitRequest to

the consumer coordinator to persist the offsets in the __consumer_offsets topic.

This guarantees the offsets and the output records will be committed as an atomic unit.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 395

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Prepare Commit (11/14)

Producer commits the transaction. The transaction coordinator marks the transaction as in

status of "preparing."

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 396

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Write Commit Markers (12/14)

The Transaction Coordinator writes commit markers to the Partitions the Producer writes

to as well as to the __consumer_offsets Partition. Commit markers are special messages

which log the producer id and the result of the transaction (committed or aborted). These

messages are internal only and are not exposed by standard consumer operations.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 397

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Commit (13/14)

The Transaction Coordinator marks the transaction as committed.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 398

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Success (14/14)

As a final step the transaction coordinator sends an acknowledgment to the producer.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 399

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix B: How Can You Monitor

Replication?

Description

Monitoring considerations for replication.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 400

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Leader Election Rate

• Leader election rate (JMX metric)

kafka.controller:type=ControllerStats,name=LeaderElectionRateAndTimeMs

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 401

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring ISR

• Monitor under-replicated partitions with the JMX metric:

◦ kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions

◦ Alert if the value is greater than 0 for a long time

• Track changes of ISR lists (shrinks and adds) with these JMX metrics:

◦ kafka.server:type=ReplicaManager,name=IsrExpandsPerSec

◦ kafka.server:type=ReplicaManager,name=IsrShrinksPerSec

These metrics are the primary indicators of a problem within the cluster.

The UnderReplicatedPartitions metrics indicates the number of replicated Partitions

that do not have a fully populated ISR list. A cluster should not be allowed to run indefinitely

with under-replicated Partitions - another failure could result in data loss or Partitions

unavailability.

The IsrExpandsPerSec and IsrShrinksPerSec metrics track changes to the ISR list. These

metrics should change rarely: in a healthy cluster, all replicas should be In-Sync with the

leader.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 402

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring for Under Replicated Partitions

• If a broker goes down, the ISR for some partitions will shrink

• Confluent Control Center shows partition health at a glance:

The JMX metrics discussed in the previous slide can also be tracked in Confluent Control

Center. The sample shown displays the counters for Under replicated and Offline partitions

in the cluster.

In Confluent Control Center, you can trigger alarms based on under-replicated and offline

partitions.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 403

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Monitoring Offline Partitions

• Track offline partitions with JMX metric:

◦ kafka.controller:type=KafkaController,Name=OfflinePartitionsCount

• Leader failure makes partition unavailable until re-election

◦ Producer send() will retry according to retries configuration

◦ Callback raises NetworkException if retries == 0

The OfflinePartitionCount metric shows the number of partitions that do not have an

active leader. These Partitions can perform no reads nor writes until a new leader is elected.

During the transient period when a leader broker fails, producers should expect error

messages.

• If retries == 0

◦ The callback will receive an exception with the following message

"org.apache.kafka.common.errors.NetworkException: The server disconnected before a

response was received."

◦ Message will not be written to Kafka.

• If retries > 0

◦ No callback but log message will be written "Sender:298 - Got error produce response

with correlation id 5 on Topic-Partition hello_world_topic-o-0, retrying (0 attempts

left). Error: NETWORK_EXCEPTION"

◦ Message will be written to Kafka via new leader on a subsequent retry.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 404

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix C: Multi-Region Clusters

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 405

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Multiple Data Centers

• Kafka only:

◦ Stretched (a.k.a. multi-AZ)

• Confluent Replicator:

◦ Cluster aggregation

◦ Active/Passive

◦ Active/Active

There are many use cases for multiple datacenter deployments of Kafka clusters. Using

multiple DCs, it is possible to design for DC-wide failure scenarios. If many Kafka clients

connect to a Kafka cluster in a different DC, it would also save cross-DC bandwidth to

replicate cluster data and then configure those clients to interact with the cluster in the

local DC instead.

This section is based on this white-paper

Refer to this site for a discussion of data aggregation.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 406

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/white-paper/disaster-recovery-for-multi-datacenter-apache-kafka-deployments/
https://www.confluent.io/blog/enterprise-streaming-multi-datacenter-replication-apache-kafka/

Stretched Deployment

• Discussion Questions

◦ How should you deploy ZooKeeper and Kafka across 3 availability zones?

◦ What are possible tradeoffs between a stretched cluster vs. a single DC cluster?

◦ What are some possible failure scenarios and how does Kafka respond?

A “Stretched” deployment is a single logical cluster across DCs that are close to each other.

An example of this would be availability zones in AWS or GCP that are within the same

region. This has already been discussed in a previous module, but is presented again here to

reiterate that Kafka’s built-in replication mechanisms make it well-suited for a multi-AZ

deployment.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 407

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Cross-DC Replication

Confluent Replicator or Apache Kafka MirrorMaker

For cross-regional replication, latency can be too great to run a stretched Kafka cluster. In

this case, it is recommended to use a replication technology like Apache MirrorMaker or

Confluent Replicator to implement active/active, active/passive, or aggregation Kafka

clusters.

Here are some facts about Confluent Replicator at a glance:

• Kafka Connect source connector

• Consumer offsets preserved via offset translation

• Replicates data and metadata

• Recommended to deploy in dedicated Kafka Connect cluster

• Requires Confluent Enterprise License

MirrorMaker: MirrorMaker is an open source technology used for cross data center

replication that comes as a part of core Apache Kafka. For the most up to date information

about MirrorMaker, see this documentation.

