
Confluent Developer Skills for

Building Apache Kafka®

Applications
Version 7.0.0-v1.0.5

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Table of Contents

 Introduction . 1

Class Logistics and Overview . 2

Fundamentals Review . 9

Core Overview . 12

01: Introductory Concepts . 15

01a: How Can You Connect to a Cluster? . 17

01b: How Do You Control How Kafka Retains Messages? . 25

01c: How Can You Leverage Replication? . 34

Lab: Introduction. 43

Lab: Using Kafka’s Command-Line Tools . 44

02: Starting with Producers . 45

02a: What are the Basic Concepts of Kafka Producers? . 47

02b: How Do You Write the Code for a Basic Kafka Producer? . 56

Lab: Basic Kafka Producer . 69

03: Preparing Producers for Practical Uses . 70

03a: How Can Producers Leverage Message Batching? . 72

03b: How Do Producers Know Brokers Received Messages? . 85

03c: How Can a Producer React to Failed Delivery?. 98

04: Starting with Consumers . 106

04a: How Do You Request Data to Fetch from Kafka? . 108

04b: What are the Basic Concepts of Kafka Consumers? . 117

04c: How Do You Write the Code for a Basic Kafka Consumer? . 125

Lab: Basic Kafka Consumer . 137

05: Groups, Consumers, and Partitions in Practice . 138

05a: How Do Groups Distribute Workload Across Partitions? . 140

05b: How Does Kafka Manage Groups? . 152

05c: How Do Consumer Offsets Work with Groups?. 164

Additional Components of Kafka/CP Deployment Overview . 173

06: Starting with Schemas . 176

06a: Why Should You Care About Schemas?. 178

06b: How Do You Write Schemas in Avro or Protobuf? . 185

06c: How Do You Design Schemas that can Evolve?. 201

07: Integrating with the Schema Registry . 217

07a: How Do You Make Producers and Consumers Use the Schema Registry? . 219

Lab: Schema Registry, Avro Producer and Consumer . 238

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

08: Introduction to Streaming and Kafka Streams . 239

08a: What Can You Do with Streaming Applications? . 241

08b: What is Kafka Streams? . 250

08c: A Taste of the Kafka Streams DSL. 262

08d: How Do You Put Together a Kafka Streams App?. 272

Lab: Kafka Streams . 285

09: Introduction to ksqlDB . 286

09a: What Does a Kafka Streams App Look Like in ksqlDB? . 288

09b: What are the Basic Ideas You Should Know about ksqlDB? . 299

Lab: ksqlDB Exploration . 307

09c: How Do Windows Work? . 308

09d: How Do You Join Data from Different Topics, Streams, and Tables? . 316

10: Starting with Kafka Connect . 328

10a: What Can You Do with Kafka Connect? . 330

10b: How Do You Configure Workers and Connectors? . 344

10c: Deep Dive into a Connector & Finding Connectors. 355

11: Applying Kafka Connect . 365

Lab: Kafka Connect - Database to Kafka . 367

11a: Full Solutions Involving Other Systems . 368

More Advanced Kafka Development Matters . 378

12: Challenges with Offsets . 381

12a: How Does Compaction Affect Consumer Offsets? . 383

12b: What if You Want or Need to Adjust Consumer Offsets Manually? . 393

Lab: Kafka Consumer - offsetsForTimes . 406

13: Partitioning Considerations . 407

13a: How Should You Scale Partitions and Consumers? . 409

Lab: Increasing Topic Partition Count . 418

13b: How Can You Create a Custom Partitioner? . 419

14: Message Considerations . 427

14a: How Do You Guarantee How Messages are Delivered? . 429

14b: How Should You Deal with Kafka’s Message Size Limit?. 439

14c: How Do You Send Messages in Transactions? . 446

15: Robust Development . 462

15a: What Should You Think About When Testing Kafka Applications? . 464

15b: How Can You Leverage Error Handling Best in Kafka Connect? . 470

 Conclusion. 478

 Appendix: Additional Problems to Solve . 486

Problem A: Comparing Producers and Consumers . 488

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Problem B: Partitioning with Keys . 489

Problem C: Groups, Consumers, and Partitions. 490

Problem D: Partitioning without Keys . 491

 Appendix: Additional Content. 493

Appendix A: A Taste of Kafka Security for Developers . 495

Appendix B: Confluent Cloud vs. Self-Managed Kafka . 498

Appendix C: Developing with the REST Proxy . 503

Appendix D: Comparing the Java and .NET Consumer API. 515

Appendix E: Detailed Transactions Demo . 521

Appendix: Confluent Technical Fundamentals of Apache Kafka® Content 536

1: Getting Started . 538

2: How are Messages Organized? . 547

3: How Do I Scale and Do More Things With My Data? . 552

4: What’s Going On Inside Kafka? . 561

5: Recapping and Going Further . 571

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Introduction

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 1

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Class Logistics and Overview

Copyright & Trademarks

Copyright © Confluent, Inc. 2014-2022. Privacy Policy | Terms & Conditions.

Apache, Apache Kafka, Kafka, and the Kafka logo are trademarks of the

Apache Software Foundation

All other trademarks, product names, and company names or logos cited herein

are the property of their respective owners.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 2

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/confluent-privacy-statement/
https://www.confluent.io/terms-of-use/
http://www.apache.org/

Prerequisite

This course requires a working knowledge of the Apache Kafka architecture.

New to Kafka? Need a refresher?

Sign up for free Confluent Fundamentals for Apache Kafka course at https://confluent.io/

training

Attendees should have a working knowledge of the Kafka architecture, either from prior

experience or the recommended prerequisite course Confluent Fundamentals for Apache

Kafka®.

This free course is available at https://training.confluent.io/learningpath/apache-kafka-

fundamentals for anyone who needs to catch up.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 3

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://confluent.io/training
https://confluent.io/training
https://training.confluent.io/learningpath/apache-kafka-fundamentals
https://training.confluent.io/learningpath/apache-kafka-fundamentals

Agenda

This course consists of these major parts:

1. Core Kafka Development

a. Bridging from Fundamentals

b. Producers

c. Consumers

2. Other Components of a Kafka Deployment

a. Schema management

b. A taste of stream processing

c. Integrating with other systems

3. Additional Challenges in Core Kafka Components

a. Advanced matters

b. Design decisions

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 4

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Course Objectives

Upon completion of this course, you should be able to:

• Write Producers and Consumers to send data to and read data from Apache Kafka

• Create schemas, describe schema evolution, and integrate with Confluent Schema

Registry

• Integrate Kafka with external systems using Kafka Connect

• Write streaming applications with Kafka Streams & ksqlDB

• Describe common issues faced by Kafka developers and some ways to troubleshoot them

• Make design decisions about acks, keys, partitions, batching, replication, and retention

polices

Throughout the course, Hands-On Exercises will reinforce the topics being discussed.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 5

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Class Logistics

• Timing

◦ Start and end times

◦ Can I come in early/stay late?

◦ Breaks

◦ Lunch

• Physical Class Concerns

◦ Restrooms

◦ Wi-Fi and other information

◦ Emergency procedures

◦ Don’t leave belongings unattended

 No recording, please!

Expanding on the rule at the bottom: You are not permitted to record via any medium, or

stream via any medium any of the content from this class.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 6

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How to get the courseware?

1. Register at training.confluent.io

2. Verify your email

3. Log in to training.confluent.io and enter your license

activation key

4. Go to the Classes dashboard and select your class

Your instructor may choose to have you do this now, combine it with the first lab, or do it

before class begins.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 7

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Introductions

• About you:

◦ What is your name, your company, and your role?

◦ Where are you located (city, timezone)?

◦ What is your experience with Kafka?

◦ Which other Confluent courses have you attended, if any?

◦ Optional talking points:

▪ What are some other distributed systems you like to work with?

▪ What technology most excited you early in your life?

▪ Anything else you want to share?

• About your instructor

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 8

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Fundamentals Review

Discussion

Question Set 1 [6 mins]

Determine if each statement is true or

false and why:

1. All messages in a topic are on the same

broker.

2. All messages in a partition are on the

same broker.

3. All messages that have the same key will

be on the same broker.

4. The more partitions a topic has, the

better.

Question Set 2 [3 mins]

Determine the best answer to each

question.

1. What are the roles of a producer and a

consumer?

2. How is it decided which messages

consumers read?

3. Who initiates the reading of messages:

consumers or the Kafka cluster?

How your instructor approaches this section may vary depending on the particular class.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 9

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Discussion, Cont’d.

Question 3 [1 min]

Suppose there is a message in our Kafka

cluster about my breakfast purchase of

$12.73. Consumer c0 has consumed it to

process the charge. Could consumer c7

consume this same message this

afternoon?

Question 4 [2 mins]

Kafka has a transactions API. When we

know that all messages that are part of a

transaction successfully made it to the

cluster, we want to tag those messages as

"good." When we know that not all

messages in a transaction made it, we

want to tag those messages that did make

it as "bad." Kafka uses markers in the logs,

that are effectively new messages written

after existing messages to do this. Why not

just put something in the metadata? Why

not delete "bad" messages?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 10

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Instructor-Led Review

Some time is allocated here for an instructor-led review/Q&A on prerequisite concepts from

Fundamentals.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 11

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Core Overview

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 12

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Agenda

This is a branch of our developer content on core

developer concepts. It is broken down into the

following modules:

1. Introductory Concepts

2. Starting with Producers

3. Preparing Producers for Practical Uses

4. Starting with Consumers

5. Groups, Consumers, and Partitions in Practice

Here is an expanded version of the outline on the slide, including the lessons that make up

each module:

1. Introductory Concepts

a. How Can I Connect to a Cluster?

b. How Do I Control How Kafka Retains Messages?

c. How Can I Leverage Replication?

2. Starting with Producers

a. Basic Concepts of Kafka Producers

b. Producers: Code Basics

3. Preparing Producers for Practical Uses

a. How Can Producers Leverage Message Batching?

b. How Do Producers Know Brokers Received Messages?

c. How Can a Producer React to Failed Delivery?

4. Starting with Consumers

a. Fetch Requests

b. Basic Concepts of Kafka Consumers

c. Consumers: Code Basics

5. Groups, Consumers, and Partitions in Practice

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 13

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

a. How Do Groups Distribute Workload Across Partitions?

b. How Does Kafka Manage Groups?

c. How Do Consumer Offsets Work with Groups?

After this, you are prepared to go to either of these branches:

• Other Components of a Kafka Deployment

• Additional Challenges in Core Kafka Components

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 14

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

01: Introductory Concepts

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 15

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains three lessons:

a. How Can You Connect to a Cluster?

b. How Do You Control How Kafka Retains

Messages?

c. How Can You Leverage Replication?

Where this fits in:

• Hard Prerequisite: Fundamentals Course

• Recommended Follow-Up: Starting with Producers

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 16

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

01a: How Can You Connect to a Cluster?

Description

How brokers are interconnected and how this allows us to leverage bootstrap servers. Best

practice for bootstrap servers and examples of how to configure for various clients and in a

CLI example as well.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 17

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Explain what a bootstrap server is

• Given a hypothetical cluster, provide a list - not just one of

bootstrap servers

• Write a CLI command that requires connecting to a Kafka

cluster

• Write code to connect to a cluster from a producer or

consumer or Kafka Streams application explicitly

• Describe how to specify how to make a Connect worker

connect to a cluster

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 18

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

View of a Cluster and Producer

PRODUCER

contains t0-p0 contains t0-p2

contains t0-p1

network

• Producer wants to send new message with key 10

• Producer chooses partition (how?)

Note that all of the brokers are interconnected.

Note that this graphic shows only the leader replicas for each partition. Writing still only

happens to leaders, never to followers. Partitioning and replication are independent, yet

related, things.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 19

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Identifying Brokers

PRODUCER

contains t0-p0 contains t0-p2

contains t0-p1

network

• Brokers identified by host:port pairs

• Which broker do we write our new message to?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 20

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Bootstrap Server

PRODUCER

contains t0-p0 contains t0-p2

contains t0-p1

network

• Clients, like producers, need to specify a bootstrap server

• This is the initial connection to the cluster and all you need to specify in your code,

configuration

We use the term client to refer to producers and consumers that are external to the cluster.

As long as a client connected to any broker in the cluster, it is indirectly connected to all

brokers and thus can send or receive messages.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 21

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Bootstrap Servers in Practice (1)

Specify bootstrap server in CLI commands, e.g.,

kafka-topics
 --bootstrap-server kafka:9092
 --create
 --partitions 1
 --replication-factor 1
 --topic testing

Specify bootstrap server in client code, e.g.,

props.put("bootstrap.servers", "kafka:9092");

Specify bootstrap server in a properties file, e.g. for a Connect worker, e.g.,

bootstrap.servers = kafka:9092

You’ll learn more about setting properties in client code in the modules on the basics of

producer and consumer code.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 22

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Bootstrap Servers in Practice (2)

In practice, specify a comma-separated list of bootstrap servers:

props.put("bootstrap.servers", "kafka1:9092, kafka2:9092, kafka3:9092");

Why?

PRODUCER

contains t0-p0 contains t0-p2

contains t0-p1

network

Let’s say we try to make the inital connection to kafka1:9092 as a producer, but it is down.

Then we’re in trouble! But we can provide a backup! In this example, when kafka1:9092 is

down, the producer will then try to connect to kafka2:9092. If it can’t succeed with that, it’ll

try the next bootstrap server in the list, kafka3:9092.

Confluent Cloud Considerations

If you are using Confluent Cloud, you can use the CLI command confluent kafka cluster
describe to get info about your cluster, which will include the bootstrap servers value. The

output will look like this:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 23

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

+---------------+---+
ID	lkc-38dy12
Name	cluster-2
Type	BASIC
Ingress	100
Egress	100
Storage	5 TB
Provider	aws
Availability	single-zone
Region	eu-west-2
Status	UP
Endpoint	SASL_SSL://pkc-41wq6.eu-west-2.aws.confluent.cloud:9092
REST Endpoint	https://pkc-41wq6.eu-west-2.aws.confluent.cloud:443
+---------------+---+

You’d want the host:port part of the Endpoint value, (minus the SASL_SSL:// part), so

pkc-41wq6.eu-west-2.aws.confluent.cloud:9092 in this case.

The bootstrap servers value will also be included in the file that is downloaded if you

download an API key and API secret.

Also, the value may be found in the web UI’s "Cluster Overview" section. You’ll find it under

"Cluster Settings" in the "General" tab under Endpoints.

Finally, while this looks like a single bootstrap server, Confluent Cloud takes care of the fault

tolerance that would be achieved by providing a comma-sepaated list of host:port pairs as

this slide suggests.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 24

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

01b: How Do You Control How Kafka Retains

Messages?

Description

Review of the basics of the two retention policies with concrete examples. Active vs. inactive

segments and how they affect retention.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 25

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Given a log with ages of each message, describe what

deletion would do

• Distinguish between an active and an inactive segment

• Describe one way an active segment becomes inactive

• Describe how active vs. inactive affects deletion and

compaction

• Given a log, describe what it will look like after compaction

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 26

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Retention Policies

• delete

• compact

• delete, compact

Retention policies are also called cleanup policies, and that term is used in the property

name. These are values of the setting cleanup.policy.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 27

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Deletion Retention Policy

Delete segments when they get too old:

• Too old means newest message is older

than retention.ms

◦ Default: 7 days

Delete oldest segments when partition gets

too large:

• retention.bytes

◦ Default: -1 (unlimited)

Scenarios

Each picture shows the age in days of each message.

What will be left after deletion runs in each case?

Example 1 Example 2

Use deletion for topics that contain events.

Food for Thought Question: We noted immutability in Fundamentals — we can’t change nor

delete a message once it’s written to a log. How is it that deletion doesn’t conflict with this?

Answer: Deletion deletes entire segments, not individual messages.

Alternative answer: Immutability means a message cannot be changed once written, but it

doesn’t impose any restriction on the expiration of said message (either because it’s old -

delete, or because it’s been superseded - compact).

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 28

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Compaction

• Keep only the latest value per key

• When is this useful?

Compaction is the second retention policy. It does not apply in all cases, only some.

Two that will come up again:

• Consider a topic that keeps track of the current status on an order. When the order has

been shipped, that status is fresher than a status saying the order was placed, so we

probably only care about the current status, not the old one.

• Consider a topic used for temperature readings used to power a current temperature

display (not to study temperature changes over time). That it’s currently 66 degrees at my

location now renders the information that it was 62 degrees an hour ago irrelevant. We

can compact away old, "stale" data.

In short, use compaction for topics that contain state.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 29

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Compaction Example

Notice here that we keep only the latest value for each key.

Notice also that after compaction, messages retain their offsets. In other words, offsets will

likely be non-contiguous after compaction.

Back to that idea that we can’t delete individual messages? Aren’t we doing that here? It

sure looks like it. However, as per implementation details beyond the scope of this course,

when compaction runs, it creates new copies of log segments with only the messages that

are kept. Then it moves file pointers around and deletes old segments as a whole. It does not

alter the existing segments directly.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 30

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Active and Inactive Segments

• Messages are written to the active segment of logs

• Active segment rolls to become inactive

• Consumers read from all segments

 Retention policies do not alter the active segment

With deletion, even if all of the messages in the active segment are older than the retention

threshold, the active segment is never deleted. The active segment must roll and become

inactive to be a candidate for deletion.

Compaction ignores the active segment entirely. Even if there are duplicate keys in a log due

to their appearance in the active segment, compaction does not remove the duplicates. We

will explore this more deeply in an advanced module.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 31

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Clean and Dirty Segments

One more distinction about log segments that applies to compaction:

• Log segments that have been compacted are called clean segments

• Log segments that have not been compacted are called dirty segments

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 32

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Compacting an Uncompacted Log

Consider the log shown. Sketch out what the log will look like

after compaction.


Note that colors denote segments here, not keys

as in a prior example.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 33

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

01c: How Can You Leverage Replication?

Description

Review of leaders vs. followers. Replication factor. How messages get from leaders to

followers and config. ISRs. Leader failover / leader election.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 34

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Distinguish between leaders and followers

• Interpret a replication factor or choose a replication factor

given a desired number of followers

• Explain which of leaders/followers producers/consumers

access

• Explain at a high level how and when messages get from

leaders to followers

• Distinguish between an in-sync replica and one that is not

• Describe what happens to trigger leader election and what

results

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 35

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Review: Basics of Replication

• Ensure high availability of data with backup copies

• Replicas:

Leader

Clients write to and read from, always one

leader

Follower

Backup copies, keep up with leader, generally

multiple followers

• Topic setting replication.factor

Leader

Broker 101 Broker 102

partition 0

read

write

write

Follower

Producer

Consumer

Producer

partition 0

Broker 103

Follower

Consumer

partition 0

read

In the picture, replication.factor = 3.

Observe that producers write only to the leader, never followers.

Observe that consumers read only from the leader, never followers (under normal

circumstances).

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 36

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

"Follow the Leader"

Step 1 Step 2 Step 3

m0

m1

m2

Leader

m0

m1

Follower 1

new message

m0

m1

Follower 2

m0

m1

m2

Leader

m0

m1

Follower 1

follower got
new message

m0

m1

m2

Follower 2

m0

m1

m2

Leader

m0

m1

m2

Follower 1

follower got
new message

m0

m1

m2

Follower 2

Observe the three steps that are illustrated:

1. We start with a leader that has two messages. The two followers shown are caught up,

i.e. they have the same two messages. A new message is written to this partition, and it

goes to the leader.

2. The followers are monitoring the leader, periodically checking for new messages. One

follower gets the new message.

3. Then a second follower gets the new message.

(Both followers may be perfectly timed with each other and Steps 2 and 3 happen

simultaneously, but they do not have to.)

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 37

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

But…

m0

m1

m2

m3

m4

Broker 101

Leader

m0

m1

m2

m3

m4

Broker 102

Follower 1

m0

m1

Broker 103

Follower 2

Observe:

• Follower 1 (on Broker 102) is an in-sync replica (ISR)

• Follower 2 (on Broker 103) is not

Note that the leader is always in-sync with itself and is always considered an in-sync replica.

Followers that are not ISRs are often referred to as stuck followers.

Note that replicas are partitions. It wouldn’t make sense to have more than one replica on

the same broker, so tools reporting replica information can use broker IDs to reference

replicas. Given that, we would often see the ISR list for this picture written as [101, 102].

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 38

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Leader Failover

m0

m1

m2

m3

m4

Broker 101

Leader

m0

m1

m2

m3

m4

Broker 102

Follower 1

New Leader

m0

m1

Broker 103

Follower 2

Question: Would either choice of follower have been equally good to replace the leader that

had died?

Answer: No, an in-sync replica is the best choice of a new leader. We want the (new) leader

to be caught up with the old leader. It’s stepping in to do the job the old leader was doing.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 39

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Does Kafka Choose Leaders?

• Leader election happens automatically

• Kafka will generally choose an in-sync follower to become leader

• Leader election does not happen in parallel

• Background processes manage balance of leadership

It’s important for you to know that when a broker containing a leader goes down, a follower

will become the new leader. But, you don’t need to worry about how this happens as a

developer; Kafka will take care of this for you.

One thing that’s important to know, however, is that the leader election process cannot be

parallelized. So, if a broker that contains the leaders for four different partitions goes down,

Kafka will need to choose a new leader for the first, then the second, then the third, and

then the fourth — in succession and not in parallel. Having leaders spread evenly across

brokers is thus good. You administrators should monitor for this, but Kafka has processes in

place to monitor for it.

In case you’re curious:

• For each partition, there is a preferred replica, or a broker where having its leader would

yield the best balance. You might see this indicated in bold in command-line tools. Kafka

has background processes that monitor how many leaders are not in the preferred place,

and, when a threshold has been crossed, Kafka balances this.

• A thread called the Controller handles leader election.

• If there is no in-sync follower able to become leader, Kafka will not select an out-of-sync

follower, as this could lead to data loss. Administrators may choose to turn this on,

though, understanding the implications, and allowing for something called "unclean leader

election."

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 40

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Exploring Replica Placement & Replication

Behavior

Say we have 5 brokers - b0, b1, …, b4.

Say we have a replication factor of 4.

1. How many followers would we have?

2. Say leader is on broker b4.

a. Where could the followers be?

b. Where could a follower not be?

3. Say we have 3 successfully written messages that have been

properly replicated. It’s time to write the fourth message.

a. Where does it go?

b. What happens next?

4. Say broker b4 fails. What happens? Why?

Review the examples on the preceding slides and apply the ideas to this problem to check

your knowledge.

Follow up food-for-thought:

a. What if, in #4, broker b2 failed before the action of #3b completed?

b. What if, in #4, instead, broker b3 failed?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 41

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Follower Fetching

In this lesson, we told you all clients must interact with the leader. But, it is possible to

configure it so consumers fetch from followers in the same AZ to reduce costs…

leader

us-east-1a

broker-1

follower

us-east-1b

broker-2
consumers

follower

us-east-1c

broker-3

broker.rack=us-
east-1a

broker.rack=us-
east-1b
client.rack=us-
east-1b

broker.rack=us-
east-1c

All brokers:
replica.selector.class=org.apache.kafka.common.replica.RackAwareReplicaSele
ctor

QUESTION: What is the tradeoff?

Answer to question: Followers follow the leader and fetch records from the leader

periodically. Thus, if we fetch from a follower, we might not have the most up to date

information. But the follower will catch up. The cost is increased latency.

Follower fetching was introduced in AK 2.4 with the client.rack property for consumers.

Brokers must have rack awareness configured with broker.rack and

replica.selector.class so that clients can discern where the closest replicas are.

You may wonder whether producers also have a client.rack setting. They do not. Kafka’s

fault tolerance and strong ordering guarantees are due to the append-only nature of the log

and the fact that producers write only to the leader. If producers could write to followers,

then the leader and follower logs would diverge.

For more information, see KIP-392.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 42

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica

Lab: Introduction

Please work on Lab 1a: Introduction

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 43

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Using Kafka’s Command-Line Tools

Please work on Lab 1b: Using Kafka’s Command-Line

Tools

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 44

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

02: Starting with Producers

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 45

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains two lessons:

a. What are the Basic Concepts of Kafka

Producers?

b. How Do You Write the Code for a Basic Kafka

Producer?

Where this fits in:

• Hard Prerequisite: Fundamentals Course

• Recommended Prerequisite Module: Introductory

Concepts

• Recommended Follow-Up Module: Preparing

Producers for Practical Uses

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 46

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

02a: What are the Basic Concepts of Kafka

Producers?

Description

Conceptually, basics of a producer. What is needed to specify a record. Objects one needs to

instantiate to set up any producer. Basics of partitioning and serialization.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 47

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Be able to describe a basic producer

• List the most basic things needed to produce a message:

key, value, topic

• Include and justify serialization in describing what a

producer must do

• Given a hypothetical hash function, a number of partitions,

and a key of a message, tell the index of the partition that

will receive said message

• Note what three objects (language agnostic) one must

instantiate to specify a producer

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 48

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Specifying a Producer Record

• All records

◦ Topic

◦ Value

• Most records

◦ Key

• Some records

◦ Headers - custom metadata

◦ Timestamp - override default

◦ Partition - force a specific partition

All records need to go to a topic, so you must always specify that. All records need a value

too.

You should have a key for most records — and before you start writing records without keys,

you should think carefully about how keys may be used. However, if you don’t supply a key,

Kafka will fill it in as NULL.

The other three items are options. You don’t really need to worry about them for now, but

might find yourself needing to use them for certain use cases.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 49

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Core Objects for Setting Up a Producer

To specify a producer, you must instantiate each of the following:

Name Example in One

Client

Description

Configuration Properties A map of configuration settings to their values,

e.g., bootstrap servers, serializers, client IDs,

performance tuning settings

Producer Object KafkaProducer An abstraction of the producer itself

Record ProducerRecord An abstraction of an individual record, as per the

previous slide

We’ll see the specific code for this in the next lesson.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 50

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Serialization

• Kafka stores byte arrays

• Need byte arrays to send data across the network

• … need to specify serializer

◦ Many built-in serializers

Both to send a message over the network and to store it in Kafka, it needs to be converted

to zeroes and ones. A serializer is the tool that does this.

When you create a producer, you always need to specify what serializer to use. Many are

provided for the standard kinds of data types. There are tools like Avro and Protobuf that

can help with serialization for more complex objects; we learn about them in the Schema

Management lessons.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 51

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partitioning: Default

Partitions are indexed from 0 to numberOfPartitions - 1. When we have keyed

messages…

partitionIndex = hash(key) % numberOfPartitions

Producer

partitioner

partition 0

partition 1

partition 2

For now, we concern ourselves only with the default partitioner used when messages have

keys.

When messages do not have keys, the Sticky Partitioner is used. This is described in KIP

(Kafka Improvement Proposal) 480. In short, a random partition is chosen for messages,

they accumulate in a buffer for that partition until batching requirements are satisfied, that

batch is sent to Kafka, and then a new random partition is chosen and the process repeats.

(Note that even with the default partitioner, batching happens; we leave the discussion of

this important concept for a later lesson.)

It is also possible to define a custom partitioner. Also, recall from a few slides back that you

can bypass the partitioner entirely and specify a partition index. How to specify and use

either of these less-common options is described in another lesson in this track.



The librdkafka and Java clients use different defaults for key-based

partitioning. The librdkafka clients use consistent_random which partitions

using a CRC32 hash of key, whereas the Java client’s DefaultPartitioner
uses a murmur2 hash of the key. This can lead to situations where messages

with the same key end up on different partitions, which has serious implications

for downstream processing. If you must use both librdkafka and Java

producers on the same topic, then configure the librdkafka client to use

murmur2_random.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 52

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-480%3A+Sticky+Partitioner
https://cwiki.apache.org/confluence/display/KAFKA/KIP-480%3A+Sticky+Partitioner

A Bigger Picture

There’s more to come…

Kafka Broker

Topic-A P
0

Topic-A P
1

Topic-B P
0

Topic-B P
1

ProducerRecord KafkaProducer

Send()

Topic

[Partition]

[Timestamp]

[Key]

Value

[Headers]

Partitioner
(optional)

Serializer Buffer

We’ve just discussed the very basics of producers here. This picture summarizes producer

design we know so far.

Note that batching in standard on producers; we’ll discuss that in a later lesson in this track.

For now, note that messages go to a buffer after partitioning before being sent to brokers.

Further, note that things can go wrong; we have another module on how we can deal with

that.

You’ll see refinements of this picture as we go along.

To expand on the Producer Record on the left side… This is the data the producer wants to

send to Kafka. Only the topic and value are required (pictured in darker blue). The other

attributes are optional (pictured in lighter blue).

• Topic - Required. A topic name to which the record is being sent

• Partition - Optional. This is usually left to the partitioner to decide.

◦ If a valid partition number is specified, that partition will be used when sending the

record.

◦ If no partition is specified but a key is present, a partition will be chosen using a hash of

the key modulo the number of partitions in the topic.

◦ If neither key nor partition is present, a partition will be assigned using the

StickyPartitioner.

• Timestamp - Optional. If a timestamp is not provided, the producer will stamp the record

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 53

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-480%3A+Sticky+Partitioner

with its current time. The timestamp eventually used by Kafka depends on the timestamp

type configured for the topic.

◦ If the topic is configured to use CreateTime, the timestamp in the producer record will

be used by the broker. This is the default behavior.

◦ If the topic is configured to use LogAppendTime, the timestamp in the producer record

will be overwritten by the broker with the broker local time when it appends the

message to its log.

• Key - Optional.

• Value - Required. The record contents.

• Headers - Optional. Key-value arrays.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 54

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: First Impressions of Producers

Say you have just one minute to explain the basics of

producers to a new teammate. What would you say?

Review the slides in this module as you answer this question.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 55

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

02b: How Do You Write the Code for a Basic

Kafka Producer?

Description

Turning a producer from the level of Producers Basic Concepts into code using the Java

Client API. Quick overview of supported clients.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 56

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Configure properties required of al producers using the Java

API

• Compare and contrast options for specifying properties

• Create producer and record objects using the Java API

• Send records to producers using the Java API

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 57

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Basic Producer Properties

Name Description

bootstrap.servers Comma separated list of broker host/port pairs used to

establish the initial connection to the cluster. Example:

kafka-1:9092, kafka-2:9092, kafka-3:9092

key.serializer Class used to serialize the key. Example:

StringSerializer.class

value.serializer Class used to serialize the value. Example:

KafkaAvroSerializer.class

client.id String to identify this producer uniquely; used in monitoring

and logs. Example:

producer1

• These are some of the producer configuration properties. These are the ones that are

relevant so far. More will come in the Preparing Producers for Practical Uses module.

• While this lesson is nominally about the Java client API, these property names are

universal.

• A key serializer must be specified even if you do not intend to use keys.

• Serializers must implement Kafka’s Serializer interface.

• In the lessons on Schema Management, we’ll learn about the Avro serializer, which can

make your life very easy for serializing complex data types.

• More details on basic serializers:

◦ ByteArraySerializer, IntegerSerializer, LongSerializer, and more are included

in the client

◦ StringSerializer encoding defaults to UTF8

▪ Can be customized by setting the property serializer.encoding

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 58

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring a Producer in Java Code (1)

Instantiate and populate a Properties object:

1 Properties props;
2
3 props = new Properties();
4 props.put("bootstrap.servers", "kafka-1:9092, kafka-2:9092, kafka-3:9092");
5 props.put("key.serializer",
6 "org.apache.kafka.common.serialization.StringSerializer.class");
7 props.put("value.serializer",
8 "org.apache.kafka.common.serialization.KafkaAvroSerializer.class");
9 props.put("client.id", "my_first_producer");

Note that Properties is just a Java class; it is not specific to Kafka.

The put method expects two string arguments: a key and a value.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 59

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring a Producer in Java Code (2)

Question: We know this code works to set bootstrap servers:

4 props.put("bootstrap.servers", "kafka-1:9092, kafka-2:9092, kafka-3:9092");

What about this code:

4 props.put("bootsrtap.servers", "kafka-1:9092, kafka-2:9092, kafka-3:9092");

Will it compile?

Virtual Classroom Poll:

it compiles
it does not

compile

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 60

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring a Producer in Java Code (3)

Question: We know this code works to set bootstrap servers:

4 props.put("bootstrap.servers", "kafka-1:9092, kafka-2:9092, kafka-3:9092");

What about this code:

4 props.put("bootsrtap.servers", "kafka-1:9092, kafka-2:9092, kafka-3:9092");

Will it work?

Virtual Classroom Poll:

it works it does not work

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 61

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring a Producer in Java Code (4)

Wanted:

4 props.put("bootstrap.servers", "kafka-1:9092, kafka-2:9092, kafka-3:9092");

Typo - compiles but doesn’t run:

4 props.put("bootsrtap.servers", "kafka-1:9092, kafka-2:9092, kafka-3:9092");

Fix - helper classes:

4 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka-1:9092, kafka-2:9092,
 kafka-3:9092");

Helper classes just define some constants for config settings. If the settings aren’t valid, you

get compiler errors, which can save you debugging time. Plus, you can get help from most

IDEs in suggesting names, so you don’t need to look up the names of the options in

documentation. (But you should use the documentation to be aware of what the

configurations are).

Effectively, by using helper classes, we take what was a semantic mistake and turn it into a

syntactic mistake. Developer tools can help us detect such mistakes more easily.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 62

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring a Producer in Java Code (5)

We can also use a properties file to specify configuration:

1 InputStream propsFile;
2
3 propsFile = new FileInputStream("src/main/resources/producer.properties");
4 props.load(propsFile);

In production, it is important to separate configuration from application logic so that the

same logic can be run in many different environments with different properties. The typical

way this is done in Java is with .properties files. Kafka’s Java clients are no different.

A .properties file is a text file where properties are defined with the "=" symbol. Here is an

example of a line from a properties file:

producer.properties

bootstrap.servers = kafka-1:9092, kafka-2:9092, kafka-3:9092
key.serializer = org.apache.kafka.common.serialization.StringSerializer.class
value.serializer = org.apache.kafka.common.serialization.KafkaAvroSerializer.class
client.id = my_first_producer

If you are use Confluent Cloud, you’ll also need to include security settings in your properties

file. Here’s a partial properties file template:

bootstrap.servers=pkc-ep9mm.us-east-2.aws.confluent.cloud:9092
security.protocol=SASL_SSL
sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required
username='{{ CLUSTER_API_KEY }}' password='{{ CLUSTER_API_SECRET }}';
sasl.mechanism=PLAIN

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 63

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Creating a Producer Object

We must create an instance of KafkaProducer, e.g.

KafkaProducer<String, MyObject> producer;

And we must pass the configuration Properties object to it during initialization:

producer = new KafkaProducer<>(props);

The arguments in <..> are the data types of the keys and values of messages, respectively,

this producer will produce.

The name props is taken from the example a few slides back.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 64

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Creating and Sending a Record

We must create an instance of ProducerRecord and instantiate it with a topic, key, and

value. Here’s an example:

ProducerRecord<String, String> record;

record = new ProducerRecord<String, String>("my_topic", "my_key", "my_value");

Then we tell the producer send it:

producer.send(record);

We may not need to name the ProducerRecord, so you might, succinctly, do this:

producer.send(new ProducerRecord<String, String>("my_topic", "my_key", "my_value"));

Note: ProducerRecord can take an optional timestamp if you don’t want to use the current

system time

The ProducerRecord constructor encapsulates the provided key and value into a record

(message) complete with headers. When send() is called, the KafkaProducer serializes the

key and value and runs the default Partitioner (to determine which partition the message

will store the message in the topic) using the data provided in the ProducerRecord.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 65

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Cleaning Up

• producer.close();

Blocks until all previously sent requests complete

• producer.close(Duration.ofMillis(…));

Waits until complete or given timeout expires

Other Duration units are allowed

This can be done in a finally block with the core producer code in a try block. Here’s the

full producer application code with that idea:

 1 Properties props;
 2 KafkaProducer<String, String> producer;
 3
 4 try
 5 {
 6 props = new Properties();
 7 props.put("bootstrap.servers", "kafka-1:9092, kafka-2:9092, kafka-3:9092");
 8 props.put("key.serializer",
 9 "org.apache.kafka.common.serialization.StringSerializer.class");
10 props.put("value.serializer",
11 "org.apache.kafka.common.serialization.KafkaAvroSerializer.class");
12 props.put("client.id", "my_first_producer");
13
14 producer = new KafkaProducer<>(props);
15
16 producer.send(new ProducerRecord<String, String>("my_topic",
17 "my_key", "my_value"));
18 }
19 finally
20 {
21 producer.close();
22 }

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 66

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

More Clients…

Here are the Kafka clients supported by Confluent:

JVM librdkafka (C library)

 For other languages, consider the REST Proxy.

This is a summary of all clients supported by Confluent.

Many more clients are available from members of the Kafka community.

Java is a first class citizen in the Kafka ecosystem, so these course materials will focus

mainly on Java. All of the JVM languages listed use Kafka’s Java API directly.

The other family of clients are derived from a C library called librdkafka.

See the clients documentation for a list of features supported by each client.

While these are the main clients that Confluent supports, there are many other clients

created by various members of the Kafka community. For example client code in many

languages (C, Clojure, C#, Go, Groovy, Java, Kotlin, NodeJS, Python, Ruby, Rust, Scala, and

more), see https://github.com/confluentinc/examples/tree/5.5.0-post/clients/cloud.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 67

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/clients/index.html
https://github.com/confluentinc/examples/tree/5.5.0-post/clients/cloud

Hands-On Exercise Environment

• Visual Studio Code — development environment

• Exercises available in:

◦ Java

◦ Python

◦ C#

• Front end webserver is written with a community

NodeJS client

 You are encouraged to try the exercises in multiple languages!

Java is bolded since this is the language that trainers will be able to support during class.

Trying the exercises in multiple languages may help distinguish what is Kafka specific vs.

what is language specific. You are also encouraged to inspect the NodeJS client code!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 68

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Basic Kafka Producer

Please work on Lab 2a: Basic Kafka Producer

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 69

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

03: Preparing Producers for Practical

Uses

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 70

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains three lessons:

a. How Can Producers Leverage Message

Batching?

b. How Do Producers Know Brokers Received

Messages?

c. How Can a Producer React to Failed Delivery?

Where this fits in:

• Hard Prerequisite: Starting with Producers

• Recommended Follow-Up: Starting with

Consumers

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 71

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

03a: How Can Producers Leverage Message

Batching?

Description

The motivation for batching on producers, configuration of batching and buffers, and

understanding the shared buffer and implications. Setting compression on batches.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 72

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe how messages go to buffers upon sending

• Describe what causes messages to leave buffers and get

sent, explicitly noting two configuration settings

• Configure the size of the shared buffer

• Describe what could cause a send to fail — full buffer — and

how to use configuration to deal with that

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 73

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Producers So Far…

Let’s go back to this picture…

Kafka Broker

Topic-A P
0

Topic-A P
1

Topic-B P
0

Topic-B P
1

ProducerRecord KafkaProducer

Send()

Topic

[Partition]

[Timestamp]

[Key]

Value

[Headers]

Partitioner
(optional)

Serializer Buffer

Let’s now see what’s going on with the buffers…

When we use KafkaProducer to send() a message, the message is serialized and then

(likely) run through the partitioner to decide which partition of the topic will receive the

message. But it doesn’t go directly to Kafka. Now let’s see what happens first…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 74

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Diversion

Say it takes you 10 minutes to get to your nearest grocery store.

Say you need three things:

• ice cream

• cereal

• cheese

You could…

1. Go to the store, buy the ice cream, go home, and put the ice cream away.

2. Go to the store again, buy the cereal, go home, and put the cereal away.

3. Go to the store again, buy the cheese, go home, and put the cheese away.

Thoughts?

Big takeaway: This process involves 60 minutes of travel time. We could have gotten

everything at once and done this in 20 minutes of travel time. In Kafka, we often want to

send messages in batches, rather than one at a time. This generally gets us better

performance and certainly makes better use of shared resources, e.g., the network.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 75

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Refining Our Producer Design Picture

Kafka Broker

Topic-A P
0

Topic-A P
1

Topic-B P
0

Topic-B P
1

Topic-A P
0

ProducerRecord

KafkaProducer

Send()

Topic

[Partition]

RecordBatch 0

RecordBatch 1

Topic-B P
1

RecordBatch 0

RecordBatch 1

RecordBatch 2

[Timestamp]

[Key]

Value

[Headers]

Partitioner
(optional)

Serializer

 Messages are stored in the buffer per topic-partition.

Hopefully you see the value in batching messages rather than sending each message one at

a time.

We see here a more-detailed version of the earlier picture. The producer has space allocated

for buffering. In there, messages are accumulated per topic-partition. Accumulation

continues until some criterion is met to cause a batch of messages to be sent.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 76

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Back to that Grocery Store Diversion

• Before:

◦ Grocery store 10 minutes away

◦ Needed ice cream, cereal, cheese

◦ We agreed we could batch, i.e., get all three at once

• Clarifying constraint:

◦ Walking to store

◦ Carrying everything

• Now: Additional things to buy:

◦ 5 cases of soda

◦ Bulk pack of 10 rolls of paper towels

◦ Bulk pack of 8 boxes of tissues

Now what? Same batching?

We decided earlier batching is good, but… not so fast. Can you carry all of this stuff?

Probably not. Should you send a batch that’s really big? No. You can compromise shared

resources and hurt performance. We need to pick an appropriate batch size.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 77

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Do You Care About?

• Throughput?

◦ Want to send many messages at once

• Latency?

◦ Want to have messages consumed as quickly as possible after they are produced

• We can specify

◦ How big batches can get

◦ How long batches can accumulate

 Balance! Probably we care about both matters

So, batching is good in general, but we don’t want to let batches get too large. In deciding

appropriate settings, it’s likely throughput or latency your organization is looking to

optimize.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 78

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Visualizing the Buffer

Producer
flush to Kafka

Topic A
Partition 0

Topic A
Partition n

R3

R2

R1

R3

R2

R1

A few slides back, we saw the shared buffer. Here we see for the first time buffer.memory,

the size of that shared buffer.

We also see the two thresholds that, when met, can cause the buffer to be flushed.

See the last slide of this lesson for spelled-out definitions of these settings and their

defaults.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 79

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Not So Fast…

• send() returns when a message has been added to the buffer

• The shared buffer is of size buffer.memory

• What if, when we send, there is not enough room in the buffer? Are we doomed?

Memory is finite, so we have to consider the size of our shared buffer in thinking about what

happens when we send a message.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 80

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

We’re Okay After All! (Maybe)

• send() returns when a message has been added to the buffer

• The shared buffer is of size buffer.memory

• What if, when we send, there is not enough room in the buffer? Are we doomed?

◦ NO!

◦ Maybe a batch accumulating for some partition is big enough to meet batch.size or

linger.ms is flushed and space is freed

• Config setting max.block.ms puts a limit on how long a producer will wait for there to be

space in the buffer before a send() fails.

If our shared buffer is full, we cannot write to it. A producer will wait up to max.block.ms
for some space to free up in the buffer. If this time passes, the send() will fail.

Note that we say here send() returns when a message has been added to the buffer, in

other words, send() is asynchronous. But, if you’d like to send synchronously, i.e., force

send() to block until the producer learns of success or failure (more in the next lesson on

how to do that), append .get() to the call, e.g. producer.send().get().

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 81

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Compression 101

• It is possible to turn on compression on producers

• Records are sent as compressed batches

New picture:

Kafka Broker

Topic-A P
0

Topic-A P
1

Topic-B P
0

Topic-B P
1

RecordBatch
Topic-A P

0

RecordBatch
Topic-B P

1

ProduceRequest

In Flight Requests
ProducerRecord

KafkaProducer

Record Batching
Per Partition

RecordBatch
Topic-B P

0

RecordBatch
Topic-A P

1

ProduceRequest

Send() Record 1

Topic

[Partition]

[Timestamp]

[Key]

Value

[Headers]

Record 2

Record n

Compression
(optional)

Partitioner
(optional)

Serializer

Compressing records can help save network utilization and disk space on the brokers.

But, compression is not free; there is a time cost associated with compression that could

compromise latency. We discuss the tradeoffs and how to make decisions in our Confluent

Advanced Optimization course.

Compression algorithm choices supported by Kafka are none, snappy, gzip, lz4, zstd.

Compressed batches of records get stored on the brokers and decompressed by the

consumers.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 82

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Summarizing new Configurations

Name Description Default

batch.size Minimum number of bytes needed to accumulate in a

batch for it to be considered complete and ready to

send.

16384

linger.ms Maximum time a batch will wait to accumulate

before sending.

0

buffer.memory Maximum size of the producer’s buffer, shared across

all partitions.

32 MB

max.block.ms How long producer will wait for a full buffer to have

free space before failing a send()
1 min

compression.type How data should be compressed. Values are none,

snappy, gzip, lz4, zstd. Compression is performed

on batches of records.

none

This slide gives the four new settings introduced in this lesson.

Kafka: The Definitive Guide is a great resource. Note that there’s a nice explanation on p. 5

on batching.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 83

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/resources/kafka-the-definitive-guide-v2/

Activity: Applying Batching Configurations

Consider the following settings:

• batch.size

• linger.ms

• buffer.memory

• max.block.ms

Which setting(s) would be important to adjust to accomodate each of

the following scenarios?

a. You want high throughput, but don’t care about latency

b. Latency is a major goal but we don’t want to forget about

throughput entirely

c. You are finding the overall buffer gets full a lot in (a)

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 84

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

03b: How Do Producers Know Brokers

Received Messages?

Description

The various levels of producer acknowledgements and implications of each. Using callbacks

in producer code to react to acks.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 85

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• List the 3 different values of acks and describe when to use

each

• Explain how acks=all could be equivalent to acks=1 and

what to do about that

• Take code for a producer that does not look for

acknowledgements and make it, i.e. add a Callback

• Explain the tradeoffs of the 3 levels of acks

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 86

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The Notion of an Acknowledgment

A producer might want to know if a request was successfully delivered to the Kafka cluster.

We add the following configuration setting to our list of producer properties:

Name Description

acks Used to determine when a write request is successful. Can be

0, 1, or all (-1). If acks is not zero, then the producer will retry

failed requests. Default: all

Note that the default for acks was changed to all in Apache Kafka 3.0, but had been 1 in

all prior versions.

Details on this to come in the coming slides.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 87

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

acks - Three Cases, Ideal Performance

Producer A Broker 101 leader

send

fetch

fetch

ack

acks

1

4

followerBroker 102

followerBroker 103

2

3

Producer A Broker 101 leader

send

ack

1

2

followerBroker 102

followerBroker 103

Producer A Broker 101 leader

send

1

followerBroker 102

followerBroker 103

We have three choices for the acks setting:

• 0 means the Kafka cluster does not communicate back to the producer whether a

message has been received.

• 1 means that once the leader has persisted the message, it communicates an

acknowledgement back to the producer.

• all means that once leader and all followers have persisted the message, the leader

communicates an acknowledgement back to the producer.

Put differently, 1 means that an ack is sent after record is stored in "1" member of the ISR,

whereas all means that an ack is sent after the record is stored in "all" members of the

ISR.

This loosely relates to message delivery guarantees. Note that there are three cases:

• At most once: Messages may be lost but are never redelivered.

• At least once: Messages are never lost but may be redelivered.

• Exactly once: this is what people generally want; each message is delivered once and only

once.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 88

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

There is a later full lesson on delivery guarantees in the Advanced Concepts branch of the

course.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 89

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

…But not all followers are in-sync…

Producer A Broker 101 leader

send

ack

1

4

followerBroker 102

out of sync replicaBroker 103
fetch

fetchacks

2

3

So… when the leader gets a new message and acks=all…

1. The leader notes which followers are in sync with the leader at the time it receives the

message

2. Followers fetch from the leader and send acks to the leader

3. When the leader receives acks from all of the followers from (1), it sends an ack to the

producer

If we took the acks = all requirement from the last slide literally, Kafka would require

stuck followers not only to get the new message, but also catch up on prior messages in

order to satisfy the acks request. Instead, Kafka does not require stuck followers to catch

up to satisfy acks = all; the new message must only be received by followers that were in-

sync with the leader at the time the leader received the new message.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 90

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if We Don’t Have Any In-Sync Followers?

Producer A Broker 101 leader

send

ack

1

2

stuck followerBroker 102

stuck followerBroker 103

Let’s be literal about what acks = all requires:

1. The leader must persist the new message

2. All followers that were in sync with the leader at the time the leader received the message

must also receive the message.

What if no followers were in sync with the leader? Then the second condition is vacuously

true and acks = all is met. But if one has set acks = all, that means the producer wants

certainty that the message has been delivered to one or more followers. This isn’t so good…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 91

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Guaranteeing Meaningful acks=all

Producer A Broker 101 leader

send

nack

stuck followerBroker 102

stuck followerBroker 103

1

2

…so we’d often like acks = all to be stronger and only be met when a new message has

made it to at least one follower. We can strengthen it by setting min.in.sync.replicas to

2 or greater. (Remember, the leader always counts as one in-sync replica, so this value must

be strictly greater than 1.)

Also, note that while acks is a producer setting, min.in.sync.replicas is a broker setting.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 92

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Happens When Producers Send? [A Review]

• When we call send() on a producer…

◦ Message is serialized

◦ Message runs through partitioner (in most cases)

◦ Message is written to the buffer

• send() call returns once the message has been written to the buffer

◦ Producer does not wait to find out if Kafka brokers have received the message

◦ More code, likely more send() calls, runs (i.e., producer does not block further

execution) as a batch may get more messages after the send() has returned

◦ Maybe we want to know if a send() was successful…

It is possible to add .get() to the send() call, e.g.,

producer.send().get();

The send() call returns an instance of Future. The method above causes the Future to be

blocked, effectively making it so that one record is being sent at a time.

While you could work with Futures directly, the next slide provides a cleaner solution.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 93

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Callbacks

• We can provide a Callback as the second argument to a send() call

• The Callback is an interface

• The key method is onCompletion:

onCompletion(RecordMetadata metadata, java.lang.Exception exception) {...}

• Typically, onCompletion is implemented with a lambda expression

• Parmeters of onCompletion:

◦ Send in uninitialized objects

◦ exception is null when we have success

▪ Test for this first


When exception is not null in the callback, metadata will contain the special -1

value for all fields except for topicPartition, which will be valid.

So, how can we as a producer do something with acknowledgements? The answer is to

provide a Callback.

The next slide gives an example of this in code.


Note that some older documentation may say metadata is null in the case of

an exception, but that is not correct. Always test for the exception being null
first.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 94

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

send() with Callback Example

1 producer.send(record, (recordMetadata, e) -> {
2 if (e != null)
3 e.printStackTrace();
4 else
5 System.out.println("Message String = " + record.value() +
6 ", Offset = " + recordMetadata.offset());
7 }
8 });

This code shows how to equip send() with a Callback to receive an acknowledgment, or

lack thereof. Notes:

• Since the Exception will be null when we get a successful acknowledgment, we should

test for that first. In this case, we look for the inverse condition in Line 2 and print a report

in Line 3.

• Lines 5-6 handle the successful case. In this case, we just show some information about

the delivery.

Note that we have more to say about failed records. There is a retry mechanism and

timeouts. If the send of a record fails the first time, that does not mean the Callback — and

specifically the Exception branch of it — will get activated; there will likely be retries. The

next lesson is all about retries and timeouts.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 95

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Refining Our Producer Design Picture

Kafka Broker

Topic-A P
0

Topic-A P
1

Topic-B P
0

Topic-B P
1

RecordBatch
Topic-A P

0

RecordBatch
Topic-B P

1

ProduceRequest

In Flight Requests
ProducerRecord

callback /
application

code

KafkaProducer

Record Batching
Per Partition

RecordBatch
Topic-B P

0

RecordBatch
Topic-A P

1

ProduceRequest

Success?Retry?

YES

NONO

YES

Can’t retry, throw exception

Send()

Success, return metadata

Record 1

Topic

[Partition]

[Timestamp]

[Key]

Value

[Headers]

Record 2

Record n

Compression
(optional)

Partitioner
(optional)

Serializer

Here we come back to the producer design illustration we’ve been building up. Note the

addition of the check for success.

Note also that if retries are enabled and we’ve not timed out (more on that in the next

lesson), the producer will retry before going to the Callback with an exception.

Here’s a final version of the image:

Kafka Broker

Topic-A P
0

Topic-A P
1

Topic-B P
0

Topic-B P
1

RecordBatch
Topic-A P

0

RecordBatch
Topic-B P

1

ProduceRequest

In Flight Requests
ProducerRecord

callback /
application

code

KafkaProducer

Record Batching
Per Partition

RecordBatch
Topic-B P

0

RecordBatch
Topic-A P

1

ProduceRequest

Success?Retry?

YES

NONO

YES

Can’t retry, throw exception

Send()

Success, return metadata

Record 1

Topic

[Partition]

[Timestamp]

[Key]

Value

[Headers]

Record 2

Record n

Compression
(optional)

Partitioner
(optional)

Serializer

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 96

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Tracing Message Writes with Acks

Discuss each scenario with a partner or a small group before we discuss

as a class.

Suppose a producer produces a new message to the partition shown.

Describe a possible sequence of what could happen from the moment

the cluster receives the message until the producer receives an

acknowledgment

1. when acks = 1

2. when acks = all

Scenario 1 Scenario 2

broker 101 follower 2 - in sync

broker 102

broker 103 leader

broker 104 follower 1 - in sync

broker 105 follower 3 - in sync

broker 101 follower 2 - stuck

broker 102

broker 103 leader

broker 104 follower 1 - in sync

broker 105 follower 3 - stuck

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 97

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

03c: How Can a Producer React to Failed

Delivery?