Replicator: Confluent Replicator is a proprietary Kafka Connect source connector, which

means it inherits all the benefits of the Kafka Connect API including scalability,

performance, and fault tolerance. A major benefit of Replicator is that it will configure the

destination Topic to match the structure (e.g., partition count, replication factor) of the

source Topic. Since Replicator is designed to run continuously, it will also pass configuration

changes (e.g., retention time) automatically. It is recommended to deploy Replicator in its

own dedicated Connect cluster so that it can be tuned specifically for cross-DC replication

and so other connectors don’t interfere with its operation. Remember that this is

accomplished by configuring the machines with a group.id dedicated for Replicator, e.g.

group.id=dc1-to-dc2-replicator.

Question: Should Replicator be deployed in the source DC, or the destination DC? Why?

• The Replicator connector functions as both a producer (as it reads from the source Topic)

and consumer (as it writes to the destination Topic). Replicator should be closer to

destination site because producers are more sensitive to network interruptions than

consumers. If a consumer doesn’t get a message, it will just retry; if a producer request

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 408

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://kafka.apache.org/documentation/#basic_ops_mirror_maker

fails, there’s the possibility that an acknowledged request will be resent or lost, depending

on the acks setting.


As of CP 4.1, Replicator does not require a direct connection to ZK. Any

communications with ZK will be passed through the Brokers.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 409

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Deploying Replicator

1. Provision machines in destination data center

2. Install with confluent-hub if not already using CP

3. Configure worker.properties file on each Connect machine

4. Ways to start Replicator:

◦ Submit HTTP request with Replicator-specific properties, or

◦ Use the replicator command on each Kafka Connect machine

 Confluent Replicator requires an enterprise license

Replicator is included in Confluent Platform, but requires the purchase of an enterprise

license. If Kafka Connect machines weren’t deployed with CP, then Replicator can be

installed via the confluent-hub CLI, e.g.

$ confluent-hub install confluentinc/kafka-connect-replicator:latest

Like any other Connect cluster, specify a worker.properties file with a common group.id
and other properties on each worker node and start the Connect JVM with the command:

$ connect-distributed worker.properties

Replicator can then be invoked on a Connect cluster via HTTP like any distributed connector.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 410

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Here is an example of calling Replicator via the REST API:

$ curl -s -X POST \
 -H "Content-Type: application/json" \
 --data '{
 "name":"dc1-to-dc2-replicator",
 "config":{

"connector.class":"io.confluent.connect.replicator.ReplicatorSourceConnector",
 "tasks.max":64,
 "provenance.header.enable":"true"

"key.converter":"io.confluent.connect.replicator.util.ByteArrayConverter",

"value.converter":"io.confluent.connect.replicator.util.ByteArrayConverter",
 "src.kafka.bootstrap.servers":"dc1-kafka-101:9092",
 "dest.kafka.bootstrap.servers":"dc2-kafka-101:9092"
 "producer.compression.type":"zstd"
 "producer.linger.ms":"1000"
 "producer.batch.size":"1000000"
 "consumer.max.partition.fetch.bytes":"10485760"
 "topic.whitelist":"test-topic",
 "topic.regex":"prod-.***"
 "topic.rename.format":"${topic}.replica",
 "confluent.license":"IAMALONGLICENSEKEY"
 }
}' http://dc2-connect:8083/connectors

There is also an executable called replicator included in CP that takes 3 property files

(containing producer, consumer, and replication properties), and a cluster.id (which is

equivalent to Connect’s group.id) as arguments to start each Replicator worker:

$ replicator \
 --consumer.config ./consumer.properties \
 --producer.config ./producer.properties \
 --cluster.id dc1-to-dc2-replicator \
 --replication.config ./replication.properties

For more information on the replicator, see: this documentation.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 411

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/multi-dc-deployments/replicator/index.html

Cluster Aggregation

DC 1 DC 2

Kafka Connect

Aggregate DC

Destination Kafka

DC 1
Replicator

DC 2
Replicator

Source
Kafka

Source
Kafka

In this scenario, smaller, regional clusters are aggregated in a large central cluster. One

interesting use case of this is a cruise ship business with local Kafka clusters on each cruise

ship that connects to a centralized cluster upon return.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 412

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Active-Passive

Producers Consumers Consumers

DC-1

ZooKeeper
Quorum

Schema
Registry

kafka
Brokers

DC-2

ZooKeeper
QuorumReplicator

Schema
Registry

kafka
Brokers

An “Active/Passive” deployment has two sites operating as independent clusters with their

own ZooKeeper instances. Active/Passive environments are assumed to be asynchronously

replicating. Since real-time performance is not expected, Replicator should be configured to

use batching to maximize throughput. Overriding default client properties is accomplished

by passing consumer.<property>=value and producer.<property>=value in the

Connect REST API call.

Active/Passive is easier to implement than Active/Active. It is a good choice when you’d like

to run geographically local Consumer applications and allow the failover of other

Consumers, or would just like to back up the primary data center. As a downside to

Active/Passive, the passive cluster may be underutilized.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 413

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Active-Active

Client Applications

DC-1

ZooKeeper
Quorum

Schema
Registry

kafka
Brokers

Client Applications

DC-2

ZooKeeper
Quorum

Replicator

Replicator Schema
Registry

kafka
Brokers

An "Active/Active" setup is where two DC’s operate as independent clusters with their own

ZooKeeper instances, but each also replicates its data to the other. This allows more flexible

failover and better resource utilization. This is a good solution if you want client applications

that are geographically local but where data is also shared more globally.