Description

Retrying failed messages, different components of time from send until delivery and

configuration, and best practices.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 98

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe what happens when a message fails to be accepted

by a broker.

• Explain some timeout settings that can be tuned for

producers and decide which might affect various real-life

scenarios.

• Make decisions about reacting to failed delivery in line with

Confluent’s recommended best practices.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 99

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Big Picture

• We can configure producers with acks = all or acks = 1 to make the Kafka brokers

respond to the producer know if messages make it successfully.

• What if a message fails?

◦ Give up?

◦ Try again?

◦ How long to keep trying?

In this lesson, we will go deeper into what happens when a producer finds out a message

send attempt fails.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 100

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Retries and Timeouts

• We can configure a number of retries a producer has

◦ Setting retries with default MAX_INT

• We can also limit how much time a producer spends waiting overall at at various stages

after sending

• Best practice: Limit delivery with timeouts, not number of retries

We can control retry behavior through number of retries or through timeouts.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 101

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Some Time Limits

Name Description Default

max.block.ms An upper bound on the time to wait for a buffer that

doesn’t have enough room to accept a new message

to gain more space.

1 min.

linger.ms Time a batch will wait to accumulate before sending. 0

request.timeout.ms An upper bound on the time a producer will wait to

hear acknowledgments back from the cluster.

30 sec.

retry.backoff.ms How much time is added after a failed request before

retrying it.

100

delivery.timeout.ms An upper bound on the time to report success or

failure after a call to send() returns. Use this to

control producer retries.

2 mins.

You can review a larger list of producer configurations on our web site.

You’ll do an activity using this information in two slides. This slide is intended as reference

for that activity and beyond.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 102

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html

Visualizing Those Times

send() batching await send retries in flight

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 103

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Interpreting and Applying Time Limits

Assume you’re working with all settings starting at their defaults. Work

with a classmate or small group to interpret the configurations on the

last few slides and answer these questions:

1. Someone reports to you that while batch.size is set rather high,

only one message is ever being sent at a time. Batching never occurs.

What setting can we change to fix this?

2. You have messages that are extremely time sensitive. No matter

what happens, if they don’t make it to the broker within 30 seconds

of send() returning, there’s no point. How can you enforce this?

3. Suppose you fixed the last problem correctly and have also

implemented a callback, but in fact, some messages don’t fail until 90

seconds after the producer tries to send(). Where could this extra

time be coming from?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 104

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Summarizing Producer Design

Kafka Broker

Topic-A P
0

Topic-A P
1

Topic-B P
0

Topic-B P
1

RecordBatch
Topic-A P

0

RecordBatch
Topic-B P

1

ProduceRequest

In Flight Requests
ProducerRecord

callback /
application

code

KafkaProducer

Record Batching
Per Partition

RecordBatch
Topic-B P

0

RecordBatch
Topic-A P

1

ProduceRequest

Success?Retry?

YES

NONO

YES

Can’t retry, throw exception

Send()

Success, return metadata

Record 1

Topic

[Partition]

[Timestamp]

[Key]

Value

[Headers]

Record 2

Record n

Compression
(optional)

Partitioner
(optional)

Serializer

This figure brings together everything about producer design.

Here are a few other miscellaneous notes:

• For more details about the system metadata included in RecordBatch and Record objects,

see https://kafka.apache.org/documentation/#messageformat.

• The "await send" portion of the diagram two slides back reflects the fact that the batch

has to wait for a transmission opportunity to the broker. A ready batch can only be sent

out if the leader broker is in a sendable state (i.e., if a connection exists, current inflight

requests are less than max.inflight.requests, etc.).

• For more details on delivery timeout, see KIP 91 at

https://cwiki.apache.org/confluence/display/KAFKA/KIP-

91+Provide+Intuitive+User+Timeouts+in+The+Producer

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 105

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://kafka.apache.org/documentation/#messageformat
https://cwiki.apache.org/confluence/display/KAFKA/KIP-91+Provide+Intuitive+User+Timeouts+in+The+Producer
https://cwiki.apache.org/confluence/display/KAFKA/KIP-91+Provide+Intuitive+User+Timeouts+in+The+Producer

04: Starting with Consumers

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 106

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains three lessons:

a. How Do You Request Data to Fetch from Kafka?

b. What are the Basic Concepts of Kafka

Consumers?

c. How Do You Write the Code for a Basic Kafka

Consumer?

Where this fits in:

• Hard Prerequisite: Starting with Producers

• Recommended Prerequisite: Preparing Producers for

Practical Uses

• Recommended Follow-Up: Groups, Consumers, and

Partitions in Practice

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 107

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

04a: How Do You Request Data to Fetch from

Kafka?

Description

The consumer parallel of producer batching. Configuring consumer properties affecting

fetch requests. Configuring broker properties that affect fetch requests from followers of

leaders.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 108

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe the options for tuning a fetch request from a

consumer

• Describe the options for tuning a fetch request from a

follower

• Relate consumer and follower fetch requests

• Relate fetch request decisions with optimization goals, i.e.

throughput and latency

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 109

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Fetching Data: Quick Overview

• Data has been produced to brokers

• Who fetches it?

◦ Consumers

◦ Followers

We’ve spent the last several lessons talking about getting data into Kafka - specifically onto

the brokers - via producers. So, we now turn to how the data gets out. You might expect the

answer to be consumers, and that will be our focus, but along the way, we’ll note how some

ideas central to consumers are used by other aspects of Kafka.

The first thing we need to look at is the idea of a broker being asked for data. This is called

fetching. We’ll look into how to configure a fetch request. A consumer could make a fetch

request — from the leader replica of a partition. So could a follower replica, also making the

request of the leader replica of the same partition.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 110

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Back to Producers

Recall:

• A producer send() call writes a message to a local buffer

• Buffer accumulates batches of messages per partition

• A batch is sent from the producer to the cluster when it

◦ Reaches a size threshold

◦ Reaches a time threshold

Fetch requests generally work with batches of messages too

You may recall from Fundamentals and our warm-up discussion that consumers subscribe

to topics and that consumers make pull requests, asking Kafka for messages (rather than

Kafka pushing messages). When producers sent messages to Kafka, they were sent in

batches for efficiency. So, it stands to reason that the same happens when consumers are

asking for records or followers are asking for records. Either requests a batch, and not just a

single record, in general. We can tune these requests, as we will see in the slides to come.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 111

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How to Control Fetch Requests

size of data in a fetch time to wait for a fetch

These are the two general ways we can tune fetch requests.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 112

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Fetch Request Settings

minimum size of data in a

fetch

maximum amount of data in a fetch maximum time to wait

for a fetch

fetch.min.bytes • max.partition.fetch.bytes -

size per partition

• max.poll.records - # records

across all partitions

fetch.max.wait.ms

Here we give the names of the specific properties we can set to tune fetch requests.

Consumer properties are set in consumer code, directly or indirectly. We’ll see how in a later

lesson in this module.

Defaults:

• fetch.min.bytes: 1 byte

• max.partition.fetch.bytes: 1 MB

• max.poll.records: 500 records

• fetch.max.wait.ms: 500 ms

This table transposes and expands on the one on the slide, bringing in the equivalent

follower settings too:

Fetch Request Settings

… Consumer Follower

minimum size

of data in a

fetch

fetch.min.bytes replica.fetch.min.bytes

maximum

amount of

data in a fetch

• max.partition.fetch.bytes -

size per partition

• max.poll.records - # records

across all partitions

-

maximum

time to wait

for a fetch

fetch.max.wait.ms replica.fetch.wait.max.ms

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 113

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Replica settings are set on the server.properties file on each broker.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 114

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Tuning Consumer Fetch Requests

Goal High Throughput Low Latency

Meaning • Get more records at once • Consume records as quickly as

possible after they were produced

Tune… • Large fetch.min.bytes

• Reasonable fetch.max.wait.ms

• Low fetch.max.wait.ms

 Often a balancing act

This is specific to consumers and not about followers.

What is our goal in terms of performance? Here we give general tips on meeting it.

(Naturally, these recommendations are qualitative. The specific numbers that work best

depend on the particular use cases and desires, and one could spend a lot of time studying

and experimenting with these settings in a given context.)

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 115

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Applying Fetch Settings to a Scenario

Back to a scenario from the producer end. Say you want high

throughput and don’t care about latency. To achieve this on

the consumer end, which settings would you adjust and how

(qualitatively)?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 116

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

04b: What are the Basic Concepts of Kafka

Consumers?

Description

Conceptual view of a basic consumer.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 117

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Relate what is necessary to set up a basic producer to what

is necessary to set up a basic consumer conceptually

• Highlight where topics fit in on both extremes of a

message’s life cycle

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 118

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Reviewing Producers

What did you need to do to set up a basic producer and send a

message?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 119

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Parallel Ideas with Consumers

Producer Consumer

Configure properties Configure properties

Create producer Create consumer

Send records Retrieve & process records

Close & clean up Close & clean up

If we look at all of the big parts of coding a basic producer, we can see that each either

appears identically on the consumer end or with a parallel.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 120

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

One Config Note: Deserialization

Remember that on the producer end, we had to convert messages to 0s and 1s, a.k.a.

serialization. Since messages were stored in Kafka serialized and we receive them that way

on the consumer end, we need to deserialize now. Like on the producer end, this is just a

matter of setting the correct deserializer.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 121

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Do Consumers Know What Messages to Read?

You must take action Handled automatically by Kafka/Consumer

API

• subscribe to topic(s) • choose partition to read from

• maintain consumer offset in partition


More on both of these in the

recommended next module

On the producer end, we specified the topic to which to write with each record. On the

consumer end, consumers subscribe to topics. A need step in defining a consumer is thus to

make that subscription.

That’s all you need to do as a developer for a basic consumer!

Of course, each topic is (likely) broken up into partitions and each partition consists of

several messages (with offsets associated). Which partition and which message(s) in it are

important things, but Kafka will take care of all of that routing for you. We’ll learn more

about how it all works in the next module.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 122

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Polling and Processing

• Consumers poll the cluster for messages

◦ i.e., fetch request

• Consumers get batches of records back to process

• Repeat this process indefinitely

On the producer side, we had to send a message. On the consumer side, we must poll Kafka.

This generates a fetch request.

Then we get back, potentially, a batch of records. We must process them.

After setup, a consumer will be running an infinite loop of polling and processing. That’s it!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 123

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Summary

Producer Consumer

Configure properties Configure properties

Create producer Create consumer

(n/a) Subscribe to topics

Prepare records (n/a)

Send records Poll for records

(n/a) Process records

Close & clean up Close & clean up

So, here we bring everything together!

In the next lesson, we’ll look at some specific code.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 124

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

04c: How Do You Write the Code for a Basic

Kafka Consumer?

Description

Coding a basic consumer using the Java client API.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 125

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Configure properties required of all consumers using the

Java API

• Create a consumer and work with consumer record objects

using the Java API

• Subscribe to topics in Java consumers

• Retrieve and process messages using the Java API

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 126

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuration (1)

Important properties:

Name Description

bootstrap.servers List of broker host/port pairs used to establish the initial

connection to the cluster

key.deserializer Class used to deserialize the key. Must implement the

Deserializer interface

value.deserializer Class used to deserialize the value. Must implement the

Deserializer interface

client.id String to identify this consumer uniquely; used in monitoring

and logs

All of these properties are like those we saw on the producer end. See the Producers Code

Basics lesson for more details if you need them.

As with the producers, even if the key is not used by your environment, the clients must be

configured as if you are using keys. Thus, key.deserializer is a required setting.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 127

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuration (2)

We specify properties in code just like with producers.

We need a Properties object:

1 Properties props;

Here we show using a helper class:

6 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka-1:9092, kafka-2:9092,
 kafka-3:9092");
7 // other properties

You can specify properties with helper classes, or hardcode the string names, or read from a

properties file — just like with producers. Revisit your notes from the Producers Code Basics

module on the pros and cons of each.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 128

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Creating a Consumer

We need a KafkaConsumer object:

2 KafkaConsumer<String, String> consumer;

Initialization is just like with a producer:

10 consumer = new KafkaConsumer<>(props);

This part is almost the same as on the producer side; the name is all that’s different.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 129

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Subscribing to Topics

This is an additional step:

14 consumer.subscribe(Arrays.asList("my_topic", "my_second_topic"));

Note that calling subscribe again replaces an existing topic list.

We noted in our conceptual overview we must also subscribe to a topic or topics. Note and

emulate the syntax. Typically, you do this right after constructing your consumer, but it’s

possible for a consumer to change its subscription, so this can happen later too.

An important note is that calling subscribe is not additive.

Note also that you could use regular expressions to specify topics.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 130

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Record and Polling

We need an object to hold what we get back:

3 ConsumerRecord record;

Then we call poll():

18 record = consumer.poll();

Let’s build up that big part of consumers where we poll and process…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 131

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Records & Processing

But, remember, records are batched and we must process the batches so…

4 ConsumerRecords records;

We must process the batch of records we receive:

18 records = consumer.poll();
19
20 for(record : records)
21 {
22 System.out.printf("offset: %d, key: %s, value, %s\n",
23 record.offset(), record.key(), record.value());
24 }

Since a fetch request gives back batches (which could be a single record or be empty), we

need a ConsumerRecords object to hold our result, not just a single ConsumerRecord.

Then we process the records. Here we just output details.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 132

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumers Run Indefinitely

16 while(true)
17 {
18 records = consumer.poll();
19
20 for(record : records)
21 {
22 System.out.printf("offset: %d, key: %s, value, %s\n",
23 record.offset(), record.key(); record.value());
24 }
25 }

Since a consumer’s job, after setup, is to poll and process indefinitely, we simply loop what

we did on the last slide forever.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 133

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Timeout on Polling

Let’s tweak the poll:

16 while(true)
17 {
18 records = consumer.poll(Duration.ofMillis(100));
19
20 for(record : records)
21 {
22 System.out.printf("offset: %d, key: %s, value, %s\n",
23 record.offset(), record.key(); record.value());
24 }
25 }

We should also provide a timeout on how long to wait, at most, for a batch. We do so with a

Duration object as an argument to poll().

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 134

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Cleaning Up

Like with producers, we must close to clean up open resources:

29 consumer.close();

We could supply a timeout, as with the producer:

 consumer.close(Duration.ofMillis(100));

More on close and timeouts:

• The documentation

• The KIP proposing timeouts

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 135

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://kafka.apache.org/25/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#close--
https://cwiki.apache.org/confluence/display/KAFKA/KIP-102+-+Add+close+with+timeout+for+consumers

Coding Safely and Putting It All Together

To do this safely, we should employ exception handling. Here’s the full consumer:

 1 Properties props;
 2 KafkaConsumer<String, String> consumer;
 3 ConsumerRecord record;
 4 ConsumerRecords records;
 5
 6 props = new Properties();
 7 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "broker1:9092");
 8 // other properties
 9
10 consumer = new KafkaConsumer<>(props);
11
12 try
13 {
14 consumer.subscribe(Arrays.asList("my_topic", "my_second_topic"));
15
16 while(true)
17 {
18 records = consumer.poll(Duration.ofMillis(100));
19
20 for(record : records)
21 {
22 System.out.printf("offset: %d, key: %s, value, %s\n",
23 record.offset(), record.key(); record.value());
24 }
25 }
26 }
27 finally
28 {
29 consumer.close();
30 }

Now we show everything together. Note the addition of a try…finally.

Note that Consumer is not thread-safe. Parallel processing is meant to be managed by

consumers in groups along with partitions in Kafka; more on this in the next module. There

is, however, a Confluent blog post on multi-thread Consumers: https://www.confluent.io/

blog/kafka-consumer-multi-threaded-messaging/.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 136

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/blog/kafka-consumer-multi-threaded-messaging/
https://www.confluent.io/blog/kafka-consumer-multi-threaded-messaging/

Lab: Basic Kafka Consumer

Please work on Lab 4a: Basic Kafka Consumer

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 137

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

05: Groups, Consumers, and Partitions

in Practice

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 138

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains three lessons:

a. How Do Groups Distribute Workload Across

Partitions?

b. How Does Kafka Manage Groups?

c. How Do Consumer Offsets Work with Groups?

Where this fits in:

• Hard Prerequisite: Starting with Consumers

• Recommended Follow-Up: Either of these branches

of developer content:

◦ Other Components of a Kafka Deployment

◦ Additional Challenges in Core Kafka Components

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 139

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

05a: How Do Groups Distribute Workload

Across Partitions?

Description

Consumers in groups, what distinguishes consumers in same group and why we’d use more

than one group. Valid assignments of consumers to partitions, range and round robin

partition assignment strategies and when to use each.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 140

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe what’s different and same about consumers in a

group

• Distinguish valid assignments of consumers to partitions

from invalid

• Compare and contrast range and round robin

• Describe a scenario when range would be appropriate,

including prerequisites

• Describe a scenario when round robin would be appropriate

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 141

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Teamwork in Real Life

Working Alone Working as a Team

Imagine you’re the person on the left, tasked with folding each of the 100 letters by yourself.

Whoa! That’s a lot of work.

Now imagine you’re part of a team of four, doing the same thing. You have help. You can

each fold 25 letters. Much better! Less work for everyone, you can work in parallel, and those

letters will get folded faster.

In many manual tasks, it’s much better if we share the workload among a team. In Kafka,

consumers can work together as a group and share the workload of processing messages, in

parallel.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 142

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Grouping Consumers

• Best practice is for consumers to operate in consumer groups

• Consumers in a group…

◦ …all do the same thing

◦ …using different data

• Why?

◦ Share workload

◦ Consume in parallel

◦ Scale up and down

Kafka consumers work in groups just like our real-life parallel on the last slide.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 143

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Groups Aren’t Just for Consumers!

• Groups allow for parallel processing and scaling up and down

• Kafka has built automatic group management

→ next lesson!

• Groups are leveraged in many places in Kafka and Confluent Platform:

◦ consumers

◦ Kafka Connect workers

◦ Kafka Streams applications

◦ ksqlDB servers

The idea of groups is not just for consumers. Consumers are just one area where Kafka

leverages groups.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 144

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How do we Configure Consumer Groups?

Set consumer property group.id like any other property, e.g.,

props.put(ConsumerConfig.GROUP_ID_CONFIG, "order_processor");
// other properties

ConsumerConfig.GROUP_ID_CONFIG resolves to group.id.

The group.id becomes another property we want for consumers.

Note that we use the exact same group.id property in configuring groups of Kafka

Connect workers.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 145

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumers and Partitions

• Earlier, we said consumers in a group do the same thing on different data

• Given a subscribed topic, consumers in a group work together to consume all partitions of

a topic

• Consumers get assigned partitions to consume

◦ Two major types of partition.assignment.strategy…

We now start to get into that detail of exactly which data in a subscribed topic a consumer

will read. Partitions are the first step.

To reiterate, you as a developer do not say which partitions your consumer is reading from;

Kafka handles that automatically. You do need to subscribe to a topic.

You can, however, decide which strategy Kafka will use for matching consumers with

partitions. All consumers in a group must have the same value of

partition.assignment.strategy.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 146

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partition Assignment: Range

Why? Relate data across two or more co-partitioned topics.

“driver-profiles-avro” topic consumer-group-1

1 3 1

2

4 4

“driver-positions” topic

1 3 1 3 3 1 1 3

2 2 2 2 2

4 4 4 4 4 4 4

consumer 1

consumer 2

consumer 3

consumer 4

p
0

p
1

p
2

p
0

p
1

p
2



All topics

must be co-

partitioned,

i.e., have

1. same

number of

partitions

2. same

partitioner

3. same set of

keys


This is the

default

strategy.

Property config:

partition.assignment.strategy =
 org.apache.kafka.clients.consumer.*RangeAssignor*

This is the default partitioning assignment strategy, ultimately used when you want to

relate data across topics. (If you don’t and you’re only consuming from a single topic, use

the next strategy).

So, we want to relate data across topics, and we specifically want the same consumer to

get records with the same key, regardless of which topic they came from. Well then, how we

partition matters. Both (or all) topics need the exact same style of partitioning:

• same number of partitions

• same partitioning strategy (so far, we just know the default hash-mod, but keep this in

mind if you choose to change this later, as you can learn about in the Message

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 147

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Considerations module)

• use the same keys

Range assignment is done on a topic by topic basis. In general, it works like this: Order the

partitions by number and the consumers lexicographically. Let p be the number of partitions

in the given topic, and let c be the number of consumers in the consumer group. Attempt to

divide the number of partitions by the number of consumers. Let a be floor(p/c) and b be

the remainder p % c. The first b consumers will be assigned a + 1 partitions, and the rest

will each be assigned a partitions. This process happens for each topic the consumer group is

subscribed to. Here are some examples:

• For 16 partitions and 5 consumers, 16 = 5*3 + 1. So each consumer will end up with at

least 3 partitions. There is one left over, so the first consumer gets 1 extra partition.

• For 18 partitions and 7 consumers, 18 = 7*2 + 4. So each consumer will end up with at

least 2 partitions. There are 4 left over, so the first 4 consumers will get an extra partition.

• For 12 partitions and 20 consumers, 12 = 20*0 + 12. So each consumer will end up with

at least 0 partitions. The first 12 consumers get 1 extra partition (so the first 12 consumers

each get a partition, and the remaining consumers are idle).

More information regarding the Range assignor is available at the following link:

https://docs.confluent.io/current/clients/javadocs/org/apache/kafka/clients/consumer/

RangeAssignor.html

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 148

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/clients/javadocs/org/apache/kafka/clients/consumer/RangeAssignor.html
https://docs.confluent.io/current/clients/javadocs/org/apache/kafka/clients/consumer/RangeAssignor.html

Partition Assignment: Round Robin

Why? Balance load so each consumer has roughly the same number of partitions.

Topic A consumer-group-1

Topic B

consumer 1

consumer 2

consumer 3

consumer 4

p
0

p
1

p
2

p
0

p
1

p
2

Property config:

partition.assignment.strategy =
 org.apache.kafka.clients.consumer.*RoundRobinAssignor*

If your consumer is subscribed to just one topic, you should choose the round-robin partition

assignment strategy to get the most balanced assignment of consumers/partitions. Range

would not make sense in that case.

Note that there are two different sub-types of round-robin, but we need to understand

group management in the next lesson to make sense of them. So… let’s leave it at this for

now, review what we’ve learned, and get on to group management!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 149

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partition Assignment: Round Robin, continued

There are two different sub-types of round robin:

• Sticky

• Cooperative Sticky

These both preserve some assignments after a rebalance and improve performance.

What’s a rebalance? Let’s move on to the next lesson and find out (after an activity)!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 150

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Choosing Partition Assignment Strategies

Your instructor will put you in groups and assign your group

one of the scenarios below. In all scenarios, assume you’ll be

spawning a consumer group with more than one consumer to

process the relevant data. For your scenario, describe…

• what partition assignment strategy makes the most sense

and why

• if there are any requirements on how many partitions you

should have for the topic(s) in play

Scenarios:

1. You are reading from one topic, locations, which tells

geographic information about places where something is

happening, and want to display all of that information.

2. You are reading from two topics and want to give both

details of an order from an e-commerce retailer and its

current status: orders, containing information about orders;

order_status, containing time-tagged status of orders,

e.g., packed, shipped, etc.

3. You are reading from one topic, order_status, containing

time-tagged status of orders from an e-commerce retailer,

e.g., packed, shipped, etc.; you want to display updates on a

ticker observed by a fulfillment center manager who wants

to see every time a package is packed.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 151

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

05b: How Does Kafka Manage Groups?

Description

Heartbeats, what triggers rebalancing, pros and cons of rebalancing. Relating Kafka’s group

management protocol across various components, e.g., consumers and workers. Reasons to

grow and shrink group size.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 152

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe how “dead” consumers are detected

• List related configuration settings and their defaults

• Explain what a developer must do to trigger rebalance, i.e.

nothing

• List the different things that could happen to trigger a

rebalance

• List a pro and con of rebalance

• List other places in the Kafka ecosystem group management

happens (workers, Streams, ksqlDB)

• Explain reasons one would deliberately grow or shrink a

group

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 153

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What’s Wrong With This Picture?

Here, the consumers in the group are all subscribed to topic t0.

t0-p0

t0-p1

Kafka

c0

c2

c3

Consumer Group

t0-p3

t0-p2

c1

We’ve said that consumers subscribe to topics and we’ve said that all of the consumers in a

group work together to do the same thing, but on different data, ultimately to process all of

the messages in a topic. We last saw the two major kinds of strategies for how consumers

could be assigned to partitions.

So, in this picture, we have two problems:

• One partition is not being consumed

• The workload is not balanced among the consumers in the group.

While this wouldn’t arise from either of the two strategies we know, this could happen in a

normal course of events in a real Kafka deployment. What can we do? Well, let’s move on…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 154

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Rebalancing Partition/Consumer Assignments

In situations like on the last slide, the assignment isn’t optimal. Kafka’s group management

protocol detects non-ideal assignments and rebalances.

Triggers of rebalance:

• Number of consumers in play changes

◦ Consumer was added

◦ Consumer was removed

▪ Intentionally

▪ Consumer died

• Number of partitions in play changes

◦ Number of partitions for topic increased

◦ Topic subscription changed

By "in play," we refer to relevant to the current group.

Remember that you cannot decrease the number of partitions for a topic.

If any of these things happens, Kafka will detect it and trigger a rebalance. The assignment

of consumers to partitions gets assessed and everything gets reassigned optimally.

Note that rebalancing happens automatically — these are the triggers. You cannot force a

rebalance, nor can you prevent one if one of these triggers occurs.

 Note that a consumer calling pause does not trigger a rebalance.

Note, for the second major bullet, behind the scenes, the number of partitions changing

causes the metadata for the topic to change, and this metadata changing is what

ultimately triggers the repartitioning.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 155

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Does Kafka Detect Dead Consumers?

• Consumers send a heartbeat to Kafka every 3 s (or heartbeat.interval.ms)

• If 45 s (or session.timeout.ms) passes without a consumer heartbeating, it is deemed

dead

broker1

broker2

broker3

broker n

Kafka

contains
group coordinator

c0

c1

c2

consumer group

Note that the default value of session.timeout.ms of 45 s shown applies in Apache Kafka

3.0 and above. In prior version, the default was 10 seconds.

Among our triggers for rebalance was that a consumer died. How would Kafka know that?

Via this heartbeating mechanism.

Every 3 s (by default, or heartbeat.interval.ms), each consumer sends a heartbeat to

Kafka. Consumers who fail to send a heartbeat for 45 s (by default, or

session.timeout.ms) will be deemed dead and removed from the consumer group.

This triggers a rebalance.

The heartbeats go to a thread called the Group Coordinator running on one of the brokers.

(This is per group; two different groups could have the coordinators running on different

brokers).

Remember, it isn’t just consumers that are grouped. Kafka Connect has workers that copy

data. We can say that every 3 s (by default, or heartbeat.interval.ms), each worker

sends a heartbeat to Kafka. Workers who fail to send a heartbeat for session.timeout.ms
will be deemed dead and removed from the worker group. The logic is exactly the same.

(Note that, while it’s inconsistent, the default for session.timeout.ms is 10 s for Connect

workers, not the 45 s for consumers.)

By the way, the heartbeat.interval.ms and session.timeout.ms defaults work well for

most Kafka deployments and are rarely changed. If you have a good reason to change them,

always allow for two heartbeats to be missed in selecting the timeout. (In the old defaults,

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 156

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

10 = 3*3 + 1. The new default is more liberal.)

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 157

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

But wait…

broker1

broker2

broker3

broker n

contains
group coordinator

consumer group

c0
POLL

POLL

POLL

c1

c2

• Consumers must poll

• If 5 mins (or max.poll.interval.ms) passes without poll, consumer is also deemed

dead

Certainly, a consumer that fails to heartbeat cannot be contributing to the group, so that

should indirectly trigger a rebalance. But what about a consumer that is heartbeating but

not doing anything useful? That does not advance the group’s progress, so it should also

lead to a rebalance.

Remember that a consumer’s job is to poll and process messages. If it isn’t polling, it can’t

be processing. As such, the heartbeat thread also monitors if a consumer fails to poll for too

long (5 s by default). If it does, the consumer will also be deemed dead and removed from

the group.

This setting is also one that is rarely changed from the default. The reason it might be is

that the processing messages after a poll() call takes too long and causes a timeout.

However, remember that we can tune fetch requests and this might also be an indicator of

fetch requests that fetch too much data.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 158

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Implications of Rebalance

• Consumption pauses

• A consumer may read a partition some other consumer had been reading

◦ Offsets need to be communicated — see next lesson!

• Stateful application may need to rebuild state

• Kafka takes the opportunity to optimize assignments

Rebalancing is a good thing: it allows consumers to fail and the group to bounce back with

the least impact possible. It allows us to scale partitions or scale consumers and have the

load automatically balanced without any intervention from the developer or the

administrator. But…

…it is not free! While the reassignment happens, consumption is paused. This adds some

latency.

Another challenge of rebalancing is that consumers may be assigned different partitions

than before. But other consumers had been making progress and had offsets and we don’t

want messages to be reprocessed. But consumer offsets need to be communicated. This is

an issue so important of its own lesson, so that’s the next lesson.

You could have a consumer application that is stateful, say it’s keeping track of information

within categories as it processes partitions. That state information also needs to be

communicated to the correct consumers, presenting another challenge.

In general, though, rebalance is a good thing and that outweighs the challenges.

Backing up to the first issue: paused consumption and added latency. Two things to note:

• If an administrator is upgrading the Kafka version on a consumer, that would involve

taking down the consumer, which would trigger a rebalance. Then that consumer would be

brought back up, triggering a second rebalance. Perhaps we want to avoid this problem.

While this is more of an administrative concern, the solution is something called Static

Group Membership

• Maybe a full rebalance is not necessary. See the next slide…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 159

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Do We Always Want to Reassign Everything?

Suppose you have this scenario:

t0-p0

t0-p1

Kafka

c0

c2

c3

Consumer Group

t0-p3

t0-p2

c1

So…

• Prerequisite: Using round robin

assignment, stateful consumer

• Problem: One partition isn’t being read

◦ But others are okay

◦ Rebalance takes time

• Solution: Use sticky partitioner

◦ Preserves assignments that don’t need

to change

◦ Selection of new assignment is faster

So, we said on the last page about the first issue: paused consumption and added latency.

Maybe a full rebalance is not necessary. Perhaps some assignments can stay in place. The

sticky partitioner is an option in this case. It preserves whatever assignments it can in order

to reduce rebalancing time.

Here, there are four partitions "in play" and three of them are being consumed by

consumers in the group. With Sticky, only partition t0-p2 is not being consumed (because

the now-dead c3 had been consuming it). The rebalance with Sticky would give t0-p2 to one

of c0, c1, or c2, not thinking about the balance of workload. (In this case, repartitioning with

round-robin would still end up with one consumer having two partitions and two consumers

having one partition, but it would take longer than with repartitioning with Sticky.)

The setting is:

partition.assignment.strategy =
 org.apache.kafka.clients.consumer.*StickyAssignor*

Even with the sticky assignor, partition assignments do sometimes change across

rebalances because the priority is distributing partitions as evenly as possible. The benefit of

attempting to preserve partition assignments across a rebalance is that stateful consumers

have less local state to rebuild, but the cost is that reassignment overhead increases with

the total number of partitions across the input topics. This would not be a good choice for

cross datacenter replication for this reason.

A solution to this is CooperativeSticky. At a high level, it is very similar to Sticky but it uses

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 160

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

consecutive rebalances rather than the single stop-the-world used by Sticky.

The setting is:

partition.assignment.strategy =
 org.apache.kafka.clients.consumer.*CooperativeStickyAssignor*

More information regarding these assignors is available at the following links:

• Round Robin documentation

• Sticky documentation

• CooperativeSticky documentation

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 161

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/clients/javadocs/org/apache/kafka/clients/consumer/RoundRobinAssignor.html
https://docs.confluent.io/current/clients/javadocs/org/apache/kafka/clients/consumer/StickyAssignor.html
https://docs.confluent.io/current/clients/javadocs/org/apache/kafka/clients/consumer/CooperativeStickyAssignor.html

Remember: Not Just Consumers

Group management applies not just to consumers.

Kafka leverages similar logic for groups in other places that you may learn about in other

modules.

Just a reminder that group management applies to other areas in Kafka, e.g. Kafka Connect

worker groups, Kafka Streams application instances, ksqlDB servers. While there may be

specific details to each, as you first learn about each of those concepts, keep the ideas of

group management in mind and you’ll be off to a very good start in understanding how they

work.

Reiterating an example from a few pages back: Kafka Connect has workers that copy data.

We can say that every 3 s (by default, or heartbeat.interval.ms), each worker sends a

heartbeat to Kafka. Workers who fail to send a heartbeat for 10 s (by default, or

session.timeout.ms) will be deemed dead and removed from the worker group. The logic

is exactly the same.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 162

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Reviewing Rebalance Triggers

Suppose we are assuming default settings and using round robin.

Further suppose all consumers in question are part of the same group,

all are subscribed to one topic and partitions are all part of that one

topic.

For each given event, will that event alone trigger a rebalance?

a. Consumer can’t access network for 7 seconds

b. Consumer can’t access network for 59 seconds

c. Partition count went from 12 to 15

d. Partition count went from 12 to 11

e. Consumer added to group

f. One consumer is reading from 4 partitions and another is reading

from 2 partitions

g. Two consumers are each reading from a different partition. First

partition receives 200 messages/second, while second receives one

message every 3 seconds.

h. Consumer is forcibly shut down.

Apply the knowledge from this lesson to assess each of these scenarios.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 163

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

05c: How Do Consumer Offsets Work with

Groups?

Description

Consumer offsets locally vs. committed to Kafka. Automatic committing. How consumers

newly assigned to a partition can recover committed offsets.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 164

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Explain how offsets are tracked locally and in Kafka

• Distinguish between three ways consumers could commit

offsets

• Describe how a consumer newly assigned a partition knows

where to read

• Explain why offsets are tracked group-wide vs. per

consumer

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 165

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Review: What is a Consumer Offset?

Before read After read

• Per consumer

• Per partition

• Where to read next

Recall that each consumer maintains an offset in each partition it is reading. That offset is

the location of the message it will read next.


The language "read next" is important. A consumer offset is not what a

consumer read last. While this is a common misconception and it is not

unreasonable, it is not correct.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 166

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What about Rebalancing?

Before rebalance After rebalance

Q: Where does c1 start reading?

So, a consumer knows where it is reading in a partition, but what happens when a consumer

dies? As we know from the last lesson, a consumer dying triggers a rebalance. This means

that some other consumer in the same group will now be assigned to read from the same

partition. But if the offset is in the memory of a consumer that is now dead, what does the

new consumer do?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 167

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Committing Offsets

• Internal topic __consumer_offsets tracks consumer offsets. Each entry:

Key Value

• group

• topic

• partition

• offset

• Consumers back up their offsets to this topic

◦ called committing offsets

◦ every 5 s (or auto.commit.interval.ms)

• A consumer newly assigned to a partition checks here to

know where to start consuming

To deal with the problem on the last slide — consumers back up their offsets to an internal

topic in Kafka. This is called committing offsets.

Offsets are committed at the group level, not at the individual consumer level. When a

consumer is assigned a new partition, it won’t have an offset in its own memory from which

to start reading. It will check __consumer_offsets. Having the offset stored at the group

level makes sense in this regard. Further, since it could not happen that more than one

consumer in a group is reading from the same partition, it is not necessary to store more

than one offset per group for any partition.

Let’s expand on the details of the graphic:

• This graphic illustrates the offset entry committed for the situation on the prior slide - a

consumer in g2 assigned to p5 of topic t3 has an offset of 4 to commit.

◦ The key of the committed offset entry is (g2, t3, p5).

• The partition in the offsets topic is not the same (in general) as the partition in the topic.

So, this graphic uses a different partition number (25) to illustrate that point.

◦ Likewise, the offset of the entry in partition 25 of the offsets topic is just the next

unused offset in that partition and is independent of the offset in t3. Here, 1 was chosen

just to illustrate the difference.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 168

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Note also

• The topic __consumer_offsets is compacted.

• Kafka uses the key tuple (group, topic, partition) to determine which partition of the

__consumer_offsets topic to write an offset entry — and look up an offset entry.

• These two facts make the lookup of offsets fast; Kafka does not have to scan all entries in

the offsets topic when trying to determine the offset for a particular (group, topic,

partition) tuple.

Committing happens automatically.

Note that auto.commit.interval.ms is a consumer property.

If there isn’t an entry in __consumer_offsets for a given group/topic/partition, the

consumer property auto.offset.reset governs the behavior. This comes up in the module

Challenges with Offsets.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 169

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

So…

For the scenario from a few slides back, consumer c0 would have committed an entry to

__consumer_offsets:

• key: (this consumer group’s ID, the topic name, the partition index for the yellow partition

in the graphic) = (g2, t3, p5)

• value: 4

So, after the rebalance and c1 was assigned the yellow parititon, it looks to the

__consumer_offsets topic for an entry for the given partition and its consumer group. It

finds an entry and sets its consumer offset in memory to 4.

Now that c1 is assigned to p5, it can use what it found in the internal topic to pick up where c0

left off.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 170

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

More on Committing Offsets

• Automatic committing of offsets is default

◦ Can be turned off by setting consumer property enable.auto.commit to false

• Can manually commit with commitAsync()

◦ Does not block

◦ Should have a callback

◦ Or do blocking commit with commitSync()

While automatically committing offsets is the default, you may have reasons you need to

commit offsets manually.

More will come on this in Challenges with Offsets module.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 171

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Analyzing Offsets and Committing

Problem

Consider this scenario:

• Consumer group g0 has three consumers - c0, c1, c2.

• All are subscribed to a topic claims with four partitions - p0, p1, p2, p3.

• c0 is reading from p0 and p3, c1 is reading from p2, c2 is reading from p1.

Suppose these events happen (and no other consumption occurs):

1. Time 7: consumer c0 receives message at offset 9 from p0.

2. Time 9: consumer c0 receives messages at offset 22 and 23 from p3.

3. Time 10: consumer c0 commits offsets to __consumer_offsets:

◦ (c0, claims, p0, _)

◦ (c0, claims, p2, _)

◦ (c0, claims, p3, _)

4. Time 12, consumer c0 dies. Rebalance completes successfully but

consumption fails.

Your quest: Fill in the missing details. What’s wrong with this picture?

Use what you’ve learned in this lesson and module in general to solve this problem.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 172

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Additional Components of Kafka/CP

Deployment Overview

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 173

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Agenda

This is a branch of our developer content on additional components

common in Kafka/Confluent Platform deployment. It is broken down

into the following modules:

6. Starting with Schemas

7. Integrating with the Schema Registry

8. Introduction to Streaming and Kafka Streams

9. Introduction to ksqlDB

10. Starting with Kafka Connect

11. Applying Kafka Connect

This branch assumes proficiency in concepts from the Core Kafka

Development branch.

Here is an expanded version of the outline, including the lessons that make up each module:

1. Starting with Schemas

a. Why Should I Care About Schemas?

b. How Do I Write Schemas in Avro or Protobuf?

c. How Do I Design Schemas that can Evolve?

2. Integrating with the Schema Registry

a. How Do I Make Producers and Consumers Use the Schema Registry?

3. Introduction to Streaming and Kafka Streams

a. What Can I Do with Streaming Applications?

b. What is Kafka Streams?

c. A Taste of the Kafka Streams DSL

d. How Do I Put Together a Kafka Streams App?

4. Introduction to ksqlDB

a. What Does a Kafka Streams App Look Like in ksqlDB?.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 174

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

b. ksqlDB Basics

c. How Do Windows Work?

d. How Do I Join Data from Different Topics, Streams, and Tables?

5. Starting with Kafka Connect

a. What Can I Do with Kafka Connect?

b. How Do I Configure Workers and Connectors?

6. Applying Kafka Connect

a. Deep Dive into a Connector & Finding Connectors

b. Full Solutions Involving Other Systems

This branch assumes proficiency in concepts from the Core Kafka Development branch. In

particular, you need some knowledge from the following:

• Starting with Producers

• Starting with Consumers

• Groups and Consumers in Practice

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 175

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

06: Starting with Schemas

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 176

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains three lessons:

a. Why Should You Care About Schemas?

b. How Do You Write Schemas in Avro or

Protobuf?

c. How Do You Design Schemas that can Evolve?

Where this fits in:

• Hard Prerequisite: Starting with Consumers

• Recommended Follow-Up: Integrating with the

Schema Registry

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 177

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

06a: Why Should You Care About Schemas?

Description

What schemas are and why we use them.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 178

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe what a schema is

• Given a concept, conceptually describe a schema for it

• List one or two reasons schemas are useful

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 179

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Specifying a Writing Utensil in Text

Suppose you want to describe a writing utensil that could be a

pen or marker or pencil. You’re writing software that will work

with plain text files, one for each writing utensil. Your

requirements include storing the following for each writing

utensil: what type it is, size of the writing tip (e.g., 5 mm),

color, brand, model, if it is retractable, and how it can be

erased - if it can.

Grab the nearest writing utensil and write a plain text file how

you might think to encode this.

Don’t think too hard; just write what comes to mind within a

minute.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 180

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The Need For Schemas

Unstructured Data Structured Data

Schema

describes
the data

While there may be plenty of reasonable ways to represent data, we want to use a schema

to agree upon how to do so in a structured way.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 181

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schemas Can Change

Imagine BusinessCustomer schema:

1980s 1990s now

• company name

• contact person

• physical address

• phone

• fax number

• company name

• contact person

• physical address

• phone

• fax number

• email address

• company name

• contact person

• physical address

• phone

• fax number

• email address

 Schema Evolution will be an important topic we visit in two lessons.

What you initially choose as a schema might change over time. This slide gives an example

of changes that would not have been anticipated. You want to keep this in mind from the

start.

The notion of schema evolution addresses this; we’ll delve deeper in two lessons.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 182

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Specifying Schemas

In a subsequent lesson, we’ll formalize how we should specify a schema and how we can do

it in Confluent Platform.

For now, here’s a working conceptual version of a schema for a simple WritingUtensil:

• type, a string

• tip size in MM, a number

• color, a string

• brand, a string

This is just a concrete conceptual example of a schema.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 183

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Design with Schemas in Mind from the Start

• Think about schemas early

• Plan for schema evolution

• Confluent Schema Registry can help

◦ Can leverage with producers and consumers

◦ …and much more

Let’s get into the technical details!

So, we now know the basics of schemas, enabling us to go further in the lessons to come!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 184

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

06b: How Do You Write Schemas in Avro or

Protobuf?

Description

Defining why one would use Avro or Protobuf. Specifying basic schemas in both. More

involved schemas in Avro via activity.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 185

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Explain the value in using a tool like Avro or Protobuf

• Write a single-level schema compatible with Avro

• Write a schema with a nested record compatible with Avro

• Evaluate between Avro, Protobuf, and JSON schemas

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 186

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema Specification and Serialization Mechanisms (1)

• Can leverage a mechanism to help with

◦ Specifying schemas

◦ Serialization

• Both Avro and Protobuf support this

• Both are supported by Confluent Schema Registry

• Example schemas on next slide…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 187

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema Specification and Serialization Mechanisms (2)

Example schema in both:

Avro Protobuf

{
 "namespace": "clients.avro",
 "type": "record",
 "name": "PositionValue",
 "fields": [
 {"name": "latitude",
 "type": "double"},
 {"name": "longitude",
 "type": "double"}
]
}

syntax = "proto3";

option java_package = "clients.proto";
message PositionValue {
 double latitude = 1;
 double longitude = 2;
}

There is software to help us work with schemas. These mechanisms also help with making

serialization easy.

This slide gives an example of the same schema in Avro and Protobuf. While these are

syntactically correct, don’t worry about the details. Rather, this is to give you a big picture

idea what a schema might look like using one of these tools.

Confluent Schema Registry, which we will learn about in a few lessons, supports working

with schemas using either of these tools.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 188

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Honing in on Avro

• The way we’ll use Avro:

◦ Specify schema using JSON

◦ Use it to generate an equivalent Java class to include in our

code

◦ Called specific mode

• Details:

◦ File extension .avsc

◦ Provide a namespace with a schema that becomes Java

package to import

◦ Specify a schema, commonly done with a data type of record

We’ll focus on Avro for writing schemas. Avro is another Apache project.

What we’ll do:

1. Write a schema using JSON in a format to adhere to what Avro expects

2. Use Avro to generate equivalent code to include in our producers

→ You’ll experience this in lab.

Avro operates in three different modes:

• Generic: Manually create both the data type (Java class) and the schema (*.avsc file)

• Reflection: Manually create the data type and then generate a schema from that code

• Specific: Manually write the schema and then generate code to include in your program

It is the last that we will use here.

The record data type in Avro will be used in all of the schemas we use in Kafka. A record is

comprised of fields of heterogenous data types. We will see examples to come.

Note, though, that record is not required and simpler data types could be used for simpler

schemas.

Note that while we mention Java specifically on the slide, Avro works with other languages.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 189

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

More on why you might want Avro

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 190

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/blog/avro-kafka-data/#:~:text=We%20think%20Avro%20is%20the,inefficient%20for%20high%2Dvolume%20usage

Sample Schema In Avro

{
 "namespace": "clients.avro",
 "type": "record",
 "name": "WritingUtensil",
 "fields": [
 {"name": "type", "type": "string"},
 {"name": "tipSizeMM", "type": "double"},
 {"name": "color", "type": "string"},
 {"name": "brand", "type": "string"}
]
}

In the last lesson, we saw a conceptual schema for a writing utensil. This is Avro-formatted

JSON for that schema.

Start with this and emulate the syntax in writing your own schemas.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 191

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Adding a Few Things

{
 "namespace": "clients.avro",
 "type": "record",
 "name": "WritingUtensil",
 "fields": [
 {"name": "type", "type": "string", "default": "pen"},
 {"name": "tipSizeMM", "type": "double", "doc": "size of tip in mm"},
 {"name": "color", "type": {
 "type": "enum",
 "name": "color",
 "symbols": "blue", "black", "red", "green"},
 {"name": "brand", "type": "string"}
]
}

Observe: 1. default value for a field

2. doc string

3. enum data type

This slide shows the prior schema with a few other additions that are important:

1. We can specify a default value for any field. In our use, if a consumer is expecting a

record to conform to a schema like this and some field is missing, a default value will be

used for that field.

→ This will become important in schema evolution in the next lesson.

2. For any field, we can supply a documentation string with doc. This is a good practice, like

you know in software engineering in general.

3. We are not limited to just simple data types in Avro records. Here we show a complex

data type, the enum.

Here’s an expanded version of the same schema that brings in possible representations of

the other fields that were in the original problem statement at the start of the last lesson:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 192

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

{
 "namespace": "clients.avro",
 "type": "record",
 "name": "WritingUtensil",
 "fields": [
 {"name": "type", "type": "string", "default": "pen"},
 {"name": "tipSizeMM", "type": "double", "doc": "size of tip in mm"}
 {"name": "color", "type": {
 "type": "enum",
 "name": "color",
 "symbols": "blue", "black", "red", "green"},
 {"name": "brand", "type": "string"},
 {"name": "isRetractable", "type": "boolean", "default": "true"},
 {"name": "isErasable", "type": "boolean", "default": "false"}
]
}

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 193

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Else Can You Do?

• Nest records within records

• Use array data type

• Use map data type

◦ Keys must be strings

• Allow fields to take on a null value

• Use any of these simple data types: boolean, int, long, float, double, string

 Documentation link and more examples in your handbook.

We give here a few more examples.

See Avro documentation for all the details.

Example array use with nested record:

 1 {
 2 "namespace": "example.avro",
 3 "type":"record",
 4 "name": "Salesperson",
 5 "fields": [
 6 { "name": "name", "type": "string",
 7 "doc": "employee name"},
 8 { "name": "AccountList",
 9 "type": {
10 "type": "array",
11 "items":{
12 "name": "Account",
13 "type": "record",
14 "fields": [
15 { "name":"id", "type": "string" },
16 { "name":"email", "type": "string" }
17 ...

Example map use:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 194

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://avro.apache.org/docs/current/spec.html

 1 {
 2 "namespace": "example.avro",
 3 "type": "record",
 4 "name": "Log",
 5 "fields": [
 6 { "name": "ip",
 7 "type": "string" },
 8 { "name": "timestamp",
 9 "type": "string" },
10 { "name": "message",
11 "type": "string" },
12 {
13 "name": "additional",
14 "type": {
15 "type": "map",
16 "values": "string"
17 ...

Example use of a union and a null value:

1 {
2 "name" : "experience",
3 "type": ["null", "int"]
4 }

Two logical data type examples:

Decimal

{
 "name": "myDecimal",
 "type": {
 "type": "bytes",
 "logicalType": "decimal",
 "precision": 4,
 "scale": 2
 }
}

Timestamp (ms precision)

{
 "name": "longTime",
 "type" : {
 "type": "long",
 "logicalType": "timestamp-millis"
 }
}

• The decimal logical type represents an arbitrary-precision signed decimal number of the

form unscaled × 10^(-scale)

◦ scale: a JSON integer representing the maximum number of decimal places (optional).

If not specified the scale is 0.

▪ e.g. 1234567.89 has a scale of 2

◦ precision: a JSON integer representing the maximum number of digits.

▪ e.g. 1234567.89 has a precision of 9

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 195

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

• A timestamp-millis logical type annotates an Avro long, where the long stores the

number of milliseconds from the unix epoch, 1 January 1970 00:00:00.000 UTC.

• Other logical types include uuid, date, and duration. For more information about logical

types, see the Avro documentation

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 196

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://avro.apache.org/docs/current/spec.html

Activity: Interpreting Schema Examples and Writing a

Schema

Find this slide in your Student Handbook, and, in particular,

find the examples in the handbook text on for the last slide

and the examples we saw on the previous slides in the

lesson.

1. Review and interpret the example schemas shown

2. Write a schema to represent when a train on a public

transit system arrives at a train station that has multiple

color-coded lines (like you see at the right). Provide a way

of storing:

a. What train line

b. What train

c. What station

d. When the train arrived

OAK GROVE

Malden
Center

Wellington

Sullivan
Square

Community
College

North
Station

Haymarket

WONDERLAND

Revere Beach

Beachmont

Suffolk Downs

Orient
Heights

 Wood
Island

Airport

Maverick

Aquarium

State

Downtown Crossing

South Station

Broadway

Andrew

JFK/UMass

Savin Hill

North
 Quincy

Wollaston

Quincy Center

Quincy Adams

BRAINTREE

Fields
CornerShawmut

ASHMONT

MATTAPAN

BOWDOIN

LECHMERE

Science Park /
West End

Govt
Center

Park St

ALEWIFE

B Boston College

C Cleveland Circle

D Riverside

E Heath St

Davis

Porter

Harvard

FOREST HILLS

Chinatown

Tufts
Medical

 Back
Bay

Mass Ave

Ruggles

Roxbury Crossing

Jackson Square

Stony Brook

Green St

Kenmore

Central

Kendall/
MIT

Charles/
MGH

Copley
Boylston

Arlington

Assembly

Hynes
Convention

Center

Use the examples on the prior pages of your handbook and/or the documentation link as you

work through this problem.

Many students have found it helpful to share screen in a breakout room and edit a schema

from a previous example. To help you out, here is the schema from a few slides back,

formatted for easy copying and pasting and editing.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 197

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://confluent-training.github.io/writing-utensil-ex.txt
https://confluent-training.github.io/writing-utensil-ex.txt

Possible Solution to Train Schema

 1 {
 2 "namespace": "com.traincompany.examples",
 3 "type": "record",
 4 "name": "TrainArrived",
 5 "fields": [
 6 { "name": "line", "type": {
 7 "type": "enum",
 8 "name": "line",
 9 "symbols": "red", "green", "blue", "orange"},
10 { "name": "trainId", "type": "int" },
11 { "name": "stationId", "type": "int" },
12 { "name": "arrivalTime",
13 "type": {
14 "type": "long",
15 "logicalType": "timestamp-millis"
16 }
17 }
18]
19 }

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 198

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Choosing Between Avro and Protobuf

• Both are supported by Confluent Schema Registry

◦ Avro support has been around longer

• Both encode data efficiently

◦ But differently - see comparison link in guide

• What is your organization otherwise using?

More information on Protobuf:

• Protocol Buffers defined

• Google Protocol Buffers Developer Guide

• Protobuf encoding example

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 199

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/encoding#simple

A Step Beyond

Schemas Written in JSON Format

Avro Schema in JSON Format JSON Schema

{
 "namespace": "clients.avro",
 "type": "record",
 "name": "PositionValue",
 "fields": [
 {"name": "latitude",
 "type": "double"},
 {"name": "longitude",
 "type": "double"}
]
}

{
 "type": "object",
 "title": "driverposition",
 "properties": {
 "latitude": { "type": "number" },
 "longitude": { "type": "number" }
 }
}

 Messages that use JSON encoding store field names in each individual record…

We showed an example schema in Avro JSON before. We can express it in a form of JSON

supported by Confluent Schema Registry that does not use Avro too, as shown here.

Expanding on the warning on the slide, note that messages that use JSON encoding store

field names in each individual record, whereas Avro encoding does not. Thus there is a disk

space usage tradeoff to take into account when considering the JSON encoding.