A common mistake with traditional Active/Active replication scenarios is the replication

loop. If a Topic in one datacenter is replicating to a Topic with the same name in the other

data center and vice versa, an infinite loop is created in which the same data is continuously

passed between the two data centers. As of CP 5.0, Replicator uses the message header to

record origin cluster information to prevent data being replicated back to the originating

cluster (called "data provenance"). This feature will increase CPU utilization on the

Replicator systems as it will be using CPU to filter all messages. To enable this feature,

configure provenance.header.enable=true. This requires message format version 2.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 414

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Client Offset Translation (1)

Introduced in CP 5.0, Replicator enables a mapping of offsets to timestamps for messages

in the replicated topics. This allows easier failover between sites.

In order for this feature to work, the following requirements must be met in the consumer:

• Add a jar dependency and add the following property to the consumer:

◦ interceptor.classes=io.confluent.connect.replicator.offsets.ConsumerTim
estampsInterceptor

• Use message format v1 or later (includes timestamp)

Why doesn’t Replicator preserve consumer offsets by default (i.e., without the

interceptors)? Using the same partitioner as the original producer preserves the ordering

(when using keys). But offsets may differ due to the sequential nature of offsets. Offset

numbers must be written to in order, starting with 0; there is no way to start writing to a

specific offset number. If a topic that has existed long enough for some messages to age

out, it no longer has access to offset 0. If that topic is replicated, the newly created

destination topic must start numbering the offsets in the Partitions at 0, which would not

match the source topic offset numbers. Also illustrated in the slide is the case where logs are

compacted before replication, which will also cause offsets in the destination cluster to

differ from the source cluster.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 415

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Client Offset Translation (2)

It is possible for several messages to have the same timestamp. Suppose that a consumer

commits offset 10 in DC1 (i.e., the consumer has read through message G and has not yet

reached H). After offset translation, offset 10 becomes associated with timestamp 6, which

corresponds to offsets 5 through 9 in DC2. After failing over to DC2, we know the consumer

has consumed at least one of messages E through I. In this case, the consumer’s offset will

be translated to 6, and thus messages F and G will be consumed twice. This guarantees a

message won’t be skipped, but also opens the possibility that messages will be consumed

multiple times during this failover.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 416

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Manual Disaster Recovery: Consumer Group Tool

The command kafka-consumer-groups can set a Consumer Group to seek to an offset

derived from a timestamp

$ kafka-consumer-groups \
 --bootstrap-server dc2-broker-101:9092 \
 --reset-offsets \
 --topic dc1-topic \
 --group my-group \
 --execute \
 --to-datetime 2017-08-01T17:14:23.933

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 417

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Manual Disaster Recovery: Java Client API

Producer API:

• Replication process must use same partitioner class to preserve message ordering for

keyed messages

• Topic properties must be same in source and destination clusters (automatic with

Replicator)

Consumer API:

• Use offsetsForTimes() method to find an offset for a given timestamp

• Use seek() to move to the desired offset

If, for whatever reason, Consumers are not configured with the Replicator intercepter for

offset translation, then destination offset will have to be set manually so Consumers at the

failover site can recover to an offset relatively close to where they left off before the site

failure. The Kafka Client has methods (offsetsForTimes() together with seek()) which

can be embedded in the Consumer code to provide this functionality on a per-Consumer

basis. An example of this code is given in the appendix of: https://www.confluent.io/wp-

content/uploads/Disaster-Recovery-Multi-Datacenter-Apache-Kafka-Deployments.pdf.

Essentially:

1. Maintain a RESET_TIME variable that is a safe timestamp to rewind to in case of failure.

2. Create/update a hash map that associates that RESET_TIME with each Partition.

3. Connect to the failover Kafka cluster.

4. For each Partition, seek the offset in the new cluster that corresponds to the RESET_TIME.

However, in many cases, that would not be a viable option during a recovery if the feature

was not already implemented in the client code. As of Kafka 0.11.0, the kafka-consumer-
groups command has the ability to reset the entire Consumer Group to the offsets

corresponding to specific timestamps within the Partitions. See the next slide for an

example of this command.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 418

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/wp-content/uploads/Disaster-Recovery-Multi-Datacenter-Apache-Kafka-Deployments.pdf
https://www.confluent.io/wp-content/uploads/Disaster-Recovery-Multi-Datacenter-Apache-Kafka-Deployments.pdf

Schema Registry Across Data Centers

The Schema Registry must be consistent across the data centers if the schema IDs attached

to the messages are to be interpreted properly. This is achieved by extending the

primary/secondary relationship of clustered Schema Registry systems to the data center

level. Only primary nodes in the main data center can update the schema topic. This ensures

a "one voice of truth" model so that the data is consistent across instances.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 419

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Improving Network Utilization

• If network latency is high, increase the TCP socket buffer size in Kafka

◦ socket.send.buffer.bytes on the origin cluster’s broker (default: 102400 bytes)

◦ receive.buffer.bytes on Replicator’s consumer (default: 65536 bytes)

◦ Increase corresponding OS socket buffer size

If the network between the two sites is slow, you may have to tune the network buffers,

both in the Broker and OS settings.

The syntax for increasing OS socket buffer size depends on OS type. For example, on

CentOS it is in /proc/sys/net/ipv4/tcp_rmem and /proc/sys/net/ipv4/tcp_wmem.

Enable logging (log4j.logger.org.apache.kafka.common.network.Selector=DEBUG) to

double check these changes actually took effect. There are instances where the OS silently

overrode/ignored settings

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 420

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix D: SSL and SASL Details

Overview

This appendix contains two sections (as one appendix):

• SSL

• SASL


This section is a literal copy of old content - no formatting done, just making

sure everything renders.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 421

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Why is SSL Useful?