For comparison, here’s the Protobuf version from earlier:

syntax = "proto3";

option java_package = "clients.proto";
message PositionValue {
 double latitude = 1;
 double longitude = 2;
}

More information on JSON Schema:

• JSON Schema serdes

• JSON Schema Organization

• JSON Schema Specification

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 200

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/schema-registry/serdes-develop/serdes-json.html
https://json-schema.org/
https://json-schema.org/specification.html

06c: How Do You Design Schemas that can

Evolve?

Description

Defining schema evolution. Comparing the enforcement modes - backward, forward, full,

none, transitive modes - with concrete examples via exercises.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 201

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Justify why one should consider schema evolution from the

start

• Given a pair of adjacent versions of a schema, determine if

the second is backward compatible or forward compatible

with the first

• Given a schema, create a new version that is backward

compatible

• Explain how to set schema evolution to enforce

compatibility between non-adjacent numbered versions

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 202

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Introduction

Schemas can change!

Recall example from introduction on changes to customer record:

• add email address

• remove fax number

Data Schema v1 Data Schema v2 Data Schema v3

We’ve looked at writing schemas and we know schemas can change over time, but how do

we plan for that change. This lesson gets into that.

"Always have a schema evolution plan in place…" -Chris Smith, VP, Engineering Data

Science, Ticketmaster, from a web cast

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 203

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/online-talks/an-intro-to-ksql-and-kafka-streams-processing-with-ticketmaster

Schema Compatibility Modes

• There are various modes defining whether one version of a schema is compatible with

another

• A system like Confluent Schema Registry can enforce compatibility

• We’ll focus on the modes relating two adjacent versions of a schema defined in Schema

Registry

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 204

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Basic Schema Compatibility Modes

Mode Explanation

BACKWARD Consumers expecting data using new form of schema can process data

using previous version of schema

FORWARD Consumers expecting data using previous form of schema can process

data using next version of schema

FULL Both BACKWARD and FORWARD

NONE No compatibility checking

The four schema compatibility modes shown all are supported by Confluent Schema

Registry. Your objective in this lesson is to understand the differences, and, perhaps more

importantly, understand how to make schemas conform to various compatibility

requirements.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 205

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example

Schema V1 fields Schema V2 fields

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]

"fields":
[
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 },
 {
 "name": "hobby",
 "type": "string",
 "default": ""
 }
]

Schemas were truncated to fit the slide and focus on the key part.

Full schemas:

Schema V1 Schema V2

{
 "namespace": "example.avro",
 "type": "record",
 "name": "user",
 "fields": [
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]
}

{
 "namespace": "example.avro",
 "type": "record",
 "name": "user",
 "fields": [
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 },
 {
 "name": "hobby",
 "type": "string",
 "default": ""
 }
]
}

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 206

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example Solved

Schema V1 fields Schema V2 fields

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]

"fields":
[
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 },
 {
 "name": "hobby",
 "type": "string",
 "default": ""
 }
]

• Default value for hobby allows consumer using V2 to process messages produced with V1,

i.e. schema V2 is BACKWARD compatible with V1

• No default value for firstname means consumer using V1 cannot process messages

produced with V2, i.e. schema V2 is not FORWARD compatible with V1

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 207

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Assessing Schema Compatibility

Now evaluate in both directions - Pair 1:

Schema V1 Fields Schema V2 Fields

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "hobby",
 "type": "string"
 }
]

Now evaluate in both directions - Pair 2:

Schema V1 Fields Schema V2 Fields

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "hobby",
 "type": "string",
 "default": ""
 }
]

Use what you know from the prior example and definitions to assess schema compatibility

in these cases.

Schemas were truncated again.

Full schemas, Pair 1:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 208

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema V1 Schema V2

{
 "namespace": "example.avro",
 "type": "record",
 "name": "user",
 "fields": [
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]
}

{
 "namespace": "example.avro",
 "type": "record",
 "name": "user",
 "fields":
 [
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "hobby",
 "type": "string"
 }
]
}

Full schemas, Pair 2:

Schema V1 Schema V2

{
 "namespace": "example.avro",
 "type": "record",
 "name": "user",
 "fields": [
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]
}

{
 "namespace": "example.avro",
 "type": "record",
 "name": "user",
 "fields":
 [
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "hobby",
 "type": "string",
 "default": ""
 }
]
}

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 209

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity Solution, Part 1

Schema V1 Fields Schema V2 Fields

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "hobby",
 "type": "string"
 }
]

• Default value for age allows consumer using V1 to process messages produced with V2, i.e.

schema V2 is FORWARD compatible with V1

• No default value for hobby means consumer using V2 cannot process messages produced

with V1, i.e. schema V2 is not BACKWARD compatible with V1

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 210

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity Solution, Part 2

Schema V1 Fields Schema V2 Fields

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "age",
 "type": "int",
 "default": -1
 }
]

"fields":
[
 {
 "name": "firstname",
 "type": "string"
 },
 {
 "name": "lastname",
 "type": "string"
 },
 {
 "name": "hobby",
 "type": "string",
 "default": ""
 }
]

• Default value for age allows consumer using V1 to process messages produced with V2, i.e.

schema V2 is FORWARD compatible with V1

• Default value for hobby means consumer using V2 can process messages produced with

V1, i.e. schema V2 is BACKWARD compatible with V1

• Thus, schemas V1 and V2 are FULL compatible

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 211

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Takeaways

• If version n + 1 of a schema adds a field not present in version n, supply a default value for

the new field in the new version for backward compatibility

• If version n + 1 of a schema lacks a field not present in version n, a consumer using version

n + 1 will ignore the extra field and achieve forward compatibility

Here is a documentation page with more tips.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 212

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/schema-registry/avro.html#compatibility-types

Beyond One Version Change

Suppose for some schema,

• Version 3 is backward compatible with Version 2

• Version 2 is backward compatible with Version 1

This does not mean Version 3 is backward compatible with Version 1

Want to enforce backward compatibility with all prior versions → set

BACKWARD_TRANSITIVE mode.

Similarly, Schema Registry supports FORWARD_TRANSITIVE and FULL_TRANSITIVE.

We add a few more schema compatibility modes now. These allow us to enforce

compatibility beyond just adjacent versions of schemas.

Here is an example of a set of schemas that are backwards compatible, but not backwards

transitive:

• Schema V1: latitude, longitude

• Schema V2: latitude, longitude, altitude (default altitude of 0)

• Schema V3: latitude, longitude, altitude (no default)

Consumers with V3 can read messages produced with V2 because all three of latitude,

longitude, and altitude would be provided. Consumers with schema V2 could read messages

produced with V1 because they would infer a default value of 0 for altitude. However,

consumers with version V3 could not read messages produced with V1 because the

consumer is expected a value for altitude to be provided and is not providing a default.

Here’s a full table:

Mode Explnation

BACKWARD Consumers expecting data using new form of schema can

process data using previous version of schema

BACKWARD_TRANSITIVE Consumers expecting data using new form of schema can

process data using any previous version of schema

FORWARD Consumers expecting data using previous form of schema can

process data using next version of schema

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 213

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Mode Explnation

FORWARD_TRANSITIVE Consumers expecting data using previous form of schema can

process data using any later version of schema

FULL Both BACKWARD and FORWARD

FULL_TRANSITIVE Both BACKWARD_TRANSITIVE and FORWARD_TRANSITIVE

NONE No compatibility checking

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 214

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema Compatibility Modes in Practice in CP

• Typically, we set a schema per topic and at the level of key or value

• We typically set schema evolution requirements at the same level

• Confluent Schema Registry defines a subject as the scope in which schemas evolve

• The default naming strategy appends -key or -value to a topic name to get subject

names.

Topic: driver-positions Subjects: driver-positions-key
driver-positions-value


This is called using the subject naming strategy TopicNameStrategy. Other

modes are available. See the enrichment page in your handbook to learn more.

The subject naming strategy described is called TopicNameStrategy.

To learn how to set schema evolution in Schema Registry, see the next lesson.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 215

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Subject Naming Strategies

Here are your other subject naming mode choices for the key or value of any topic:

Naming Strategies Configurations

• TopicNameStrategy (default)

• RecordNameStrategy

• TopicRecordNameStrategy

• key.subject.name.strategy

• value.subject.name.strategy

Here’s why you’d use the other two modes:

• TopicRecordNameStrategy: <subject-name> = <topic>-<type>-key | <topic>-
<type>-value
This is used in a topic with many event types to allow each type to evolve separately

• RecordNameStrategy: <subject-name> = <type>-key | <type>-value
This allows evolution of an event type that is used across many topics

Some people call a Topic that has multiple schemas a "fat" Topic. For a detailed discussion

of when to use this approach, and the use of custom subject naming strategies, refer to:

https://www.confluent.io/blog/put-several-event-types-kafka-topic/

Example

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 216

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/blog/put-several-event-types-kafka-topic/
https://docs.confluent.io/platform/current/schema-registry/serdes-develop/index.html#group-by-topic-or-other-relationships

07: Integrating with the Schema

Registry

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 217

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains one lesson:

a. How Do You Make Producers and Consumers

Use the Schema Registry?

Where this fits in:

• Hard Prerequisite: Starting with Schemas

• Recommended Follow-Up: continuing with other

modules in this branch

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 218

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

07a: How Do You Make Producers and

Consumers Use the Schema Registry?

Description

What Confluent Schema Registry is and benefits of using it. Life cycle of a message using

SR. Specifying schema evolution restrictions using SR.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 219

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• List 3 benefits of Schema Registry

• Describe what a schema ID unique identifies

• Explain how a schema ID gets associated with a message

• Take Java API producer or consumer code and make it

compatible with Schema Registry and Avro

• Write a command to set a schema evolution requirement

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 220

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Scenario

• Say…

◦ We have a schema for a bank transaction

◦ It contains many details and uses 1 KB of data

◦ It is sent with every record for a transaction

◦ It is stored with every record for a transaction

◦ A bank produces roughly a million transactions per hour

Question: How much disk space does this use? How much bandwidth?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 221

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema ID

• Maintained by Schema Registry

• Uniquely identifies

◦ Schema

◦ Version

• Sent with records instead of whole schema → efficient!

• Schema Registry tracks schemas and IDs in internal _schemas topic in Kafka

Rather than sending the same schema several times and storing the same schema several

times, Confluent Schema Registry allows us to send a schema ID to represent a schema.

Schema IDs uniquely identify schemas and their versions.

Schemas are stored in a special Kafka topic (default name: _schemas, can be reconfigured

with the kafkastore.topic property). Disk space in not used on the SR, but rather in

Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 222

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Else Can Schema Registry Do For You?

• Check records to make sure they conform to schemas

• Enforce schema evolution

If a record’s value or key fails to match the expected schema, Schema Registry will throw an

exception.

We’ll see how to set schema evolution a bit later in the lesson. Schema Registry will reject

new versions of schemas that do not conform to the schema evolution setting chosen.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 223

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema Registry: Producers

Producer

Value
Schema

Schema Registry

Schema ID
Value

Serializer
(e.g., Avro, Protobuf, JSON)

Kafka

Serialized Message

schema ID

key value

data

Serialized Message

We visualize two scenarios here:

• A producer is about to send a message using a schema that has not been used before.

When it sends that schema to SR, SR will register it and send back a new schema ID.

• A producer is about to send a message using a schema that has been used before. When

it sends that schema to SR, SR just look up and send back the matching schema ID.

In either event,

• The schema is used along with Avro/Protobuf/JSON to serialize the message’s key or

value, whichever is appropriate. The picture shows the Avro case.

• The schema ID is serialized too and prepended to the key or value, whichever is

appropriate, before the message is sent.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 224

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

There’s a Cache Too!

Producer

Cache

Value
Schema

Schema Registry

Schema ID
Value

Serializer
(e.g., Avro, Protobuf, JSON)

Kafka

Serialized Message

schema ID

key value

data

Serialized Message

Producers cache schemas for efficiency. Consider the scenario from the last slide. Using a

schema ID saves us from using network traffic between the producer and the Kafka cluster

for every schema, but if we had to check the schema registry for every schema, we’d just

move the problem. Instead, SR-enabled producers maintain a cache and check there for

schema IDs before checking SR, thereby saving network bandwidth.

Whether the producer got the schema ID from its cache or the Schema Registry, once it has

it, the process is the same as on the last slide.

Note that it’s most likely the value you’re using Schema Registry for, so these last two

illustrations show that case. There can sometimes be complications using an SR-aware

format as the key (e.g., non-deterministic serialization).

However, here’s what a version of the graphic on the slide showing both the key and value

being SR-aware would look like:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 225

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Key
Schema

ID
Key Data

Value
Schema

ID
Value Data

Serialized Message

Producer

Key
Schema

Value
Schema

Schema Registry

Key Schema ID

Value Schema ID Serializers
(e.g., Avro, Protobuf, JSON)

Kafka

Cache

For more details on the serialized message format, see this documentation page.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 226

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/schema-registry/serdes-develop/index.html#wire-format

Schema Registry: The Consumer End

Deserialized
Message

Consumer

Cache
Value

Schema

Schema Registry

Schema ID Value
Deserializer

(e.g., Avro, Protobuf, JSON)

Serialized Message

Schema ID

key value

data

Serialized Message

Kafka

Here we see the consumer end of the process.

Note that when a consumer receives a message, it’s serialized, so it’s just zeroes and ones.

The consumer needs to be configured to be reading in the right mode to be looking for

schema IDs. If it is…

…the consumer can pull off the schema ID from the key or value of a message and then find

the matching schema. Just like producers, they have a local cache they check first, before

going to the schema registry.

Note that this figure is again showing the cases of using Avro for deserialization and using

schemas for the value only. There are other cases you could consider - Protobuf, JSON, key

using SR along with or instead of value - but they are similar.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 227

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema-Enabled Java Producer Example

Writing a producer that supports Schema Registry and uses Avro isn’t much different from

before. Two new steps…

First, we must use the Avro serializer for the key or value, e.g.,

props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, KafkaAvroSerializer.class);

Then, we must also configure the producer to know where our schema registry is:

props.put(AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
 "http://schema-registry1:8081");

We otherwise use a Java class generated by Avro. You’ll experience how to generate this in

lab.

 Everything else is the same!

It is only in the configuration where our Java code will be different. We need to specify the

serializer and SR location. Everything else, we could have done using our knowledge from our

earlier producer module.

Here’s a more complete code block:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 228

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

 1 Properties props;
 2 KafkaProducer<String, PositionValue> producer;
 3 String key;
 4 PositionValue value;
 5 ProducerRecord<String, PositionValue> record;
 6
 7 props = new Properties();
 8 props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "broker-1:9092");
 9 // Configure serializer classes
10 props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
11 props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, KafkaAvroSerializer.class);
12 // Configure schema repository server
13 props.put(AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
14 "http://schema-registry1:8081");
15
16 // Create the producer, which expects
17 // PositionValue object generated from Avro schema
18 producer = new KafkaProducer<>(props);
19
20 // Create the key (String) and
21 // value (PositionValue object generated from Avro schema)
22 key = "driver-1";
23 value = new PositionValue(47.618580396045445, -122.35454111509547);
24
25 // Create the ProducerRecord and send it
26 record = new ProducerRecord<>("driver-positions-avro", key, value);
27 producer.send(record)

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 229

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Schema Enabled Java Consumer Example

Three (really two) new things here…

We use the Avro deserializer instead of serializer:

props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 KafkaAvroDeserializer.class);

We still need to identify where SR is:

props.put(AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
 "http://schema-registry1:8081");

We need to tell our consumer to look for schema IDs:

props.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG, "true");

Note that when a consumer receives a message, it’s serialized, so it’s just zeroes and ones.

The consumer needs to be configured to be reading in the right mode to be looking for

schema IDs. That’s what
props.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG, "true");
is for.

Here’s a more complete code block:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 230

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

 1 Properties props;
 2 KafkaConsumer<String, PositionValue> consumer;
 3 ConsumerRecord<String, PositionValue> record;
 4 ConsumerRecords<String, PositionValue> records;
 5
 6 props = new Properties();
 7 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "broker-1:9092");
 8 props.put(ConsumerConfig.GROUP_ID_CONFIG, "testgroup");
 9 props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
10 props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
11 KafkaAvroDeserializer.class);
12 props.put(AbstractKafkaAvroSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
13 "http://schemaregistry1:8081");
14 props.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG, "true");
15
16 consumer = new KafkaConsumer<>(props);
17 consumer.subscribe(Arrays.asList("driver-positions-avro"));
18
19 while (true)
20 {
21 records = consumer.poll(Duration.ofMillis(100));
22
23 for (record : records)
24 {
25 System.out.printf("Key:%s Latitude:%s Longitude:%s [partition %s]\n",
26 record.key(), record.value().getLatitude(),
27 record.value().getLongitude(), record.partition());
28 }
29 }

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 231

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Setting Schema Evolution: Modes Reference

For reference, Schema Registry supports the following schema evolution modes:

Mode Explanation

BACKWARD Consumers expecting data using new form of schema can

process data using previous version of schema

BACKWARD_TRANSITIVE Consumers expecting data using new form of schema can

process data using any previous version of schema

FORWARD Consumers expecting data using previous form of schema can

process data using next version of schema

FORWARD_TRANSITIVE Consumers expecting data using previous form of schema can

process data using any later version of schema

FULL Both BACKWARD and FORWARD

FULL_TRANSITIVE Both BACKWARD_TRANSITIVE and FORWARD_TRANSITIVE

NONE No compatibility checking

See the prior lesson for examples and a deeper understanding of the various modes.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 232

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Setting Schema Evolution: Command

We can use a command like the following to set schema evolution:

This example disables compatibility checking using "NONE"
$ curl -X PUT -i -H "Content-Type: application/vnd.schemaregistry.v1+json" \
 --data '{"compatibility": "NONE"}' \
 http://schemaregistry1:8081/config/my_topic-value

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json
{"compatibility": "NONE"}

Replace NONE with any of the modes from the prior slide.

One can also use the Confluent Control Center UI. See this tutorial for more.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 233

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/schema-registry/schema_registry_onprem_tutorial.html#schema-registry-onprem-tutorial

Support for Schema Registry

• Part of Confluent Platform

• Supported by clients

◦ Java clients

◦ librdkafka clients except Go

• Supported by Confluent REST Proxy

• Supported by Kafka Streams

◦ …and, in turn, ksqlDB

• Supported by Kafka Connect

We’ll learn about other tools in a Confluent Kafka deployment coming up in later modules.

We’ve shown you how to integrate Java clients with SR here; other tools coming up easily

integrate with SR too.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 234

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Some Notes for the Lab

Troubleshooting

If you do the Java Avro exercises and forget to gradle build before starting the VS Code

debugger, then the classpath will get into a bad state. If this happens:

1. Open the VS Code command palette with the gear icon at the bottom left of the screen

2. Search for and select "Java: Clean Java Language Server Workspace"

3. Select the "Restart and delete" option

4. VS Code should now be in a happy state! The debugger should now work!

Generated Code

You’ll use gradle build to generate a Java class from an Avro schema. Look to

build/generated-main-avro-java to find the generated code.

Question:

Here is a Kafka project that uses Avro. Why might

the developer have chosen not to include

PositionValue.java in source control?

Answer: The Java class compiled from PositionValue.java can be generated from

position_value.avsc using a "specific" Avro plugin (as opposed to generic or reflection).

This makes the .avsc file the single source of truth for the schema, so that is what should

be checked into source control.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 235

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Command Line Schema Registry Tools

There are also some command line tools that work with Schema Registry.

Here are examples of working with the Avro console producer and consumer (assuming we

have defined a schema my_schema):

$ kafka-avro-console-producer \
 --bootstrap-server kafka:9092 \
 --property schema.registry.url=schema-registry:8081 \
 --property value.schema="$my_schema" \
 --topic driver-positions-avro

$ kafka-avro-console-consumer \
 --bootstrap-server kakfa:9092 \
 --property schema.registry.url=schema-registry:8081 \
 --from-beginning \
 --topic driver-positions-avro

Here’s the schema definition command:

$ my_schema='{
 "namespace": "clients.avro",
 "type": "record",
 "name": "PositionValue",
 "fields": [
 {"name": "latitude", "type": "double" },
 {"name": "longitude", "type": "double" }
]
}'

In addition to Avro console commands, there are also Protobuf and JSON versions. Aside

from needing to specify the type of schema in defining it, the commands names are the only

thing that varies.

Protobuf example:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 236

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

$ my_schema='
 syntax = "proto3";
 option java_package = "clients.proto";
 message PositionValue {
 double latitude = 1;
 double longitude = 2;
 }'

$ kafka-protobuf-console-producer \
 --bootstrap-server kafka:9092 \
 --property schema.registry.url=schema-registry:8081 \
 --property value.schema=$my_schema \
 --topic driver-positions-protobuf

$ kafka-protobuf-console-consumer \
 --bootstrap-server kafka:9092 \
 --property schema.registry.url=http://schema-registry:8081 \
 --from-beginning \
 --topic driver-positions-protobuf

JSON example:

$ my_schema='{
 "type": "object",
 "title": "driverposition",
 "properties": {
 "latitude": { "type": "number" },
 "longitude": { "type": "number" }
 }
}'

$ kafka-json-schema-console-producer \
 --bootstrap-server kafka:9092 \
 --property schema.registry.url=schema-registry:8081 \
 --property value.schema=$my_schema \
 --topic driver-positions-json

$ kafka-json-schema-console-consumer \
 --bootstrap-server kafka:9092 \
 --property schema.registry.url=http://schema-registry:8081 \
 --from-beginning \
 --topic driver-positions-json

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 237

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Schema Registry, Avro Producer and

Consumer

Please work on Lab 7a: Schema Registry, Avro

Producer and Consumer

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 238

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

08: Introduction to Streaming and

Kafka Streams

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 239

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains four lessons:

a. What Can You Do with Streaming Applications?

b. What is Kafka Streams?

c. A Taste of the Kafka Streams DSL

d. How Do You Put Together a Kafka Streams

App?

Where this fits in:

• Hard Prerequisite: Starting with Consumers

• Recommended Prerequisite: Groups and

Consumers in Practice

• Recommended Follow-Up: Introduction to ksqlDB

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 240

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

08a: What Can You Do with Streaming

Applications?

Description

Defining what streams are with a concrete conceptual example and relating streams to

topics. Comparing streams and tables and which to use when. How time drives streams

instead of offsets and the basic idea of windowing.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 241

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Relate events in streams to records/messages in topics

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 242

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Sample Stream

a 2 a 27 b 10 a 7 c 105 d 16 c 12 d 200 a 12

Note:

• Events are key/value pairs

• Ours will be sourced from Kafka topics

• Time is a big deal

Let’s learn some basic ideas of streaming applications.

We start with streams. Streams are comprised of events. These are the same as in Kafka,

the same thing we might call records or messages.

In turn, events are key-value pairs. Like in Kafka, the keys could be null if we don’t care about

value.

We’ll source streams from Kafka topics. (And we’ll later write them to Kafka topics.)

A big difference about streams from Kafka topics is that time is a big factor here. We don’t

really talk about offsets in the streaming world; we talk about time.

In the figure, each event is labeled with its time.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 243

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Operating on the Stream

We can do stateless operations on a stream, like filtering.

What would happen if we filtered to keep those records whose value exceeded 50?

a 2 a 27 b 10 a 7 c 105 d 16 c 12 d 200 a 12

Here’s a first example of doing an operation on a stream: a filter.

We call it stateless. It produces a new stream and doesn’t alter the input

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 244

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Operating on the Stream

We can do stateless operations on a stream, like filtering.

What would happen if we filtered to keep those records whose value exceeded 50?

Input stream:

a 2 a 27 b 10 a 7 c 105 d 16 c 12 d 200 a 12

Output stream:

c 105 d 200

Here we see the solution to the filter example.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 245

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Windowing the Stream

We can split up time into windows.

Here’s our input stream:

a 2 a 27 b 10 a 7 c 105 d 16 c 12 d 200 a 12

Here’s the same stream, divided into windows of size 10:

a 2 a 27 b 10 a 7 c 105 d 16 c 12 d 200 a 12

Here we see dividing a stream up into time windows. We can do various operations on the

time windows, e.g., looking for counts, extrema, and other aggregations. More on this to

come in its own lesson.

Both Kafka Streams and ksqlDB will have the same windowing capabilities. We’ll look at

windowing once we get into ksqlDB.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 246

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Stream-Table Duality

We can view a stream as a table.

Stream Table

Records are events in time Records are updates

to same-key table

entries

a 2 a 27 b 10 a 7 c 105 d 16 c 12 d 200 a 12
key value

Each stream can be treated as a table. You can also source tables directly from Kafka

topics. There are two different ways to view the same data.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 247

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Streams vs. Tables

Stream Table

Use for… Working with events in time/history Storing status/state

Example 1 Driver positions Driver profiles

Example 2 Order status changes Orders, Customers

Example 3 Ledger of sales Sales totals

As you work through this taste of streaming applications, observe when we use streams and

when we use tables. Hopefully, after you’ve completed this course, you’ll see applications

come up in your work and naturally think a stream or a table fits them — or does now. This

summary is here to start you on that journey.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 248

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Choosing Between Streams and Tables

Quick Check

For each concept described, would it make more sense to

represent it as a stream or as a table?

a. number of purchases per customer

b. heartbeat readings per patient coming in every 30 seconds

c. number of high heart rate events per patient observed

d. current addresses of known restaurants

Virtual Classroom Poll:

use a stream use a table

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 249

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

08b: What is Kafka Streams?

Description

The consume-process-produce model. How Kafka Streams fits into the Kafka ecosystem,

what a streaming topology is, and how data gets back to Kafka. Immutability of streams.

Stateless vs. stateful processing conceptually.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 250

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe the consume-process-produce model.

• Explain how Kafka Streams applications relate to Producer

and Consumer applications.

• List two properties of streams.

• Define stream processor, along with source and sink

processors.

• Understand a processor topology conceptually.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 251

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The Consume-Process-Produce Model

Idea:

1. Consume data from a topic

2. Do something with that data, i.e. Process

3. Generate a new record or records based on the processing and Produce them to a topic

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 252

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka Streams

• Separate application

• Tied to a Kafka cluster

• Groups

• Objects KStream and KTable

• Sourced from a Kafka topic

◦ Acts as a Consumer

• Data goes out to a different Kafka topic

◦ Acts as a Producer

In the last lesson, we learned about streaming applications in general. Now we turn to Kafka

Streams specifically.

Kafka Streams applications act like producers and consumers. They, too, produce data to

and read data from a Kafka cluster.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 253

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Unbounded, Immutable Streams

• Streams are unbounded

◦ Sourced from a topic

◦ As the topic receives new records, so does the stream

• Streams are immutable

◦ Never change a stream

◦ Instead, output a new stream from operations

A stream is unbounded, conceivably never ending. You could think of it as subscribing to a

topic like a consumer does. A stream is sourced from a topic (or topics) in Kafka and when

that underlying topic receives new messages, so does the stream. In turn, receiving new

records will trigger processing on those records.