• Organization or legal requirements

• One-way authentication

◦ Secure wire transfer using encryption

◦ Client knows identity of Broker

◦ Use case: Wire encryption during cross-data center mirroring

• Two-way authentication with Mutual SSL

◦ Broker knows the identity of the client as well

◦ Use case: authorization based on SSL principals

• Easy to get started

◦ Just requires configuring the client and server

◦ No extra servers needed, but can integrate with enterprise

SSL can be used with one-way or two-way authentication.

One-way authentication is similar to what you have used with secure websites. The client

verifies that the server is trusted before exchanging data. However, that only guarantees

that the server is good; this does not prevent unauthorized access to Brokers and Topics.

Two-way authentication requires that the client identity be verified as well.


It is outside the scope of the course to provide in-depth configurations for SSL.

The materials address configurations specific to the Kafka environment.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 422

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

SSL Data Transfer

• After an initial handshake, data is encrypted with the agreed-upon encryption algorithm

• There is overhead involved with data encryption:

◦ Overhead to encrypt/decrypt the data

◦ Can no longer use zero-copy data transfer to the Consumer

◦ SSL overhead will increase

kafka.network:type=RequestMetrics,name=ResponseSendTimeMs

In an SSL connection, the Producer encrypts the messages before sending to the Brokers.

The Brokers decrypt the messages for local storage and then re-encrypt them before

sending to the Consumers, who then have to decrypt the messages again.

All of this processing will affect end-to-end performance and CPU utilization on all

components of the Kafka architecture.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 423

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

SSL Performance Impact

• Performance was measured on Amazon EC2 r3.xlarge instances

Throughput(MB/s) CPU on client CPU on Broker

Producer (plaintext) 83 12% 30%

Producer (SSL) 69 28% 48%

Consumer (plaintext) 83 8% 2%

Consumer (SSL) 69 27% 24%

These performance numbers are specific to the described environment - actual numbers will

vary.

The increase in CPU utilization for the Consumer connection seems excessive but that is just

because those activities require so little CPU in normal circumstances.


There are significant performance improvements for versions of Kafka that use

Java 9 or above. Confluent Platform 5.2 and above support Java 11.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 424

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Data at Rest Encryption

• "Data at rest encryption" refers to encrypting data stored on a hard drive that is

currently not moving through the network

• Options for encrypting data at rest:

1. Linux OS encryption utilities that encrypt full disk or disk partitions (e.g. LUKS)

2. Producers encrypt messages before sending to Kafka, and Consumers decrypt after

consuming

• Consider running Brokers on a machine with an encrypted filesystem or encrypted RAID

controller

SSL only provides wire encryption. Kafka itself is not capable of encrypting data stored on

disk.

One advantage of pushing encryption to the Kafka client layer is that Brokers can function

without the performance impact of SSL.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 425

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

SSL: Keystores and Truststores

• Client truststore:

◦ CA certificate used to verify signature

on Broker cert

◦ If signature is valid, Broker is trusted

• Broker keystore:

◦ Uses private key to create certificate

◦ Cert must be signed by Certificate

Authority (CA)

◦ Cert includes public key, which client will

use to establish secure connection

Java uses .jks (Java Key Store) files to hold information used during SSL handshake. The

client truststore and Broker keystore are what must be configured by Kafka cluster

administrators, so it is not necessary to go into deeper detail about the SSL/TLS protocol

explicitly. However, a short summary is given here for reference.

Short summary of SSL for reference: One important concept throughout is that a public key

can be used to encrypt information in such a way that only its associated private key can

decrypt; and a private key can also be used to encrypt information in such a way that only

the public key can decrypt. The Broker creates a public/private key-pair. The private key is

used to generate a certificate which contains its public key. The certificate must be signed

by a certificate authority that is trusted by the client. The CA uses its own private key to

sign certificates. During the SSL handshake, the Broker sends its certificate, including its

public key, to the client. The client verifies the CA signature by using the CA’s certificate

(which includes the CA’s public key). If the certificate is trusted, then the client creates a

shared key that the Broker and client will use during the session (symmetric encryption). In

order to securely send the shared key back to the Broker, the client uses the Broker’s public

key to encrypt the shared key. Only the Broker’s private key can decrypt this information, so

the Broker is able to recover the shared key. Now that Broker and client each have the same

key, they use that shared key to encrypt and decrypt subsequent communication in the

session. For a simple, illustrated video on the SSL encryption process, see

https://www.youtube.com/watch?v=4nGrOpo0Cuc.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 426

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.youtube.com/watch?v=4nGrOpo0Cuc

Preparing for SSL

1. Generate certificate (X.509) in Broker keystore

2. Create your own Certificate Authority (CA) or use a well known CA

3. Sign Broker certificate with CA

4. Import signed certificate and CA certificate to Broker keystore

5. Import CA certificate to client truststore


Mutual SSL: generate client keystore and corresponding Broker truststore in

the same way.

Kafka leverages standard SSL procedures - there are no Kafka-specific steps that have to

be done to create the certificates. For more information on configuring SSL transport

encryption, see https://docs.confluent.io/current/kafka/encryption.html.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 427

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka/encryption.html

SSL Everywhere! (1)

• Client and Broker *.properties Files:

ssl.keystore.location = /var/private/ssl/kafka.server.keystore.jks
ssl.keystore.password = password-to-keystore-file
ssl.key.password = password-to-private-key
ssl.truststore.location = /var/private/ssl/kafka.server.truststore.jks
ssl.truststore.password = password-to-truststore-file

• Brokers:

listeners = SSL://<host>:<port>
ssl.client.auth = required
inter.broker.listener.name = SSL

• Client:

security.protocol = SSL

These configurations demonstrate mutual SSL, which means client authentication is

required. In addition to the configurations on the the slide, remember to also change the

port number for the entries in the bootstrap.servers configuration on the clients. For

more detailed information on two-way SSL, see

https://docs.confluent.io/current/kafka/authentication_ssl.html#kafka-ssl-authentication.



Setting inter.broker.listener.name to SSL ensures that communication

between Brokers is also SSL encrypted, which means each Broker’s truststore

must trust the certificates of each other Broker. To do this, you can use a single

Certificate Authority to sign all Broker certificates. To reduce the possibility of a

client trying to impersonate a Broker when doing mutual SSL, you could use a

separate Certificate Authority to sign client certificates.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 428

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka/authentication_ssl.html#kafka-ssl-authentication

SSL Everywhere! (2)

Discussion Questions:

• How could you secure the clear credentials that are stored in the *.properties files?

• What configurations would you change to do one-way SSL (SSL from Broker to client

only) and plaintext between Brokers?

Here are some ideas to bring up if not mentioned by students:

• How could you secure the clear credentials that are stored in the *.properties files?

◦ set OS level permission restrictions on the files

◦ Use a disk encryption tool

• What configurations would you change to do one-way SSL (SSL from Broker to client

only) and plaintext between Brokers?

◦ Create a new PLAINTEXT listener port on the Broker for inter-Broker communication

◦ Change inter.broker.listener.name to PLAINTEXT on the Broker

◦ Client *.properties file no longer needs keystore configurations (only truststore)

◦ Delete ssl.client.auth = required


Upcoming versions of Confluent Platform will provide command line tools for

securing passwords so they are not plain text on *.properties files.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 429

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

SSL Principal Name

• By default, Principal Name is the distinguished name of the certificate

CN=host1.example.com,OU=organizational
unit,O=organization,L=location,ST=state,C=country

• Can be customized through principal.builder.class

◦ Has access to X509 Certificate

◦ Makes setting the Broker principal and application principal convenient

As of AK 2.2.0, it is possible to use regular expressions to extract a custom principal from the

distinguished string: https://cwiki.apache.org/confluence/display/KAFKA/KIP-

371%3A+Add+a+configuration+to+build+custom+SSL+principal+name.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 430

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-371%3A+Add+a+configuration+to+build+custom+SSL+principal+name
https://cwiki.apache.org/confluence/display/KAFKA/KIP-371%3A+Add+a+configuration+to+build+custom+SSL+principal+name

Troubleshooting SSL

• To troubleshoot SSL issues

◦ Verify all Broker security configurations

◦ Verify client security configuration

◦ On the Broker, check that the following command returns a certificate:

$ openssl s_client -connect <broker>:<port> -tls1

◦ Enable SSL debugging using the KAFKA_OPTS environment variable

▪ The output can be verbose but it will show the SSL handshake sequence, etc.

▪ If you are debugging on the Broker, you must restart the Broker

$ export KAFKA_OPTS="-Djavax.net.debug=ssl $KAFKA_OPTS"

SSL debugs ('-Djavax.net.debug=ssl') can be verbose but helpful. For example, if two-way

SSL authentication is enabled with ssl.client.auth=required but client has no keystore

configured, then the debugs would show

Warning: no suitable certificate found - continuing without client authentication
*** Certificate chain
<Empty>

This may be a good time to check how familiar students are with the KAFKA_OPTS variable. If

students are unclear, remind them that this is the variable used to pass configurations to

the JVM. This variable is invoked when Kafka starts (e.g. kafka-server-start).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 431

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

SASL for Authentication (1)

• SASL: Simple Authentication and Security Layer

◦ Challenge/response protocols

◦ Server issues challenge; client sends response

◦ Continues until server is satisfied

• All of the SASL authentication methods send data over the wire in PLAINTEXT by default,

but SASL authentication can (should) be combined with SSL transport encryption.

SASL can be used with either encryption (SSL) or not (PLAINTEXT). Since usernames and

passwords are sent in the clear for some SASL mechanisms, it is highly recommended in

production environments that the connections be encrypted. However, encryption will have

the same performance issues as described in the SSL slides.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 432

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

SASL for Authentication (2)

• SASL supports different mechanisms

◦ GSSAPI: Kerberos

◦ SCRAM-SHA-256, SCRAM-SHA-512: “salted” and hashed passwords

▪ SCRAM (Salted Challenge Response Authentication Mechanism)

▪ Can use username/password stored in ZK or delegation token (OAuth 2)

◦ PLAIN: cleartext username/password

◦ OAUTHBEARER: authentication tokens

SASL provides multiple authentication methods.

Kerberos is frequently used because it enables single sign-on. However, as with SSL, there

are no Kafka-specific changes that need to be made to the servers. It is beyond the scope of

this course to set up the Kerberos environment.

The SCRAM implementation is described in IETF RFC 5802. Other SCRAM mechanisms like

SHA-224 and SHA-384 are not supported at this time. Strong hash functions combined with

strong passwords and high iteration counts protect against brute force attacks if Zookeeper

security is compromised. Support for delegation tokens was added in Kafka 2.0.

PLAIN is the easiest of the SASL options but is not generally used in production

environments.