Also note that streams are immutable. Streams receive messages in one way: getting them

from the source Kafka topic(s). Operations do not change streams. Go back to our filter

example from earlier. The stream containing only those records with values over 50 was a

new stream. The input stream remained and we could do other operations on it.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 254

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Processors

• A stream processor operates on stream or

table

• One operation

• Examples

◦ Filter a stream

◦ Get a table where all cost values have

tax added

• Special processors:

◦ Source processor:

▪ Read from a Kafka topic

▪ Generate a KStream or KTable

◦ Sink processor:

▪ Take in a KStream

▪ Produce each event to a Kafka topic

We call the operations on streams and tables in Kafka Streams stream processors. We

define two special subtypes here.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 255

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Processor Topologies

Processors are put together to form a processor topology

processor

sink
processor

source
processors

processor

stream/tablestream/table

stream/table

stream

A processor topology is the heart of a steaming application.

We can represent it with a directed acyclic graph (DAG) as done here:

• vertices or nodes are the processors

• edges (necessarily directed, so drawn with arrows) are the output and input streams or

tables

To be even more precise, this is a type of Data Flow Diagram (DFD):

• function → processor

• input/output → source/sink processor

• flow → stream/table

• file/database → state store

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 256

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://en.wikipedia.org/wiki/Data-flow_diagram

Example Stateless Application Topology

Kafka cluster has topic:

• temp_readings

◦ keys: postal codes

◦ values: temperatures in degrees C

Topology:

• Source processor creates KStream celsiusStream
from temp_readings

• Processor maps each temperature in degrees C to

degrees F

◦ Creates KStream fahrStream

• Sink processor writes fahrStream to Kafka topic
temp_readings_fahr

source
processor

map
processor

sink
processor

celsiusStream

fahrStream

Here’s an example of a simple streaming application topology for converting temperatures

from one unit system to another.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 257

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Another Example Application Topology

Kafka cluster has topics:

• driver_profiles

• driver_positions

Topology:

• Source processors create…

◦ KStream driverPosStream from
driver_positions

◦ KTable driverProfiles from
driver_profiles

• Processor joins driverPosStream with

driver_profiles
→ Creates stream driverPosEnriched

• Sink processor writes driverPosEnriched to

Kafka topic driver_positions_enriched

source
processors

join
processor

sink
processor

driverProfilesdriverPosStream

driverPosEnriched

Here’s an example of a simple streaming application topology that goes along with several

of our labs. We join driver information with driver profile information.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 258

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example Stateful Application Topology

Kafka cluster has topic:

• driver_profiles

Topology:

• Source processor creates KTable driverProfiles
from driver_profiles

• Processors group driverProfiles by make of

vehicle and count number in each group

◦ Creates KTable vehicleMakesTally

• Processor generates equivalent KStream
vehicleMakesTallyStr from
vehicle_makes_tally

• Sink processor writes vehicleMakesTallyStr to

Kafka topic vehicle_makes_tally_topic

state store

source
processor

grouping
processor

counting
processor

table to stream
processor

sink
processor

driverProfiles

vehicleMakesTally

vehicleMakesTallyStr

Here’s another example of a simple streaming application topology that goes along with

several of our labs. This time, the processing is stateful. We get the driver profiles as before,

but instead, we have a processor that groups vehicles by make and generates a table. The

table uses a state store on the machine running the application.

Note that in this picture, you see a grouping processor is shown as setup for the counting

processor. Indeed, this is necessary, and the counting processor is the simplest example of

an aggregation. While there is an intermediate object output by the counting processor and

grouping processor is necessary, neither is particularly useful on its own without the

counting processor, hence how they are illustrated and labeled here.

Note that we convert our table to a stream before writing it out to Kafka. This is intentional;

the Kafka Streams API allows us to write streams to Kafka topics but not tables. However,

it provides a simple function to take in a table and output an equivalent stream.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 259

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Reviewing Kafka Streams Concepts

Quick Knowledge Check: Myth or Fact?

1. When we say processor in this context, we refer to all the

logic of a Kafka Streams application

2. Kafka Streams applications act as consumers

3. Kafka Streams applications run on Kafka brokers

4. The input data to Kafka Streams can directly come from

anywhere

5. Kafka Streams applications act as producers

6. Streams can be changed

7. A processor can take more than one stream as its input

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 260

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

More on Data Flow with Kafka Streams Apps

The above graphic that shows a message moving around in a possible use case:

1. A message originates on a producer, and is tagged as part of the orders topic. The

producer’s partitioner selects partition 1 for this message.

2. The message is sent to the Kafka cluster. It is written to the log for partition 1 of orders,

which is on broker 104.

3. A Kafka Streams app is running and it has a KStream subscribed to the topic orders in

the cluster. The message makes it to this stream.

4. In the topology of the Kafka Streams app, there is a filter processor that chooses only

those orders that contain items that fit some promotion and puts them in a new filtered

stream. Our message gets put into this stream.

5. The stream topology has a sink processor that writes to a new topic in Kafka for the

filtered orders. That topic happens to have one partition, and that partition lives on broker

103. A copy of our message is written there.

6. We see two consumer groups:

◦ One for processing orders, subscribed to the original topic. Consumer 2 consumes the

message from the original topic.

◦ One for processing orders that were filtered into the stream of orders that contain

promotional items. Consumer 3 consumes the message from the topic that is the sink

topic from our Kafka Streams app.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 261

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

08c: A Taste of the Kafka Streams DSL

Description

Defining the DSL. Getting streams from Kafka topics in code. Examples of some stateless

operations with code: filter, map(Values), flatMap(Values). Stateful operation examples:

groupBy and count. Writing a stream back to Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 262

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Write KafkaStreams DSL code to source a stream or table

from a Kafka topic.

• Write KafkaStreams DSL code to perform a simple stateless

operation.

• Choose the best operation given a list of five choices and a

task.

• Write KafkaStreams DSL code to perform a simple stateful

operation.

• Write KafkaStreams DSL code to send a stream to Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 263

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Interacting with Kafka Streams: the DSL

Two ways to interact with Kafka Streams:

• Domain Specific Language (DSL) ← our focus

• Processor API (PAPI)

We’ll look at the DSL for interacting with Kafka Streams here. It is the most common way

to write Kafka Streams applications.

The PAPI allows for a bit more granularity. Both are covered in more detail in the 3-day

stream processing course.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 264

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Getting Streams and Tables from Kafka

This is how we implement a source processor.

Use the StreamsBuilder class and operations stream() and table().

Objects:

StreamsBuilder builder;
KStream<Integer, String> driverPosStream;
KTable<Integer, String> driverProfiles;

Creating entities:

builder = new StreamsBuilder();
driverPosStream = builder.stream("driver_positions");
driverProfiles = builder.table("driver_profiles");

Note here:

• Like with KafkaProducer and KafkaConsumer objects, we provide the data types of the

keys and values when creating instances of KStream and KTable. (It’s not a direct

analogy; a KafkaStreams application can use multiple KStream and/or KTable objects).

• We use an instance of StreamsBuilder to source our streams and tables from Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 265

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Filtering a Stream (Stateless Operation)

filter Creates a new KStream containing only records from the input KStream
which meet some specified criteria

largePurchases = purchases.filter((key,value) -> value.amount > 50.0);

Declaration of object for ex:

KStream<String, Double> largePurchases;

The filter method is the equivalent of WHERE in a SQL statement.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 266

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Mapping (Stateless Operation)

mapValues Creates a new KStream by transforming the value of each element in the

input stream into a different element in the output stream. Use when only

transforming the value.

fahrStream = celsiusStream.mapValues(value -> value*9.0/5.0 + 32);

map Creates a new KStream by transforming each element in the input stream

into a different element in the output stream. Use this if you must change

the key.

fahrStreamByCity
 = celsiusStream.map((key,value)
 ->
 new KeyValue<>(cityFromZIP(key),
 value*9.0/5.0 + 32));

Declaration of objects for ex:

KStream<Integer, Double> fahrStream;
KStream<String, Double> fahrStreamByCity;

The map method is the equivalent of SELECT in a SQL statement.

Note that while map will work when you only need to compute a new value, you should use it

only when you need to compute new keys too.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 267

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Mapping, Part 2 (Stateless Operation)

flatMapValues Creates a new KStream by transforming the value of each element in

the input stream into zero or more elements in the output stream.

Only changes value.

factoredStream
 = numbersStream.flatMapValues(value
 -> getPrimeFactors(value));

flatMap Creates a new KStream by transforming each element in the input

stream into zero or more elements in the output stream. Use this if

you must change the key.

Declaration of object for ex:

KStream<Integer, Integer> factoredStream;

The difference between these operations and the prior set is that here each input event can

yield multiple output events. With map and mapValues, there is a one-to-one mapping of

input to output events, whereas here, it is more general.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 268

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Transforming a Bank Account Stream

Suppose you have a stream where:

• keys of events are bank account numbers

• values of events are delimited strings containing several transactions

for the account whose number is the key

You want a corresponding stream where each event:

• has a key that is a bank account number

• has a value that is a single transaction

Your quest:

1. Among all the functions we looked at in the DSL, which can solve this?

Which can’t? Which is best?

2. What would you do if you want the stream to contain only those

transactions involving over $100?

Example input record and corresponding output records:

input:
key: 3204230930
value: 11/2/2021, Amazon, $22 | 11/3/2021, McDonald’s, $205.78 | 11/3/2021, Grubhub,
$122.12

output:
key: 3204230930
value: 11/2/2021, Amazon, $22

key: 3204230930
value: 11/3/2021, McDonald’s, $205.78

key: 3204230930
value: 11/3/2021, Grubhub, $122.12

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 269

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Grouping and Counting (Stateful Example)

count Counts the number of instances of each key in the stream; results in a

new, ever-updating KTable

stream.groupByKey()
 .count()

• For a comprehensive resource on Kafka Streams, see

https://docs.confluent.io/current/streams/developer-guide/index.html

• For API details, see https://www.javadoc.io/doc/org.apache.kafka/kafka-

streams/latest/index.html

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 270

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/streams/developer-guide/index.html
https://www.javadoc.io/doc/org.apache.kafka/kafka-streams/latest/index.html
https://www.javadoc.io/doc/org.apache.kafka/kafka-streams/latest/index.html

Writing A Stream to Kafka

To implement a sink processor, call the to method on a KStream.

Example:

fahrStream.to("temp_readings_fahr");

 A KTable needs to be converted to a KStream first

Convert a KTable to a KStream using the toStream() method, e.g.

vehicleMakesTally.toStream().to("vehicle_makes_tally_topic");

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 271

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

08d: How Do You Put Together a Kafka

Streams App?

Description

The five parts of a Kafka Streams application overall. Code examples of three parts we

haven’t seen, then a full example of a stateless application and a stateful one.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 272

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Write KafkaStreams DSL code to source a stream or table

from a Kafka topic.

• Write KafkaStreams DSL code to perform a simple stateless

operation.

• Choose the best operation given a list of five choices and a

task.

• Write KafkaStreams DSL code to perform a simple stateful

operation.

• Write KafkaStreams DSL code to send a stream to Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 273

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka Streams Application Anatomy

Five parts:

1. Imports

2. Configuration

3. Topology

4. Create and start Kafka Streams application

5. Graceful shutdown

Note that everything we looked at in the last lesson was part of the topology.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 274

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Running Example

In a prior lesson, we solved this problem…

Suppose you have a stream where:

• keys of events are bank account numbers

• values of events are delimited strings containing several transactions for the

account whose number is the key

You want a corresponding stream where each event:

• has a key that is a bank account number

• has a value that is a single transaction

We will be working in the same context for all of our examples in this lesson.

Here we just reiterate the problem we’ll solve.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 275

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

SerDes

One quick note before we dive in…

• With producers, we need to specify serializers

• With consumers, we need to specify deserializers

• Streams apps both consume and produce…

• … need both

• … hence SerDes = Serializers and Deserializers

In Kafka Streams apps, we must allow for both serialization and deserialization, so we

specify SerDes.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 276

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example: Defining Configuration

 1 public static Properties getConfig()
 2 {
 3 Properties config = new Properties();
 4
 5 // Give the application a name, which must be unique in the cluster
 6 config.put(StreamsConfig.APPLICATION_ID_CONFIG,
 7 "simple-streams-example");
 8
 9 // Connect to cluster
10 config.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
11 "broker-1:9092, broker-2:9092");
12
13 // Specify default (de)serializers for record keys and for record values.
14 config.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,
15 Serdes.Integer().getClass());
16 config.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,
17 Serdes.String().getClass());
18
19 return config;
20 }

One important step in creating a Streams app is defining its configuration. We do so here in

a method that returns the configuration. Note that:

• The application ID, set on Lines 6 and 7, is used to group together multiple instances for

high availability and scalability.

• We specify bootstrap servers on Lines 10 and 11 as a way to identify the Kafka cluster

from which this Streams app gets data and to which it writes data.

• Lines 14 through 17 show the SerDes for key and value.

◦ In this example, the data types will be the same for the inbound and outbound

messages.

◦ We can specify SerDes for individual actions, but in this case, we don’t have to. Hence

using DEFAULT SerDes works fine.

• We often want to set it so a Streams app processes all records from the beginning, not

only newly-arriving records. To do so, we’d add the config
config.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");


Usually it is not recommend to define default, application-scoped SerDes, unless

you’re sure they’re the only SerDes needed for the whole application!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 277

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example: Defining Topology (Stateless)

 1 public static Topology getTopology()
 2 {
 3 StreamsBuilder builder;
 4 KStream<Integer, String> delimTransStream;
 5 KStream<Integer, String> indTransStream;
 6 Topology result;
 7
 8 builder = new StreamsBuilder();
 9
10 // Source processor: get stream from Kafka topic
11 delimTransStream = builder.stream("delim_transactions_topic");
12
13 // Internal processor: break up the stream
14 indTransStream = delimTransStream.flatMapValues(value -> split(value, "|"));
15
16 // Sink processor: new stream back to new Kafka topic
17 indTransStream.to("individual_transactions_topic");
18
19 // Generate and return topology
20 result = builder.build();
21 return result;
22 }

In this example, the textLines KStream object is created by consuming the topic

delim_transactions_topic. The stream delimTransStream is transformed by

flatMapValues to break up the grouped transaction, resulting in the KStream object called

indTransStream. That resulting KStream is then produced to the topic

individual_transactions_topic.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 278

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Stateless Example: Main Program

Here we bring together the prior two results and do Steps 4 and 5 of the anatomy:

 1 public static void main(String[] args) throws Exception
 2 {
 3 // Create a streams application based on config & topology defined already
 4 KafkaStreams streams = new KafkaStreams(getTopology(), getConfig());
 5
 6 // Run the Streams application via `start()`
 7 streams.start();
 8
 9 // Stop the application gracefully
10 Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
11 }

The Streams application as a whole can be launched just like any normal Java application

that has a main() method.

On the previous slides, we defined the configuration and topology for the application in

helper methods. Here, we pass both to the KafkaStreams initializer constructor to create

our Streams app.

Then we start the app and provide a shutdown hook to allow it to terminate gracefully.

Tweaking the Shut Down Behavior

This is a simple presentation of a shutdown hook. A more robust implementation could do

this by introducing a CountDownLatch with count 1 to prevent the main application thread

from closing before the shutdown hook has had a chance to gracefully clean up. After the

Streams app closes, the latch counts down to 0 so that the main application thread can

close. Starting the Streams app would come after setting up the shutdown hook in such a

case. Here’s a function to implement this:

1 private static void setupShutdownHook(KafkaStreams streams, CountDownLatch latch)
2 {
3 Runtime.getRuntime()
4 .addShutdownHook(
5 new Thread(() -> {streams.close();
6 latch.countDown();}));
7 }

Using this would change our main function to look like this:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 279

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

 1 public static void main(String[] args) throws Exception
 2 {
 3 KafkaStreams streams;
 4
 5 Properties config = getConfig();
 6 Topology topology = getTopology();
 7
 8 final CountDownLatch latch = new CountDownLatch(1);
 9
10 try
11 {
12 streams = startApp(config, topology);
13 setupShutdownHook(streams, latch);
14 latch.await();
15 }
16 catch (final Throwable e)
17 {
18 System.exit(1);
19 }
20 System.exit(0);
21 }

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 280

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example: Defining Topology (Stateful)

Now let’s look at example of stateful processing. We use the same configuration, but a new

topology.

 1 public static Topology getTopology()
 2 {
 3 StreamsBuilder builder;
 4 KStream<Integer, String> delimTransStream;
 5 KStream<Integer, String> indTransStream;
 6 KTable<Integer, Integer> transByAcctTally;
 7 Topology result;
 8
 9 builder = new StreamsBuilder();
10
11 // Source processor: get stream from Kafka topic
12 delimTransStream = builder.stream("delim_transactions_topic");
13
14 // Internal processor: break up the stream
15 indTransStream = delimTransStream.flatMapValues(value -> split(value, "|"));
16
17 // Group transactions by account number and count
18 transByAcctTally = indTransStream.groupByKey()
19 .count();
20
21 // Sink processor: convert table to stream, then write to new Kafka topic
22 transByAcctTally.toStream()
23 .to("acct_activity_tally_topic",
24 Produced.with(Serdes.Integer(), Serdes.Integer());
25
26 // Generate and return topology
27 result = builder.build();
28 return result;
29 }

We have a stateful application, so, you might wonder…

1. What is stateful about this?

We are keeping track of a tally of transactions by account, so that state is saved.

2. How is that state saved?

It uses something called a state store. Kafka state stores are implemented using a

technology called RocksDB.

Let’s hone in on Line 19 for a moment. An improvement might be this:

19 .count("CountsByAccount");

Here we use a string argument to counts() to specify the name of the state store. This can

prove helpful in more advanced development; one reason is that if we use tools to debug our

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 281

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

topology, it will be more readable this way (otherwise, Kafka Streams names state stores).

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 282

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Stateful Example: Main Program

Our main program is identical to the prior example; only the topology is different.

 1 public static void main(String[] args) throws Exception
 2 {
 3 // Create a streams application based on config & topology defined already
 4 KafkaStreams streams = new KafkaStreams(getTopology(), getConfig());
 5
 6 // Run the Streams application via `start()`
 7 streams.start();
 8
 9 // Stop the application gracefully
10 Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
11 }

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 283

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Going Further

• This is just a taste of Kafka Streams

• Consider more training:

◦ Instructor-led course Stream Processing using Apache Kafka® Streams and Confluent

ksqlDB

• Consider reading:

◦ Documentation on our website

◦ Kafka Streams in Action book (William Bejeck)

Developer Guide on Writing a Streams Application.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 284

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/streams/developer-guide/write-streams.html

Lab: Kafka Streams

Please work on Lab 8a: Kafka Streams

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 285

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

09: Introduction to ksqlDB

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 286

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains four lessons:

a. What Does a Kafka Streams App Look Like in

ksqlDB?

b. What are the Basic Ideas You Should Know

about ksqlDB?

c. How Do Windows Work?

d. How Do You Join Data from Different Topics,

Streams, and Tables?

Where this fits in:

• Hard Prerequisite: Introduction to Streaming and

Kafka Streams

• Recommended Follow-Up: Kafka Connect

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 287

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

09a: What Does a Kafka Streams App Look

Like in ksqlDB?

Description

Creating a ksqlDB app analogous to an example Kafka streams application.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 288

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Read a simple ksqlDB application.

• Compare a simple ksqlDB application to an equivalent Kafka

Streams application.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 289

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Recall…

Last module, we arrived at a Kafka Streams application to read in grouped transactions

from a topic, split them, tally by account number, and write out to Kafka. More practically,

maybe we read in individual transactions, so here’s a slightly simplified version of that

application:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 290

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

 1 public class KStreamEx
 2 {
 3 public static Properties getConfig()
 4 {
 5 Properties config = new Properties();
 6
 7 // Give the application a name, which must be unique in the cluster
 8 config.put(StreamsConfig.APPLICATION_ID_CONFIG,
 9 "simple-streams-example");
10
11 // Connect to cluster
12 config.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
13 "broker-1:9092, broker-2:9092");
14
15 // Specify default (de)serializers for record keys and for record values.
16 config.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,
17 Serdes.Integer().getClass());
18 config.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,
19 Serdes.String().getClass());
20
21 return config;
22 }
23
24 public static Topology getTopology()
25 {
26 StreamsBuilder builder;
27 KStream<Integer, String> indTransStream;
28 KTable<Integer, Integer> transByAcctTally;
29 Topology result;
30
31 builder = new StreamsBuilder();
32
33 // Source processor: get stream from Kafka topic
34 indTransStream = builder.stream("transactions_topic");
35
36 // Group transactions by account number and count
37 transByAcctTally = indTransStream.groupByKey()
38 .count();
39
40 // Sink processor: convert table to stream, then write to new Kafka topic
41 transByAcctTally.toStream()
42 .to("acct_activity_tally_topic",
43 Produced.with(Serdes.Integer(), Serdes.Integer()));
44
45 // Generate and return topology
46 result = builder.build();
47 return result;
48 }
49
50 public static void main(String[] args) throws Exception
51 {
52 // Create a streams application based on config & topology defined already
53 KafkaStreams streams = new KafkaStreams(getTopology(), getConfig());
54
55 // Run the Streams application via `start()`
56 streams.start();
57
58 // Stop the application gracefully
59 Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
60 }
61 }

Let’s do the same thing with ksqlDB!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 291

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Get a Stream from a Kafka Topic

Here’s how we get our stream from our source Kafka topic:

CREATE STREAM ind_trans_stream (acct_id INT KEY, amount DOUBLE, details VARCHAR)
 WITH (VALUE_FORMAT = 'JSON', KAFKA_TOPIC = 'transactions_topic');

Notes:

• In ksqlDB, a STREAM is the same thing as a Kafka Streams KStream

• We’ll use the CREATE STREAM … WITH construct to do what we did with StreamsBuilder
and builder.stream()

• A STREAM has a key and a value, like a KStream

• Everything that’s not the key is part of the value

◦ How the value is stored is determined by VALUE_FORMAT in the WITH clause. Using JSON
as the choice is rather common.

We can also use a DELIMITED VALUE_FORMAT and supply a VALUE_DELIMITER. Here’s an

example you will see in lab:

CREATE TABLE DRIVER (driverkey VARCHAR PRIMARY KEY, firstname VARCHAR,
 lastname VARCHAR, make VARCHAR, model VARCHAR)
 WITH (KAFKA_TOPIC='driver-profiles-ksql',
 VALUE_FORMAT='delimited', VALUE_DELIMITER='|');

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 292

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Write a SQL Query to Group & Count

In our streaming topology in Kafka Streams, we grouped by key and counted. Here’s the

equivalent in ksqlDB:

SELECT acct_id, count(*)
FROM ind_trans_stream
GROUP BY acct_id;

Indeed, this looks just like SQL. But… we also stored our results in a table. Let’s do that too:

CREATE TABLE trans_by_acct_tally AS
 SELECT acct_id, count(*)
 FROM ind_trans_stream
 GROUP BY acct_id;

Here again you see a CREATE statement, this time creating as the result of a query.

The construct you see - CREATE TABLE … AS SELECT is often abbreviated "CTAS" and

persists the table to memory. If we didn’t do this, the results would show up in whatever UI

we’re executing the query, but that’s it.

There exists an equivalent CREATE STREAM … AS SELECT or "CSAS."

Read on…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 293

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

We’re Done! Wait, what?

Yes, we’re done!

What about this:

39 transByAcctTally.toStream()
40 .to("acct_activity_tally_topic",
41 Produced.with(Serdes.String(), Serdes.Long()));

It turns out any TABLE made with a CTAS is

• known to the ksqlDB server by the given name, trans_by_acct_tally in this case

• persisted to a Kafka topic of the same name

So we don’t need to do any extra work to write to a Kafka topic!

We can consume from the topic trans_by_acct_tally from a Kafka consumer. We could

also wire up a Kafka Connect connector to write its contents out to another system (but…

stay tuned…).

The equivalent applies to streams, i.e., any STREAM made with a CSAS is

• known to the ksqlDB server by the given name

• persisted to a Kafka topic of the same name

Big Observation: Notice how little code we needed in ksqlDB to do the same thing we did in

Kafka Streams. Now, before you get too excited, this requires that we have a ksqlDB server

running and configured to connect to the correct Kafka cluster, but we don’t do the

connection on a per-app basis and group management is done at the server level, not at the

app level.

Compare…

Our Kafka Streams app read in individual transactions, so here’s a slightly simplified version

of that application:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 294

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

 1 public class KStreamEx
 2 {
 3 public static Properties getConfig()
 4 {
 5 Properties config = new Properties();
 6
 7 // Give the application a name, which must be unique in the cluster
 8 config.put(StreamsConfig.APPLICATION_ID_CONFIG,
 9 "simple-streams-example");
10
11 // Connect to cluster
12 config.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
13 "broker-1:9092, broker-2:9092");
14
15 // Specify default (de)serializers for record keys and for record values.
16 config.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,
17 Serdes.Integer().getClass());
18 config.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,
19 Serdes.String().getClass());
20
21 return config;
22 }
23
24 public static Topology getTopology()
25 {
26 StreamsBuilder builder;
27 KStream<Integer, String> indTransStream;
28 KTable<Integer, Integer> transByAcctTally;
29 Topology result;
30
31 // Source processor: get stream from Kafka topic
32 indTransStream = builder.build("transactions_topic");
33
34 // Group transactions by account number and count
35 transByAcctTally = indTransStream.groupByKey()
36 .count();
37
38 // Sink processor: convert table to stream, then write to new Kafka topic
39 transByAcctTally.toStream()
40 .to("acct_activity_tally_topic",
41 Produced.with(Serdes.String(), Serdes.Long()));
42
43 // Generate and return topology
44 result = builder.build();
45 return result;
46 }
47
48 public static void main(String[] args) throws Exception
49 {
50 // Create a streams application based on config & topology defined already
51 KafkaStreams streams = new KafkaStreams(getTopology(), getConfig());
52
53 // Run the Streams application via `start()`
54 streams.start();
55
56 // Stop the application gracefully
57 Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
58 }
59 }

Here’s the ksqlDB app equivalent to the above Kafka Streams app:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 295

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

CREATE STREAM ind_trans_stream (acct_id INT KEY, amount DOUBLE, details VARCHAR)
 WITH (VALUE_FORMAT = 'JSON', KAFKA_TOPIC = 'transactions_topic');

CREATE TABLE trans_by_acct_tally AS
 SELECT acct_id, count(*)
 FROM ind_trans_stream
 GROUP BY acct_id;

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 296

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Two More Examples

Let’s do just a little more comparison, bring back some examples from the Kafka Streams

module.

We talked about filtering, so here’s a simple filter:

CREATE STREAM big_transaction_amounts AS
 SELECT acct_id, amount
 FROM ind_trans_stream
 WHERE amount > 100

And here’s filtering and aggregating together:

CREATE TABLE trans_by_acct_tally AS
 SELECT acct_id, count(*)
 FROM ind_trans_stream
 WHERE amount > 100
 GROUP BY acct_id;

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 297

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: ksqlDB First Impressions

Rapid Response!