PLAIN is an authentication mechanism, whereas PLAINTEXT is transporting

data without encryption. It’s possible to use SASL PLAIN with SSL or

PLAINTEXT, just like any other SASL mechanism.

OAUTHBEARER (introduced in Kafka 2.0/Confluent 5.0) is a self-service token based

authentication method. It uses unsecured JSON web tokens by default and should be

considered non-production without additional configuration.

These materials will only discuss SASL SCRAM and SASL GSSAPI in more detail.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 433

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://tools.ietf.org/html/rfc5802

Using SASL SCRAM

• SCRAM should be used with SSL for secure authentication

• ZooKeeper is used for the credential store

◦ Create credentials for Brokers and clients

◦ Credentials must be created before Brokers are started

◦ ZooKeeper should be secure and on a private network

SCRAM is perfectly acceptable for smaller teams with less stringent security needs. This a

fairly common scenario. If ZooKeeper is secure and on a private network, SCRAM can even

be used for production systems.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 434

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring SASL SCRAM Credentials

• Create credentials for inter-Broker communication (user “admin”)

$ kafka-configs --bootstrap-server broker_host:port \
 --alter \
 --add-config \
 'SCRAM-SHA-256=[password=admin-secret],SCRAM-SHA-512=[password=admin-
secret]' \
 --user admin

• Create credentials for Broker-client communication (e.g. user “alice”)

$ kafka-configs --bootstrap-server broker_host:port \
 --alter \
 --add-config \
 'SCRAM-SHA-256=[password=alice-secret],SCRAM-SHA-512=[password=alice-
secret]' \
 --user alice

Client configurations are created and managed with the kafka-configs command. These

changes do not require a reboot.


While plaintext passwords are not sent over the wire, they are available on the

host’s .bash_history file. Take precautions to restrict access to command

history and clear it regularly (e.g. history -c).

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 435

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring SASL Using a JAAS File (Broker)

• JAAS (Java Authentication and Authorization Service) can be included in *.properties
files on clients and Brokers using the sasl.jaas.config property

Broker (server.properties):

...
listeners=SASL_SSL://<host>:<port>
inter.broker.listener.name=SASL_SSL
sasl.mechanism.inter.broker.protocol=SCRAM-SHA-256
sasl.enabled.mechanisms=SCRAM-SHA-256

listener.name.sasl_ssl.scram-sha-256.sasl.jaas.config= \
 org.apache.kafka.common.security.scram.ScramLoginModule required \
 username="admin" \
 password="admin-secret";
...

• This example continues the configuration of SCRAM 256 for authentication and SSL for

transport encryption, but these property settings are analogous for any SASL mechanism

• Supports dynamic configuration on Brokers with kafka-configs

• The property name must be prefixed with the listener prefix including the SASL

mechanism, i.e.

listener.name.<listenerName>.<saslMechanism>.sasl.jaas.config.

• If multiple mechanisms are configured on a listener, configs must be provided for each

mechanism using the listener and mechanism prefix. For example:

listener.name.sasl_ssl.scram-sha-256.sasl.jaas.config= \
 org.apache.kafka.common.security.scram.ScramLoginModule required \
 username="admin" \
 password="admin-secret";
listener.name.sasl_ssl.gssapi.sasl.jaas.config= \
 com.sun.security.auth.module.Krb5LoginModule required \
 useKeyTab=true \
 storeKey=true \
 keyTab="/etc/security/keytabs/kafka_server.keytab" \
 principal="kafka/kafka1.hostname.com@EXAMPLE.COM";

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 436

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring SASL Using a JAAS File (Client)

Client configuration file:

...
security.protocol=SASL_SSL
sasl.mechanism=SCRAM-SHA-256

sasl.jaas.config= \
 org.apache.kafka.common.security.scram.ScramLoginModule required \
 username="alice" \
 password="alice-secret";
...

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 437

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Discussion questions:

• Why is SASL_SSL wire encryption recommended when using SASL SCRAM?

• What are the tradeoffs of an environment where clients authenticate with SASL SCRAM

over SSL, but inter-Broker communication is done over plaintext? How would you change

these *.properties files for this situation?

• Notice again that clear passwords are stored in these files. What would you do to ensure

the security of these credentials?

• Why is SASL_SSL wire encryption recommended when using SASL SCRAM?

◦ While SCRAM does salt and hash passwords in transit, there is enough information in a

SCRAM exchange to make individual passwords vulnerable to a dictionary or brute

force attack if ZooKeeper is compromised (although the random salt does prevent a

dictionary attack from cracking all passwords at once). Strong passwords, strong hash

functions, and high iteration counts all work to minimize this as a viable attack vector.

• What are the tradeoffs of an environment where clients authenticate with SASL SCRAM

over SSL, but inter-Broker communication is done over plaintext? How would you change

these *.properties files for this situation?

◦ If a Kafka cluster in a private network is considered "secure enough", then it may be

worth it to only encrypt communication from clients outside the private network while

allowing Brokers to communicate with each other over plaintext. This can reduce the

performance impact that comes with TLS.

◦ To enable this, we would have to create a new plaintext listener port on the Brokers for

inter-Broker communication, e.g. SASL_PLAINTEXT://<host>:<port> and set

inter.broker.listener.name=SASL_PLAINTEXT. The client configuration would be

unchanged unless the client were also within the trusted network.

• Notice again that clear passwords are stored in these files. What would you do to ensure

the security of these credentials?

◦ These files should be configured with restricted file permissions.

◦ Use disk level encryption.

◦ There are unresolved KIPs that suggest ways to allow credentials to be passed from

secure remote secret stores.

For more information on SCRAM and its security implications, see

https://docs.confluent.io/current/kafka/authentication_sasl/authentication_sasl_scram.ht

ml#kafka-sasl-auth-scram

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 438

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka/authentication_sasl/authentication_sasl_scram.html#kafka-sasl-auth-scram
https://docs.confluent.io/current/kafka/authentication_sasl/authentication_sasl_scram.html#kafka-sasl-auth-scram

Why Kerberos?

• Kerberos provides secure single sign-on

◦ An organization may provide multiple services, but a user just needs a single Kerberos

password to use all services

• More convenient where there are many users

• Requires a Key Distribution Center (KDC)

◦ Each service and each user must register a Kerberos principal in the KDC

Kerberos is a very popular framework for company-wide authentication (and authorization,

but that will be discussed in a subsequent slide).

It is beyond the scope of this course to describe how to configure the components of a

Kerberos deployment. The course will describe the necessary Kafka configurations and

assumes the presence of a functional Kerberos environment. For a short tutorial on

configuring Kerberos and authenticating to a Kafka cluster over SASL GSSAPI, see

https://qiita.com/visualskyrim/items/8f48ff107232f0befa5a.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 439

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://qiita.com/visualskyrim/items/8f48ff107232f0befa5a

How Kerberos Works

1. Services authenticate with the Key Distribution Center on startup

a. Client authenticates with the Authentication Server on startup

b. Client obtains a service ticket from Ticket Granting Server

2. Client authenticates with the service using the service ticket

This is very high-level version of how Kerberos works. Refer students to their local security

administrator for more information.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 440

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Preparing Kerberos

• Create principals in the KDC for:

◦ Each Kafka Broker

◦ Application clients

• Create Keytabs for each principal

◦ Keytab includes the principal and encrypted Kerberos password

◦ Allows authentication without typing a password

Kafka administrators will have to work with the Kerberos team to create principals (users)

for the Brokers and the clients. The Broker principals are often referred to as the "service"

principals.



While keytabs are useful for automation (no password typing) and storing

encrypted credentials, the files themselves can be used by attackers to gain

access. For this reason, it is important that keytab files be given restricted file

permissions.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 441

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The Kerberos Principal Name

• Kerberos principal

◦ Primary[/Instance]@REALM

◦ Examples:

▪ kafka/kafka1.hostname.com@EXAMPLE.COM

▪ kafka-client-1@EXAMPLE.COM

• Primary is extracted as the default principal name

• Can customize the username through sasl.kerberos.principal.to.local.rules

Like the principal.builder.class used with SSL,

sasl.kerberos.principal.to.local.rules is set in the server.properties file on the

brokers. The use of this setting is described in the documentation

https://docs.confluent.io/5.2.0/installation/configuration/broker-configs.html.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 442

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/5.2.0/installation/configuration/broker-configs.html

Configuring Kerberos (Broker)

Broker configuration file:

listeners = SASL_PLAINTEXT://<host>>:<port> # or SASL_SSL://<host>:<port>
inter.broker.listener.name=SASL_PLAINTEXT # or SASL_SSL
sasl.kerberos.service.name=kafka

listener.name.sasl_plaintext.gssapi.sasl.jaas.config= \
 com.sun.security.auth.module.Krb5LoginModule required \
 useKeyTab=true \
 storeKey=true \
 keyTab="/etc/security/keytabs/kafka_server.keytab" \
 principal="kafka/kafka1.hostname.com@EXAMPLE.COM";

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 443

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring Kerberos (Client)

Client configuration file:

...
security.protocol=SASL_PLAINTEXT # or SASL_SSL
sasl.kerberos.service.name=kafka

sasl.jaas.config= \
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab="/etc/security/keytabs/kafka_client.keytab"
 principal="kafka-client-1@EXAMPLE.COM";
...

There is no need to configure sasl.enabled.mechanisms for Kerberos because GSSAPI is

enabled by default.

Clients (Producers, Consumers, Connect workers, etc) will authenticate to the cluster with

their own principal (usually with the same name as the user running the client), so obtain or

create these principals as needed. Configure listeners and the service name. Adjust the port

numbers in the client’s bootstrap.servers to match the port configured for GSSAPI on

the Broker.

• Discuss: what are the security implications of using SASL GSSAPI (Kerberos) with

plaintext data transport?

◦ Kerberos handles all authentication, and credentials are never passed over the wire, so

it is safe to use plaintext data transfer. However, the content of the messages

themselves might be sensitive. In this case, it may be advisable to push

encryption/decryption onto the clients as discussed earlier.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 444

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Advanced Security Configurations

• Configure multiple SASL mechanisms on the Broker

◦ Useful for mixing internal (e.g., GSSAPI) and external (e.g., SCRAM) clients

sasl.enabled.mechanisms = GSSAPI,SCRAM-SHA-256

• Configure different listeners for different sources of traffic

◦ Useful to designate one interface for clients and one interface for replication traffic:

listeners = CLIENTS://kafka-1a:9092,REPLICATION://kafka-1b:9093

◦ Listeners can have any name as long as listener.security.protocol.map is defined

to map each name to a security protocol:

listener.security.protocol.map=CLIENTS:SASL_SSL,REPLICATION:SASL_PLAINTEXT

• Specify listener for communication between brokers and controller

with control.plane.listener.name

Use case for mixing GSSAPI (over plaintext) and SCRAM (over SSL): you may want to give

limited access to a company’s Kafka Cluster to an external partner, but you can’t create a

Kerberos user (and thus cannot leverage GSSAPI) for the partner since the partner is not an

internal employee. Solution: you can open up both SASL SCRAM and SASL Kerberos, letting

the partner use the former and the internal employees use the latter.