Take one minute for this.

Grab a post-it note and write down one thing you learned

about ksqlDB from the examples in this lesson.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 298

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

09b: What are the Basic Ideas You Should

Know about ksqlDB?

Description

What ksqlDB is, how it fits in, persistent vs. non-persistent queries, push vs. pull queries, and

summarizing basic syntax.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 299

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe where Kafka Streams and ksqlDB fit in with the

Producer and Consumer APIs.

• List a few basic things one can do with ksqlDB SQL.

• Make a ksqlDB query persist.

• Differentiate between push and pull queries and write basic

of each.

• Interact with ksqlDB via the ksqlDB CLI.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 300

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Introducing ksqlDB

So, we’ve seen we can do some things we can do with Kafka Streams simpler with ksqlDB.

simple flexible

Producer/ConsumerKafka Streams APIksqlDB

We learned about the producer and consumer APIs before to write to and read from Kafka.

This is where it all started and the most basic way to interact with Kafka. It is also the way

that gives you the most control: with the producer and consumer APIs, you have a lot of

flexibility in the kinds of things you can do with your data.

In the last module, we learned about Kafka Streams. Kafka Streams is built on top of the

producer and consumer APIs and thus brings along their benefits. It allows you to interact

with the data in Kafka just like producers and consumers, but:

• You can achieve an objective with Kafka Streams using less code than core producers and

consumers

• What you’re trying to do with Kafka Streams has to be achievable with with DSL or PAPI;

put differently, you cannot do everything you can do with producers and consumers.

Here, we introduce ksqlDB, which evolved from KSQL. While ksqlDB is current and powerful,

we specifically mention KSQL here, as it was initially created as a more accessible way of

doing what you can do with Kafka Streams. Honing in on that for now, as you saw in the

last lesson where we wrote ksqlDB SQL code to do the same thing as a KafkaStreams

application…

• You can achieve an objective in ksqlDB SQL that you can with Kafka Streams

• What you’re trying to do with ksqlDB SQL has to be something you can express in a SQL-

like syntax; this limits you further [1]

Summarizing, we get a continuum visualized on this slide:

• As you go right, you write more code to do something, but there are more things you can

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 301

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

achieve

• As you go left, you write less code to do something, but there are fewer things you can

achieve

We strive to expose you to the three options in this course and equip you to choose the tool

that lets you solve the problems you are trying to solve.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 302

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

ksqlDB SQL

• Designed to be accessible to you if you’ve worked with most flavors of SQL

• Standard SELECT, FROM clauses

• Standard aggregation with GROUP BY

• Standard filtering with WHERE and HAVING

• Many popular scalar functions

• More functions specific to ksqlDB, e.g., EXTRACTJSONFIELD(…)

• Working with STREAM and TABLE objects, not just tables

• Saving STREAM and TABLE objects…

• Windowing capabilities…

• Joining capabilities…

You can view the full ksqlDB documentation for more details.

You can specifically view a list of all functions ksqlDB supports.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 303

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.ksqldb.io/en/latest/reference/
https://docs.ksqldb.io/en/latest/developer-guide/ksqldb-reference/functions/

Push vs. Pull Queries

Push Queries

a.k.a. Continuous Queries

Pull Queries

a.k.a. Point-in-Time Queries

• Does what Kafka Streams can do…

• .. but with ksqlDB syntax

• As stream gets new results, so does query

• Needs EMIT CHANGES

• Look up value in materialized table

• One result set

This the first of two ways of classifying queries.

Push queries are the kind that do what you could do with a Kafka Streams application but

with a SQL-like syntax.

Pull queries let you look up data at a given point in time. Note that pull queries are a feature

that is new to ksqlDB and was not in KSQL.

Our examples in this module will all be push queries.

Note that even though push queries are called push queries, under the hood, they’re using

Kafka Streams streams and using the standard pull architecture of Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 304

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Push Queries: Non-Persistent vs. Persistent Queries

We can further break down push queries:

Non-Persistent Queries Persistent Queries

• Results shown in CLI or Confluent Control

Center

• Results don’t get saved anywhere

• SELECT

• Results are persisted to a named STREAM
or TABLE

• Created with one of:

◦ CREATE STREAM … AS SELECT

◦ CREATE TABLE … AS SELECT

• STREAM or TABLE…

◦ …can be queried in another statement

◦ …backed up to Kafka topic with same

name

This the second of two ways of classifying queries. You may recall in our transition lesson on

the "Write a SQL Query to Group & Count" slide, we started with a SELECT statement that

just displayed results and then adapted it to save them too. We went from a non-persistent

query to a persistent query.

Note that with persistent queries, the STREAM or TABLE is backed up to Kafka with a topic of

the same name. You don’t need a separate step to write out to Kafka like with Kafka

Streams. You can query that topic directly.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 305

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Going Further

We have scratched the surface in this lesson. Next, we will…

1. Do a lab to play with the basics of ksqlDB interactively

2. Learn about windowing in ksqlDB (…and Kafka Streams)

3. Learn about joins in ksqlDB (…and Kafka Streams and Kafka)

Beyond this course, there is much more depth on ksqlDB and Kafka Streams in the course

Stream Processing using Apache Kafka® Streams and Confluent ksqlDB.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 306

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: ksqlDB Exploration

Please work on Lab 9a: ksqlDB Exploration

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 307

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

09c: How Do Windows Work?

Description

The three kinds of windows and comparing them. Examples that illustrate tumbling vs.

hopping. Code examples in Kafka Streams and ksqlDB.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 308

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Compare tumbling and hopping windows.

• Give a use case for each.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 309

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Windowing Modes in Kafka Streams and ksqlDB

time

events

window n window n+1 window n+2

Tumbling

SIZE

SIZE

ADVANCE BY

window n window n+1 window n+2

Hopping

time

events

window n window n+1

Session

t > SESSION TIMEOUT

events

time

 ksqlDB is built on Kafka Streams → similar windowing behavior in both

We see here three kinds of windows supported by Kafka Streams and ksqlDB.

We’ll go deeper into the first two on the coming slides.

As for session windows, a typical use case is analyzing user behavior where periods of

inactivity indicate different sessions of interacting with a web site or software in general.

Note: Kafka Streams supports a fourth type of window: sliding, but ksqlDB does not (as of

2022-03-23). This is meant to be a brief introduction to windowing, so we leave that for the

Stream Processing with Apache Kafka Streams and Confluent ksqlDB course, along with a

deeper treatment of session windows.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 310

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://developer.confluent.io/tutorials/sliding-windows/kstreams.html

Tumbling Windows Example

In ksqlDB SQL, to do windowing, we simply add a WINDOW clause to a query.

We specify the type of window in the clause, e.g.,

CREATE TABLE song_sales_report AS
 SELECT song, artist, count(*)
 FROM song_sales_stream
 WINDOW TUMBLING (SIZE 604800 SECONDS)
 GROUP BY song
 LIMIT 10;

Here, song_sales_stream tracks sales of songs on a digital music purchasing service.

This query gives a weekly report of songs and their sales.

Weekly top songs lists or "top anything" lists are common; tumbling windows can generate

them.

We show here only 10 results. Note that this is not a top 10; generating such a report would

require use of the TOPK function. (We cover this in the course Stream Processing using

Apache Kafka® Streams and Confluent ksqlDB.)

One could say tumbling windows has the following semantic: group everything "every x

amount of time" / "by x amount of time."

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 311

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Another Example: Fraud Detection

Consider the following query and example:

Query: Example timeline:

CREATE TABLE possible_fraud AS
 SELECT card_number, count(*)
 FROM authorization_attempts
 WINDOW TUMBLING (SIZE 5 SECONDS)
 GROUP BY card_number
 HAVING count(*) > 3
 EMIT CHANGES;

0 1 2 3 4 5 6 7 8 9 10

(Each * represents an

authorization attempt.)

Question: Will the query report possible fraud?

Virtual Classroom Poll:

fraud

detected

fraud NOT

detected

This slide goes hand-in-hand with the next.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 312

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Another Example: Fraud Detection, continued

Let’s change the query to use hopping windows instead:

CREATE TABLE possible_fraud AS
 SELECT card_number, count(*)
 FROM authorization_attempts
 WINDOW HOPPING (SIZE 5 SECONDS,
 ADVANCE BY 1 SECOND)
 GROUP BY card_number
 HAVING count(*) > 3
 EMIT CHANGES;

0 1 2 3 4 5 6 7 8 9 10

Question: Will the query report possible fraud?

Virtual Classroom Poll:

fraud

detected

fraud NOT

detected

Here we see the same query using tumbling windows and hopping windows. From what you

learn from the discussion, which is better and why? When do hopping windows apply?

One could say that hopping window has the following semantic: group together what

happened "in the last x amount of time" (with a new window every y time).

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 313

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka Streams Windowing Example & Beyond

We can do the same thing in Kafka Streams. It requires more details, but, assuming we have

a special entity called a KGroupedStream called grouped_auth_attempts, it might go like

this:

1 possible_fraud
2 = grouped_auth_attempts.windowedBy(TimeWindows.of(Duration.ofSeconds(5))
3 .advanceBy(Duration.ofSeconds(1))
4 .aggregate(...);


The details of aggregate are covered in our 3-day Stream Processing with

Apache Kafka® Streams and Confluent ksqlDB course, along with more details

on windowing, like session windows.

As noted before, ksqlDB is built on top of Kafka Streams. So, here were see how to write the

credit card fraud example using Kafka Streams.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 314

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Applying Windowing

Think of an example of an application in your work for which

either tumbling or hopping windows would make sense over

the other and why.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 315

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

09d: How Do You Join Data from Different

Topics, Streams, and Tables?

Description

What a join is, what it looks like in ksqlDB, what it looks like in Kafka Streams, and co-

partitioning requirements of underlying topics.

This is an important lesson, even if you don’t think you’re using streams. While this appears

with ksqlDB, this lesson addresses relating data across topics in consumers and Kafka

Streams apps as well - and important partitioning considerations you should keep in mind in

designing topics.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 316

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Explain requirements of topics for joining data, regardless of

where that join is done.

• Join a stream with a table.

• Relate joining between ksqlDB and KafkaStreams and core

Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 317

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Joins

• Idea: want to bring together…

a. related information from a topic and another topic

b. a stream and another related stream

c. a stream and a related table

d. two related tables

• Easy to do in Kafka Streams

• Easier to do in ksqlDB

• Different kinds of joins available

This lesson is designed to tell you about joins and why they’re useful, as well as how your

data needs to be structured in Kafka topics before you get into streaming platforms. For

more on the different kinds of joins, see our Stream Processing with Apache Kafka Streams

and Confluent ksqlDB course.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 318

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Stream-Table Join Example: Setup

Suppose we have Kafka topics containing information about drivers and where they are.

Let’s bring them into our streaming world…

Table of driver information - records give state of the driver:

CREATE TABLE driver_profiles (driver_id INT PRIMARY KEY, name VARCHAR, postal_code
VARCHAR, ...)
 WITH (VALUE_FORMAT = 'JSON', KAFKA_TOPIC = 'driver_profiles');

Stream of driver positions - events are where driver is at each point in time:

CREATE STREAM driver_positions (driver_id INT KEY, latitude DOUBLE, longitude DOUBLE)
 WITH (VALUE_FORMAT = 'JSON', KAFKA_TOPIC = 'driver_positions');

 Each event implicitly has a time associated with it.

Nothing new here; just two more examples of sourcing streams and tables from Kafka. But,

we do this here to set up the example to come.

FYI: TIME info in ksqlDB 0.20.0: https://www.confluent.io/blog/ksqldb-2-0-introduces-date-

and-time-data-types/

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 319

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/blog/ksqldb-2-0-introduces-date-and-time-data-types/
https://www.confluent.io/blog/ksqldb-2-0-introduces-date-and-time-data-types/

Stream-Table Join Example: Join

Now let’s bring the two together:

CREATE STREAM driver_positions_enriched AS
 SELECT pos.driver_id,
 pos.latitude,
 pos.longitude,
 prof.name,
 prof.postal_code,
 ...
 FROM driver_positions pos LEFT JOIN driver_profiles prof
 ON pos.driver_id = prof.driver_id
 EMIT CHANGES;

 Again, each event implicitly has a time associated with it.

We saw this example in our conceptual look at streaming topologies in the Kafka Streams

module. Here’s the ksqlDB code to join driver position info with driver profile info.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 320

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Requirements (1)

Recall the module Groups, Consumers, and Partitions in Practice.

Question: What was the point of the range partition assignment strategy?

Question: What needed to be true of the topics whose partitions were involved?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 321

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Requirements (2)

Co-partitioning!

To join two entities, they must:

• have the same number of partitions

• use the same partitioning strategy

• use the same set of keys

 This applies to the underlying Kafka topics used to source our streams or tables.

It’s not just joining in streaming; it’s design from the start. If you plan on relating two topics

with consumers or Kafka Streams or ksqlDB or [insert something else that may not even

exist], you should be thinking about how you partition those topics from the start. If you

want to bring them together ultimately, how they are structured will need to be the same to

do so. Do you have them designed that way from the start? Or do you repartition later

(beyond the scope of this course) — at a cost of performance and effort (and is it possible)?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 322

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Stream-Stream Inner Join in ksqlDB

We can also join a stream with a stream, e.g.

CREATE STREAM need_a_name_here AS
 SELECT *
 FROM stream_a a JOIN stream_b b
 ON a.key = b.key
 WITHIN 5 seconds
 EMIT CHANGES;

Note that when joining a stream with a stream, we need to specify a window. This example

shows that.

Why do we need to specify a window? Stream events are processed in real-time, as they

appear. Imagine that you have a marker on one hand, and its cap on the other, then you

throw them up and try to catch them to "join" them. What’s the probability of catching

them both at exactly the same time? Chances are that you’re going to catch one after the

other; if you can catch them in a short period of time then you can join them (this is the join

window).

Note again, the takeaway from this lesson is less about the syntax and more about the

capabilities of streaming applications and how you should plan your Kafka topic design from

the start if you hope to join topics in any way.

Check out the documentation for more on this.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 323

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.ksqldb.io/en/latest/developer-guide/joins/join-streams-and-tables/

Stream-Stream Inner Join in Kafka Streams

We can do the same thing in Kafka Streams.

Say we have the following and we build them as normal:

1 KStream<...> streamA;
2 KStream<...> streamB;

Then the following code shows how to join the streams:

15 joinedStream = streamA.join(streamB,
16 (valA, valB) -> doStuff(valA, valB),
17 JoinWindows.of(Duration.ofSeconds(5)),
18 Joined.with(...));

Don’t worry about all of the details here, but note that:

• We use a lambda to specify what the value of joined records will be.

• Records from the left stream and the right stream will be in the joined output if…

◦ They have the same key (implicit)

◦ They occur within 5 seconds — as specified in Line 17 — of one another

• Joining uses state stores under the hood to do its work, hence we specify serdes in Line 18.

In order, we give series for…

1. The key — the same type for both streams

2. The value of events in the left stream

3. The value of events in the right stream

For more on joins in Kafka Streams and ksqlDB, consider our Stream Processing with

Apache Kafka® Streams and Confluent ksqlDB course.

Enrichment: More on Timing

You may be curious about the timing issue. Here’s a concrete example.

Suppose this is our left stream:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 324

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

b 10 a 7 c 105 d 16 c 12 d 200

Suppose this is right stream:

c 1 c 2 b 3 c 4 c 5 c 6

Question: If we consider the record c/105 at time 18 and have a join window of time 5, which

records in the right stream will be joined with it?

Answer: We look backward 5 time units - so the lower bound of the window is 13 - and we

look forward 5 time units - so the upper bound of the window is 23. Join windows are

inclusive of both endpoints. We’re looking in that window for records with the key of c, so

here are our matches:

c/105 joined with c/2
c/105 joined with c/4
c/105 joined with c/5

Note that with JoinWindows.of(), the join looks for records with the same key both before

and after the time of each event in the left stream for matching events in the right stream.

If you wanted to look in one direction only, you could alternatively use

JoinWindows.after() or JoinWindows.before().

Enrichment: Even More on Timing

Here’s another interesting analogy for why time matters in joins…

Let’s think about this scenario:

• We all know that washing machines hide socks when you wash them. Now, being

developers, we are a bit deranged, so… suppose we had tagged each pair of socks like "left

sock" and "right sock." We wash them separately in two washing machines, and we get

two separate heaps of socks, namely the left and the right heap.

• What should we do now? Well, we have to recreate all the pairs, hence get a left sock and

find the corresponding right sock.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 325

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

• Because we are hyper-technological, we have two treadmills and two automated robot

arms that pick a sock at a time from each of the sock heaps and put them on the

corresponding treadmill - the left and the right.

• The treadmills move in such a way that after a while, each sock on them will fall down into

a rubbish bin if we don’t pick it. Of course, we can pick each of them, if there’s a

corresponding sock on the other treadmill. If this is the case, we pick the two socks,

recreate the pair, and put the pair on a third treadmill - namely, the "emit" treadmill that

will eventually bring the pair into the sock drawer.

So this is another way of thinking about how a stream-stream join works: the socks heaps

represent the two streams, the robot arms show you that you pick constantly one sock at a

time from the stream, and the period of time the sock spends on the treadmill is the window

of time it has to find a match. Either the left or the right sock can come first, and each has a

"treadmill" life-span, to find a match on the other treadmill.

The only difference is that these socks are kind of "magic": even if picked from the treadmill

to create a pair, they keep staying ALSO on the treadmill in case ANOTHER matching sock

will appear on the other treadmill during its lifespan, so it can create another pair.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 326

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Designing for and Applying Joins

Scenario: You ultimately want to join information about temperature

readings that periodically come in with weather stations. Let’s begin

with the setup in Kafka and then jump to ksqlDB…

Question 1: Complete these two commands:

kafka-topics
 --bootstrap-server kafka1:9092, kafka2:9092, kafka3:9092
 --create
 --partitions ____
 --replication-factor 1
 --topic stations

kafka-topics
 --bootstrap-server kafka1:9092, kafka2:9092, kafka3:9092
 --create
 --partitions ____
 --replication-factor 1
 --topic readings

Question 2: What would you use as keys for stations? What would you

use as keys for readings?

Question 3: Complete these two commands:

CREATE ____ station_info (____ INT PRIMARY KEY, city VARCHAR,
country VARCHAR, narrow_loc VARCHAR)
 WITH (VALUE_FORMAT = 'JSON', KAFKA_TOPIC = 'stations');

CREATE ____ readings_stream (___ INT KEY, temp INT)
 WITH (VALUE_FORMAT = 'JSON', KAFKA_TOPIC = 'readings');

Question 4: Complete this command:

CREATE STREAM temp_readings_enriched AS
 SELECT s.city,
 s.country,
 s.narrow_loc,
 r.temp
 FROM readings_stream r ____ station_info s
 ON r.____ = s.____
 EMIT CHANGES;

[1] Don’t give up on ksqlDB right away if you think something could fit a SQL-like style but you don’t expect there’s a built-

in function. ksqlDB has something called user-defined functions (UDFs) that you can add.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 327

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

10: Starting with Kafka Connect

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 328

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains three lessons:

a. What Can You Do with Kafka Connect?

b. How Do You Configure Workers and Connectors?

c. Deep Dive into a Connector & Finding Connectors

Where this fits in:

• Hard Prerequisite: Groups and Consumers in Practice

• Recommended Prerequisite: Introduction to ksqlDB

• Recommended Follow-Up: Applying Kafka Connect

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 329

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

10a: What Can You Do with Kafka Connect?

Description

Motivating what Connect can do and why to use it over self-made solutions. Motivating how

it can “factor out” common behavior yet leverage Connectors. Connectors vs. tasks vs.

workers. Relating Connect to other components of Kafka and how it works at a high level,

e.g., scalability, converters, offsets.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 330

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• List two or three tasks one could achieve with Kafka

Connect.

• Justify why to use Kafka Connect over Producers or

Consumers.

• Explain what a connector is.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 331

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Wanted: Copy Database Table into Kafka

Given: Customer information in a table in a MySQL database.

Goal: Get that data into a Kafka topic customers.

Question: Could you do this using what you’ve learned in this course so far and anything else

you know about Java?

You can solve this problem using

• JDBC to read from the database table

• The KafkaProducer API to produce the rows to the topic.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 332

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Wanted: Copy CSV File Info Into Kafka

Given: Weather station information stored in a flat file, where each row describes one

station.

Goal: Get that data into a Kafka topic stations.

Question: Could you do this using what you’ve learned in this course so far and anything else

you know about Java?

You can solve this problem using

• A file stream in Java to read from the file.

• The KafkaProducer API to produce the rows to the topic.

Hmm… this sounds familiar. In fact, it’s more or less the same problem as the last. The only

thing that’s different is where the data came from. Kafka Connect "factors out" the

common logic for doing the copying. Plugins called connectors handle what is specific to

different external systems, sources in this case.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 333

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Challenges with Writing Your Own Producer to Copy

Data

So, you can write your own producers to copy data from another system to Kafka.

You can write your own consumers to copy data from Kafka to another system.

 BUT…

• It takes time

• You might miss an edge case

• You might miss a bug

• You’d write an application for each external system.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 334

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka Connect to the Rescue!

Kafka Connect does the work for

us!

All copying behavior is in Kafka

Connect.

Plugins called Connectors contain

the logic specific to particular

external systems.
External

Data Source

Source
Connector

Sink
Connector

External
Data Sink

Kafka
Connect

(Cluster)

(Cluster)

The Kafka Connect API is part of core Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 335

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Sources and Sinks

Two kinds of connectors…

Source Connector Sink Connector

Connect Kafka ClusterData
Source

Kafka Cluster Connect Data
Sink

Uses producer API under the hood Uses consumer API under the hood

We note the two kinds of Connectors here.

In fact, Kafka Connect is built on top of what we already know - producers and consumers.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 336

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Players in the Kafka Connect World

Kafka Connect

logic for copying regardless of the external system

Connector

logic for copying specific to/from a given external

system

Task

unit of parallelism into which connector copying logic is

broken up

Worker

process that runs connectors and/or tasks

• A connector has

◦ one or more tasks

• A worker runs

◦ zero or more connectors

◦ zero or more tasks

We’ll use these terms throughout the module. An objective of this lesson is to learn them

and the relationships between them. The activity at the end of the lesson will reinforce this.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 337

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example of a Connect Cluster

connector 1
HDFS sink connector

Worker 2

Connect Cluster

connector 1
task 0

connector 0
task 2

connector 0
task 3

connector 0
JDBC source connector

Worker 0

connector 2
task 0

connector 1
task 1

connector 2
S3 sink connector

Worker 1

connector 0
task 0

connector 0
task 1

Here is an example illustrating a Connect cluster. We see workers running connectors - both

source and sink connectors - and tasks. Kafka’s group management protocol handles which

connector(s) and task(s) are running on each worker.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 338

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Groups Again!

Before Scaling After Scaling

Consumer

Group

Kafka

Consumer Group

partition 0

partition 1

consumer 0

consumer 1

partition 2

partition 3

Consumer Group

consumer 0

consumer 1

consumer 2

consumer 3

Kafka

partition 0

partition 1

partition 2

partition 3

Worker

Group
connector 0

Worker 0

task 0 task 1

Worker 1

task 2 task 3

Database Source Worker Group

table 1

table 3

table 0

table 2

connector 0

Worker 0

task 0

Worker 1

task 1

Worker 2

task 2

Worker 3

task 3Database Source

Worker Group

table 1

table 3

table 0

table 2


Like with consumers, we can add workers to groups and get automatic

balancing.

Recall the module Groups, Consumers, and Partitions, especially the first two lessons.

Workers live in groups just like consumers, and group management happens in the same

way. There is automatic rebalancing when we scale up or a worker dies. Workers heartbeat

to Kafka in the same way as consumers, governed by the same heartbeat.interval.ms
and session.timeout.ms settings. (Defaults are 3 and 45 seconds, respectively, for

consumers, but there is the inconsitency that the default session.timeout.ms for workers

is 10 s.).

Technically, the workers are running tasks, which in turn are connected to the tables.

We’ll go into configuring how many tasks in the next section.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 339

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Example: Suppose we start with a situation like this:

Then a worker fails:

Automatic rebalancing might yield this:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 340

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Powered by Kafka, and Behaving Like Kafka

• Same group management protocol

◦ Failure detection

◦ Scaling up and down

• Producer and consumer under the hood

• Sink connectors maintain consumer offsets → sink offsets

• Source connectors track source offsets

• Data must be serialized and deserialized → converters

Here we see many of the ideas we know from producers and consumers showing up in the

Kafka Connect world.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 341

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Use Cases

SQL

CDC

batch processing

Integrate
Legacy APP

CSV
FILES

secondary indices

data archival

• Example use cases for Kafka Connect include:

◦ Stream an entire SQL database into Kafka

▪ Bulk - load entire table

▪ Change data capture (CDC) - load table changes as they happen

◦ Import CSV files generated by legacy app into Kafka

◦ Stream Kafka Topics into Hadoop File System (HDFS) for batch processing

◦ Stream Kafka Topics into Elasticsearch for secondary indexing

◦ Archive older data in low cost object storage

▪ e.g., Amazon Simple Storage Service (S3)

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 342

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Reviewing Kafka Connect Concepts

Quick Matching Game

For each item on the left, identify which items on the right

apply

1. Connector

2. Task

3. Worker

4. Converter

a. unit of parallelism

b. can be part of a group

c. like a serializer

d. relates to one or more tasks

e. like a deserializer

f. specific to an external system

g. could run a connector


Not all connectors support multiple tasks and parallelism. For example, the

syslog source connector only supports one task.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 343

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

10b: How Do You Configure Workers and

Connectors?

Description

Configuration of workers in distributed mode and configuration of connectors in general.

Quick overview of standalone mode differences.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 344

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Explain how tasks and workers relate to connectors.

• List some performance benefits of using Kafka Connect.

• Explain how partitioning applies to source connectors.

• List and select some appropriate connector configurations.

• List and select some appropriate worker configurations.

• Contrast standalone mode with distributed mode.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 345

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Providing Parallelism & Scalability

external database Kafka BrokerConnect Cluster

Kafka Connect Stream Kafka

Table 0

Table 1

Table 2

Table 3

Task 1
Tables: 0, 1

Task 2
Tables: 2, 3

Topic A
Kafka Partitions:
0, 1, 2, 3, 4, 5

Topic B
Kafka Partitions:
0, 1, 2, 3

Topic C
Kafka Partitions:
0, 1

So

• Splitting the workload into smaller pieces provides the parallelism and scalability.

• Connector jobs are broken down into tasks that do the actual copying of the data.

• Workers are processes running one or more tasks, each in a different thread.

Pictured, we see an external system whose data is imported to Kafka by a source connector.