For multi-homed Brokers (i.e., Brokers with multiple NIC interfaces), you can use the

listener.security.protocol.map setting to assign specific types of traffic to individual

network cards. This is especially useful when isolating ZooKeeper-Broker traffic from clients.

For more information, see https://cwiki.apache.org/confluence/display/KAFKA/KIP-

103%3A+Separation+of+Internal+and+External+traffic.


The control.plane.listener.name configuration was added in Apache Kafka

2.2.0.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 445

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-103%3A+Separation+of+Internal+and+External+traffic
https://cwiki.apache.org/confluence/display/KAFKA/KIP-103%3A+Separation+of+Internal+and+External+traffic

Troubleshooting SASL

• To troubleshoot SASL issues

◦ Verify all Broker security configurations

◦ Verify client security configuration

◦ Verify JAAS files and passwords

◦ Enable SASL debugging for Kerberos using the KAFKA_OPTS environment variable

▪ If you are debugging on the Broker, you will have to restart the Broker

$ export KAFKA_OPTS="-Dsun.security.krb5.debug=true"

SASL configurations the Kafka side are straightforward. Typically, errors in a Kafka

environment are due to typos in the username or password in the configuration files.

© 2014-2025 Confluent, Inc. Do not reproduce without prior written consent. 446

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

	Apache Kafka® Administration By Confluent
	Table of Contents
	Introduction
	Class Logistics and Overview
	Fundamentals Review

	1: Bridging From Fundamentals
	1a: How Can You Leverage Replication?
	Labs: Bridging From Fundamentals

	2: Replicating Data: A Deeper Dive
	2a: How Does Kafka Determine Which Messages Can be Consumed?
	2b: How Does Kafka Place Replicas and How Can You Control Replication Further?
	2c: How Does Kafka React When a Leader Dies?
	2d: How Does Kafka Track Follower Responsiveness?

	3: Producing Messages Reliably
	3a: How Do Producers Know Brokers Received Messages?
	3b: How Can Kafka recognize Duplicates caused by Retries?
	3c: How Does Kafka Handle the Notion of Producers Sending Messages in Transactions?

	4: Storing the Records Persistently
	4a: How Does Kafka Organize Files to Store Partition Data?
	Lab: Investigating the Distributed Log
	4b: How Can You Decide How Kafka Keeps Messages?
	4c: How to Scale Storage Beyond Kafka Servers?

	5: Configuring a Kafka Cluster
	5a: How Do You Configure Brokers?
	5b: What if You Want to Adjust Settings Dynamically or Apply at the Topic Level?
	Labs: Configuring a Kafka Cluster

	6: Managing a Kafka Cluster
	6a: What Should You Consider When Installing and Upgrading Kafka?
	6b: What is a Controller vs a Broker?
	6c: What are the Basics of Monitoring Kafka?
	6d: How Can You Move Partitions To New Brokers Easily?
	6e: What Should You Consider When Shrinking a Cluster?
	Lab: Kafka Administrative Tools

	7: Balancing Load with Consumer Groups and Partitions
	7a: What are the Basics of Scaling Consumption?
	7b: How Do Groups Distribute Work Across Partitions?
	7c: How Does Kafka Manage Groups?
	7d: How Do Partitions and Consumers Scale?
	7e: How Does Kafka Maintain Consumer Offsets?
	Lab: Modifying Partitions and Viewing Offsets

	8: Optimizing Kafka’s Performance
	8a: How Does Kafka Handle the Idea of Sending Many Messages at Once?
	Lab: Exploring Producer Performance
	8b: How Do Produce and Fetch Requests Get Processed on a Broker?
	8c: How Can You Measure and Control How Requests Make It Through a Broker?
	8d: What Else Can Affect Broker Performance?
	8e: How Do You Control It So One Client Does Not Dominate the Broker Resources?
	8f: What Should You Consider in Assessing Client Performance?
	8g: How Can You Test How Clients Perform?
	Lab: Performance Tuning

	9: Securing a Kafka Cluster
	9a: What are the Basic Ideas You Should Know about Kafka Security?
	9b: What Options Do You Have For Securing a Kafka/Confluent Deployment?
	9c: How Can You Easily Control Who Can Access What?
	9d: What Should You Know Securing a Deployment Beyond Kafka Itself?
	Lab: Securing the Kafka Cluster

	10: Understanding Kafka Connect
	10a: What Can You Do with Kafka Connect?
	10b: How Do You Configure Workers and Connectors?
	10c: Deep Dive into a Connector & Finding Connectors
	10d: What Else Can One Do With Connect?
	Lab: Running Kafka Connect

	11: Deploying Kafka in Production
	11a: What Does Confluent Advise for Deploying Servers in Production?
	11b: What Does Confluent Advise for Deploying Kafka Connect in Production?
	11c: What Does Confluent Advise for Deploying Schema Registry in Production?
	11d: What Does Confluent Advise for Deploying the REST Proxy in Production?
	11e: Deploying Kafka Streams applications in Production
	11f: What Does Confluent Advise for Deploying Control Center in Production?

	Conclusion
	Appendix: Additional Content
	Appendix A: Detailed Transactions Demo
	Appendix B: How Can You Monitor Replication?
	Appendix C: Multi-Region Clusters
	Appendix D: SSL and SASL Details