The source connector defines 2 tasks. The tables are assigned to those tasks. The tasks are

the threads that actually move the data. In this case, Task 1 produces data from the

external system to topics A and B in Kafka. In parallel, Task 2 produces data to topics B and

C. Notice that the number of "Connect Partitions" and the number of "Kafka Partitions"

are unrelated. Also, notice that the task threads are running in a "connect cluster," not on

Kafka brokers.

This image is in terms of a database source connector. We could generalize to "Connect

Partitions" from the tables of the database.

We can generalize the above graphic:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 346

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

external system Kafka BrokerConnect Cluster

Kafka Connect Stream Kafka

Partition 0

Partition 1

Partition 2

Partition 3

Task 1
Connect Partitions: 0, 1

Task 2
Connect Partitions: 2, 3

Topic A
Kafka Partitions:
0, 1, 2, 3, 4, 5

Topic B
Kafka Partitions:
0, 1, 2, 3

Topic C
Kafka Partitions:
0, 1

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 347

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Do We Need to Configure?

Remember:

• A connector applies to a particular external source or sink

• A connector may be broken into one or more parallel tasks

• A worker…

◦ … runs zero or more connectors

◦ … runs zero or more tasks

◦ … is generally part of a group, managed by Kafka’s group management protocol

Activity: Brainstorming Connector Configurations

What do you think we need to specify to configure a connector? Discuss

with a small group for 2 minutes.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 348

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring Connectors

Name Description Default

name Connector’s unique name

connector.class Name of the Java bytecodes file for the

connector

tasks.max Maximum number of tasks to create - if possible 1

key.converter Converter to (de)serialize keys (worker

setting)

value.converter Converter to (de)serialize values (worker

setting)

topics For sink connectors only, comma-separated list

of topics to consume from

Note that tasks.max is a limit and is restricted by the shape of the data. If Kafka Connect

cannot achieve the desired number of tasks, then it will create as many as possible. For

example, if you have a database source connector for a database with 4 tables but set

tasks.max to 6, you will get 4 tasks, because the copying cannot be parallelized further.

Note that while you can work with connectors in Confluent Cloud, as of August 2022, it is

not possible to configure connectors directly through ksqlDB.

It is also possible to define custom topic configurations for the topics that are created by

source connectors using the following properties:

Property Description

topic.creation.groups A list of group aliases that will be used to define per group topic

configurations for matching topics. The group default always

exists and matches all topics.

topic.creation.$alias.include Regular expressions that identify topics to include.

topic.creation.$alias.exclude Regular expressions that identify topics to exclude.

topic.creation.$alias.
replication.factor

>= 1 for a specific valid value, or -1 to use the broker’s default

value

topic.creation.$alias.partitions >= 1 for a specific valid value, or -1 to use the broker’s default

value

topic.creation.$alias.
${kafkaTopicSpecificConfigName}

List of input topics to consume from

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 349

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Do We Need to Configure? (2)

Remember:

• A connector applies to a particular external source or sink

• A connector may be broken into one or more parallel tasks

• A worker…

◦ … runs zero or more connectors

◦ … runs zero or more tasks

◦ … is generally part of a group, managed by Kafka’s group management protocol

We’ve established what we need for connectors. So…

Activity: Brainstorming Worker Configurations

What do you think we need to specify to configure a worker? Discuss

with a small group for 2 minutes.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 350

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuring a Worker

Name Description Default

bootstrap.servers List of host:port pairs to connect

group.id Identifier of what group this worker is a member of

heartbeat.interval.ms How frequently heartbeats are sent 3 sec.

session.timeout.ms Time after which a worker that does not heartbeat is

deemed dead

10 sec.

key.converter Converter to (de)serialize keys

value.converter Converter to (de)serialize values

topic.creation.enable Whether or not source connectors are permitted to

create topics

true

For more: https://docs.confluent.io/platform/current/installation/configuration/connect/

index.html

We see converter configs here and for connectors. Converter configs can be set at the

worker level to apply to all connectors running on a worker. They can be overridden at the

connector level too.

Another configuration setting to consider is client.id; like with producers and consumers,

this is a way of naming the client, worker in this case, so it is distinguished in monitoring

tools and system logs.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 351

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/installation/configuration/connect/index.html
https://docs.confluent.io/platform/current/installation/configuration/connect/index.html

Configuring a Worker: Topics

Name Stores Default Num

Partitions

config.storage.topic Connector and task configuration 1

offset.storage.topic Source and sink offsets 25

status.storage.topic Current status of connectors and tasks, e.g.,

running, paused, etc.

5

Kafka Connect uses a few internal topics for configuration settings too. You can configure

what those topics are called.

The topics are automatically configured with recommended replication factor and partition

count values, and they are compacted. The number of partitions is shown in the table.

If you manually configure these topics, keep the relative partition counts in mind.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 352

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Running the Config

• Create a properties file for Connect, e.g., connect-distributed.properties

• Run on each worker node:

$ connect-distributed connect-distributed.properties

• Can configure Connectors via REST API

◦ Or, indirectly, via Confluent Control Center

◦ You will see this in lab!

• Can configure connectors via ksqlDB as well

In your configuration file, list off properties and their values, e.g.,

bootstrap.servers=kafka1:9092, kafka2:9092, kafka3:9092

Connect REST Interface documentation

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 353

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/connect/references/restapi.html

Standalone Mode

• We’ve looked at Kafka Connect in distributed mode

→ Wanted in production in most cases

• There is a standalone mode too

◦ Good for development and testing

◦ Needed for certain connectors

• Standalone config differences:

◦ Offsets are stored in a file rather than in a Kafka topic. Filename is set in
offset.storage.file.filename

Some connectors, e.g., the Syslog Source Connector require being run in standalone mode.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 354

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/kafka-connect-syslog/current/overview.html

10c: Deep Dive into a Connector & Finding

Connectors

Description

Details of the JDBC Source Connector, configuration details, working through why one

would do certain configs with examples. Finding Connectors on Confluent Hub.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 355

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe how to configure the JDBC source connector.

• Select an appropriate mode for detecting which rows to

copy with the JDBC source connector.

• Determine if the JDBC source connector is suited to an

application.

• Tell where to find other Confluent-approved connectors.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 356

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

JDBC Source Connector

• Java Database Connectivity (JDBC) API is common amongst databases.

• JDBC Source Connector is a great way to get database tables into Kafka topics.

• JDBC Source periodically polls a relational database for new or recently modified rows.

◦ Creates a record for each row, and Produces that record as a Kafka message.

• Each table gets its own Kafka topic.

• New and deleted tables are handled automatically.

The JDBC source connector allows you to import data from any relational database with a

JDBC driver into Kafka topics. By using JDBC, this connector can support a wide variety of

databases without requiring custom code for each one.

Data is loaded by periodically executing a SQL query and creating an output record for each

row in the result set. By default, all tables in a database are copied, each to its own output

topic. The database is monitored for new or deleted tables and adapts automatically. When

copying data from a table, the connector can load only new or modified rows by specifying

which columns should be used to detect new or modified data.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 357

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Query Mode (1)

Incremental query mode Description

Bulk Load all rows in the table. Does not detect new or updated

rows.

The connector can detect new and updated rows in several ways, but let’s start simple: for a

one-time load, not incremental, unfiltered, we just use bulk mode.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 358

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Query Mode (2)

Incremental query mode Description

Incrementing column Check a single column where newer rows have a larger,

auto-incremented ID. Does not capture updates to existing

rows.

Timestamp column Checks a single ‘last modified’ column to capture new rows

and updates to existing rows. If task crashes before all rows

with the same timestamp have been processed, some

updates may be lost.

Timestamp and

incrementing column

Detects new rows and updates to existing rows with fault

tolerance. Uses timestamp column, but reprocesses current

timestamp upon task failure. Incrementing column then

prevents duplicate processing.

The connector can detect new and updated rows in several ways as described on the slide.

For the reasons stated on the slides, many environments will use both the timestamp and

the incrementing column to capture all updates.

Because timestamps are not necessarily unique, the timestamp column mode cannot

guarantee all updated data will be delivered. If two rows share the same timestamp and are

returned by an incremental query, but only one has been processed before the Connect task

fails, the second update will be missed when the system recovers.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 359

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Query Mode: Custom Query

We can also define a custom query to use in conjunction with the previous options for

custom filtering.

The custom query option can only be used in conjunction with one of the other incremental

modes as long as the necessary WHERE clause can be appended to the query. In some cases,

the custom query may handle all filtering itself.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 360

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Configuration

Property Description

connection.url The JDBC connection URL for the database

mode The mode for detecting table changes. Options are bulk,

incrementing, timestamp, timestamp+incrementing

query The custom query to run, if specified

poll.interval.ms The frequency in milliseconds to poll for new data in each table

(Default: 5000)

topic.prefix Prefix to prepend to table names to generate the Kafka Topic

name

table.blacklist A list of tables to ignore and not import.

table.whitelist A list of tables to import.

 See JDBC Connector docs for a complete list

Setting both table.whitelist and table.blacklist does not fail any upfront

configuration validation checks but will fail when starting the connector at runtime.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 361

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/connect/connect-jdbc/docs/index.html

JDBC Source Connector Config Example

 1 {
 2 "name": "Driver-Connector",
 3 "config": {
 4 "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
 5 "connection.url": "jdbc:postgresql://postgres:5432/postgres",
 6 "connection.user": "postgres",
 7 "table.whitelist": "driver",
 8 "topic.prefix": "",
 9 "mode": "timestamp+incrementing",
10 "incrementing.column.name": "id",
11 "timestamp.column.name": "timestamp",
12 "table.types": "TABLE",
13 "numeric.mapping": "best_fit",
14 }
15 }

The goal of this connector is to take the driver table of a Postgres database and produce

its records to Kafka. We would like each Kafka record to have a string key for the driver ID

(driver-1, driver-2, etc.). We would also like the value of each Kafka record to be an Avro

record with id, driverkey, firstname, lastname, make, model, and timestamp.

Unfortunately, the configurations shown will not result in the schema we want. First, the

topic name would be driver rather than driver-profiles-avro. Second, the record keys

would be NULL and the values would include a field that looks like {"driverkey": "driver-
3"}. We can modify these minor details using something called SMTs:

14 "transforms": "suffix,createKey,extractKey",
15 "transforms.suffix.type": "org.apache.kafka.connect.transforms.RegexRouter",
16 "transforms.suffix.regex": "(.*)",
17 "transforms.suffix.replacement": "$1-profiles-avro",
18 "transforms.createKey.type": "org.apache.kafka.connect.transforms.ValueToKey",
19 "transforms.createKey.fields": "driverkey",
20 "transforms.extractKey.type":
21 "org.apache.kafka.connect.transforms.ExtractField$Key",
22 "transforms.extractKey.field": "driverkey"

This lesson is not meant to be your formal introduction to SMTs, but this is provided as an

example.

The connector takes the driver table of a Postgres database and produces its records to

Kafka. We would like each Kafka record to have a string key for the driver ID (driver-1,

driver-2, etc.). The value of each Kafka record will be an Avro record with id, driverkey,

firstname, lastname, make, model, and timestamp.

• In line 14, we define three transformations: suffix, createKey, and extractKey. These

names can be anything, but it is recommended that they succinctly describe the

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 362

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

transformations.

• In line 15, we define the class that will be used for the suffix transformation. In this case,

we use the RegexRouter class, which is a class that sets the Kafka topic name. Normally,

the topic name would be "prefix" + "table." Earlier, we set topic.prefix to the empty

string. So the topic name should just be the name of the table, which is driver. This

transformation replaces driver with driver-profiles-avro.

• In line 18, we define the class used for the createKey transformation. In this case, we use

the ValueToKey class, which is a class that replaces the default Kafka record key with a

new key from a field in the table. In this case, we use the driverkey field as the key.

Without this transformation, the keys would be null. With this transformation, an

example key would be {"driverkey": "driver-3"}.

• In line 20, we further refine the key with the ExtractField$Key class. We extract the string

associated with driverkey. Before this transformation, an example Kafka record key

would be {"driverkey": "driver-3"}. After this transformation, the Kafka record key

is simply the string "driver-3."

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 363

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Other Connectors

Search Confluent Hub at confluent.io/hub for connectors!

You can find many more connectors, along with their documentation, on Confluent Hub.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 364

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

http://confluent.io/hub

11: Applying Kafka Connect

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 365

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains a hands-on lab for Connect and

one lesson:

a. Full Solutions Involving Other Systems

Where this fits in:

• Hard Prerequisite: Starting with Kafka Connect

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 366

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Kafka Connect - Database to Kafka

Please work on Lab 11a: Kafka Connect - Database to

Kafka

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 367

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

11a: Full Solutions Involving Other Systems

Description

Case studies of using a Connector to read in data from a source, transform the data, and

write it to a sink. SMTs vs. Kafka Streams vs. ksqlDB as options for transforming data.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 368

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe how data flows between other systems and Kafka

in an ETL use case.

• Describe how data flows between other systems and Kafka

in a CDC use case.

• List and evaluate options for the “transform” step of ETL

using a Kafka deployment.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 369

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Transforming Temperatures - Part 1

Consider this scenario:

• You have a relational database db1 with table temp_readings with

columns for an auto-incremented reading ID, a postal code, a

timestamp, and a temperature reading for each row recorded at the

given timestamp and in Celsius.

• You have a similar relational database db2 with table

temp_readings, but temperatures are in Fahrenheit.

• You want a Kafka topic with all temperature readings in both unit

systems.

Thinking about everything we’ve learned so far, how might you go about

doing this at a high level? Discuss with a classmate or two.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 370

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Transforming Temperatures - Part 2

Let’s go deeper…

a. Suppose you are using Kafka Connect with the JDBC Source

Connector to get this data into Kafka. Locate the "Configuration"

slide in the last lesson in your student handbook. What configuration

settings are important to set?

b. Thinking back on tools we learned about, what tool would you use to

create to generate the desired new topic? (Hint: use something

outside of producers and consumers.) Describe at a high level what

you would do.

c. Suppose instead of wanting all temperature readings, you want this

new Kafka topic to contain only the latest temperature reading for

each postal code. What would you do differently?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 371

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Generalizing & Extending

Here we have

1. Kafka Connect source connectors to read data

from external systems, database tables in this

case.

2. Kafka topics on the brokers to receive our

input.

3. Streaming applications to transform our data.

4. Another Kafka topic on the brokers to receive

our transformed data.

External
Data Source

Source
Connector

Sink
Connector

External
Data Sink

Kafka
Connect

(Cluster)

Kafka Streams / ksqlDB

(Cluster)

We could also send this temperature data to another system that displays temperatures on

a dashboard.

This is an example of ETL.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 372

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Related Problem

Say we

• Have access to a hospital’s database.

• Want to extract information on patients who’ve been diagnosed with cancer.

(and compare with those who have not been)

• Want to load this information to CSV files that will be given to medical researchers

studying correlations between diagnoses and patient traits.

Does this fit what we just did?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 373

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Single Message Transforms

Data Source Data Sink

Kafka
Connect

Kafka
Connect

Broker

SMT

SMT

Here’s a graphic that shows where SMTs live within Connect:

C
O

N
N

E
C

T
O

R

T
R

A
N

S
F

O
R

M
S

C
O

N
V

E
R

T
E

R

BROKERBROKERBROKERBROKER

DATA
SOURCE

Kafka Connect

Here are several SMTs:

Transform Description

InsertField insert a field using attributes from message metadata or from a

configured static value

ReplaceField rename fields, or apply a blacklist or whitelist to filter

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 374

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transform Description

MaskField replace field with valid null value for the type (0, empty string,

etc)

ValueToKey replace the key with a new key formed from a subset of fields in the

value payload

HoistField wrap the entire event as a single field inside a Struct or a Map

ExtractField extract a specific field from Struct and Map and include only this

field in results

SetSchemaMetadata modify the schema name or version

TimestampRouter modify the topic of a record based on the original topic name and

timestamp

RegexRouter update a record topic using the configured regular expression and

replacement string

For more information on SMTs, see

https://docs.confluent.io/current/connect/transforms/index.html

See your student handbook in the JDBC source connector lesson for an extension of the

JDBC source connector example with SMTs added.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 375

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/connect/transforms/index.html

One Last Example

• You are maintaining information about car insurance rates for customers.

• Regulations based on where the cars are principally garaged drive a base cost that’s part

of an insurance rate.

• Information on vehicles and their garage locations is in one external system.

• Insurance rate information is in a different external system.

◦ A base rate is one field of a table in such a system.

Questions:

• When a vehicle’s location changes, what has to happen?

• What tools would you use to achieve the necessary updates?

This is an example of CDC, or Change Data Capture.

We can use Kafka Connect to read data in and our connector could look for changed records

only and read in only changed records to a Kafka topic.

Something could calculate that base cost.

We can use Kafka Connect to write out that base cost to the appropriate place in the other

system.

As for the something to do the calculation, we probably would need a streaming application.

ksqlDB could do the job for us more simply than Kafka Streams, although we might choose

to deploy a User Defined Function (UDF). We might think to apply an SMT in Kafka

Connect, but there isn’t an appropriate SMT to solve this problem in the list.

What if the change we were capturing instead caused us just to write something out where

we just needed to convert data to a different format for our destination system? That could

leverage an SMT, namely Cast.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 376

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Choose Your Tool

Tool Good when… Challenges

Kafka

Streams

• Want a lot of control

• Want custom logic

• Need to know Java/Scala

• Overkill for very simple

transformations

ksqlDB • Logic fits SQL-like syntax

• Want to develop quickly

• Not everything fits the syntax

• Need to set up ksqlDB server

Kafka

Connect

SMTs

• Simple transform, e.g.,

◦ Remove data for security or

performance

◦ Make your data conform to the

schema of the output system

• Transform exists

• Need to have an SMT

• Not for coding business logic

• Less control

We know that Kafka Streams, ksqlDB, and Kafka Connect SMTs all allow us to transform

data. It’s worth thinking about which tool is the best for a task. This slide summarizes some

considerations.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 377

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

More Advanced Kafka Development

Matters

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 378

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Agenda

This is a branch of our developer content on more

advanced matters in Kafka development. It is broken

down into the following modules:

12. Challenges with Offsets

13. Partitioning Considerations

14. Message Considerations

15. Robust Development

This branch assumes proficiency in the Core Kafka

Development branch. The last lesson of the last

module assumes having completed the Kafka

Connect module of the Additional Components of

Kafka/CP Deployment Branch.

Here is an expanded version of the outline, including the lessons that make up each module:

1. Challenges with Offsets

a. How Does Compaction Affect Consumer Offsets?

b. What if I Want or Need to Adjust Consumer Offsets Manually?

2. Partitioning Considerations

a. How Should I Scale Partitions and Consumers?

b. How Can I Create a Custom Partitioner?

3. Message Considerations

a. How Do I Guarantee How Messages are Delivered?

b. How Should I Deal with Kafka’s Message Size Limit?

c. How Do I Send Messages in Transactions?

4. Robust Development

a. Testing Matters

b. Exceptions in Kafka

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 379

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

c. Kafka Connect Error Handling

This branch assumes proficiency in the Core Kafka Development branch. The last lesson of

the last module assumes having completed the Kafka Connect module of the Additional

Components of Kafka/CP Deployment Branch.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 380

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

12: Challenges with Offsets

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 381

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains two lessons:

a. How Does Compaction Affect Consumer

Offsets?

b. What if You Want or Need to Adjust Consumer

Offsets Manually?

Where this fits in:

• Hard Prerequisite: Groups, Consumers, and

Partitions in Practice

• Recommended Follow-Up: Other modules in this

branch, other courses

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 382

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

12a: How Does Compaction Affect Consumer

Offsets?

Description

How consumers deal with missing offsets, what happens when offsets don’t make sense,

and getting into the details of how compaction works: how it affects offsets and is

triggered. Deleting keys.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 383

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe how a consumer will read a log when that log has

been compacted.

• Describe how to deal with cases when a consumer’s offset

does not make sense.

• Determine whether or not compaction will run, given

information about a log, and know how to tune triggering

compaction.

• Describe how to delete all instances of a key from a log.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 384

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Getting Started: Log Refresher

Recall: messages are written to logs…

• Per partition

• Messages have offsets

• Divided into segments

◦ Active, inactive

◦ Clean, dirty

• Log retention policies:

◦ delete

◦ compact

(refer back to lesson 1b)

See Lesson 1b for our treatment of retention policies. We go deeper here.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 385

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity 1: Compacting a Compacted Log

Suppose we have a log like this for a partition:

From this picture, we can see that compaction must have happened. So,

let’s say a consumer offset is 7. As you can see, the message at consumer

offset 7 has been compacted away. Then…

a. What message do you expect the consumer will read next? (This is

more gut intuition than anything we’ve covered in this course.) Why

would that make sense to you?

b. Suppose it’s time for compaction to happen. What is the resulting log?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 386

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Debrief

What have we concluded?

A consumer always advances to the next available offset.

Compaction removes those messages whose key appears later in the log in an inactive

segment.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 387

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Taste of Documentation: What Triggers Compaction

Here’s a snippet copied from the documentation on a compaction property for you to use in

the next activity:

log.cleaner.min.cleanable.ratio

• The minimum ratio of dirty log to total log for a log to eligible for cleaning. If the

log.cleaner.max.compaction.lag.ms or the

log.cleaner.min.compaction.lag.ms configurations are also specified, then

the log compactor considers the log eligible for compaction as soon as either: (i)

the dirty ratio threshold has been met and the log has had dirty (uncompacted)

records for at least the log.cleaner.min.compaction.lag.ms duration, or (ii) if

the log has had dirty (uncompacted) records for at most the

log.cleaner.max.compaction.lag.ms period.

• Default: 0.5

This information is here for your reference for the activity on the next slide.

Documentation link

Note also that

• this is a broker propety, but…

• a topic can override a broker’s configured ratio with the property
min.cleanable.dirty.ratio

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 388

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_log.cleaner.min.cleanable.ratio

Activity 2: Interpreting What Triggers Compaction

Here’s that log again:

Suppose default compaction settings are on. Does log compaction

actually happen? If yes, why? If no, what would have to be different to

trigger compaction?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 389

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Debrief and Gotchas

So…

1. What have we learned about how compaction operates?

2. If you have a development use case where you rely on having exactly one value per key,

can you rely on compaction?

We did not trigger compaction in the scenario on the last slide due to the ratio of dirty
log size over total log size being 15 over 10 + 10 + 15 = 35, which is less than 0.5.

Remember:

• Compaction only consider inactive segments.

• Even considering all clean segments, there could still be later instances of keys appearing

in the active segment or in segments that were active at the time of last compaction and

have since become inactive. You must consider this if your development use case depends

on it.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 390

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

One More Problem: Deleting a Key Entirely

Compaction yields a log where there is at most one instance of any key in the inactive

segments.

But what if you don’t want a key at all anymore?

• Tombstone Messages:

◦ delete key K by sending {K:null}

◦ Consumer has log.cleaner.delete.retention.ms
time to consume K before it is deleted (default 1 day)

One use case of this: Say a key represents an order_id for a retail order. Say values are

status, e.g. "order received," "packed," "shipped," "received." After a certain point, storing

old orders on the Kafka server is wasteful, especially when their return window has closed. If

a business needed to look them up, one could look to archival storage. But compaction

would always keep the latest value per key. If we want to get rid of that message after a

certain time period, we can achieve that using a tombstone message.

As keys are retired, many systems will send delete messages. The simplest approach would

be to retain delete messages forever. But since the purpose of deletes is typically to free up

space, this approach would have the problem that the Commit Logs would end up growing

forever if the keyspace keeps expanding and the delete markers consume some space.

Tombstones (the Kafka implementation of a delete message) are keyed messages with a

null value.

However, a delete message should not be removed too quickly or it can result in

inconsistency for any Consumer of the data reading the tail of the log. Consider the case

where there is a message with key K and a subsequent delete for key K. If log compaction

removes delete messages, there is a race condition between a Consumer of the log and the

log compaction action. Once the Consumer has seen the original message, we need to

ensure it also sees the delete message; this might not happen if the delete message happens

too quickly. As a result, the topic can be configured with a configurable SLI for delete

retention (delete.retention.ms). This SLI is in terms of time from the last cleaning. A

consumer that starts from the beginning of the log must consume the tail of the log in this

time period to ensure that it sees all delete messages.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 391

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

If an application needs to be able to send null values that will not be mistaken as

tombstones, you need to introduce a null-type – like a NullInteger - so it looks like a

regular message with non-null value to Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 392

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

12b: What if You Want or Need to Adjust

Consumer Offsets Manually?

Description

Reprocessing of messages, finding consumer offsets both now and in the past,

programmatically changing offsets, and automatic vs. manual committing strategies.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 393

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Describe what could happen when a consumer newly

assigned an offset for a partition is assigned an out-of-date

offset

• Describe how to find a consumer’s offset for a partition now

or at a given time

• Describe how, programmatically, to change a consumer’s

offset for a partition

• List some reasons one would want to change from

automatic offset management

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 394

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Does a Consumer Know Its Offset?

Consumer is

consuming from a

partition it was

already consuming

Consumer gets assigned a

partition that another

consumer in group was

consuming

Consumer is starting up and

is first in group to consume

from a partition

Local Consumer uses

offset for this

partition from

memory

Consumer doesn’t have any

offset in memory for this

partition

Consumer doesn’t have any

offset in memory for this

partition

Kafka Not needed Offset comes

__consumer_offsets topic

for this group/partition pair

There won’t be an entry in

__consumer_offsets.

Offset determined by

auto.offset.reset - one

of earliest, latest, none

The first two columns are review. See the Consumer Offsets lesson (5c) for the first

introduction of the __consumer_offsets topic.

The Consumer property auto.offset.reset determines what to do if there is no valid

offset in Kafka for the Consumer’s Consumer Group.

We consider here the case when a particular Consumer Group starts the first time.

• The value of auto.offset.reset can be one of:

◦ earliest: Automatically reset the offset to the earliest available

◦ latest: Automatically reset the offset to one more than latest offset that has data (in

other words, have the consumer ready to read the next message that comes in)

◦ none: Throw an exception if no previous offset can be found for the ConsumerGroup

• The default is latest

The next slide will go into other cases where auto.offset.reset applies.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 395

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if a Consumer’s Offset Makes No Sense?

Here again, auto.offset.reset determines how the consumer proceeds.

2 New Scenarios Values for auto.offset.reset
Consumer offset < smallest offset earliest Reset offset to earliest available

Consumer offset > last offset + 1 latest Reset offset to latest available

none Throw exception

• The consumer property auto.offset.reset determines what to do if there is no valid

offset in Kafka for the Consumer’s Consumer Group

◦ When a particular consumer group starts the first time

◦ If the consumer offset is less than the smallest offset

◦ If the consumer offset is greater than the last offset

• The value can be one of:

◦ earliest: Automatically reset the offset to the earliest available

◦ latest: Automatically reset the offset to one more than latest offset that has data (in

other words, have the consumer ready to read the next message that comes in)

◦ none: Throw an exception if no previous offset can be found for the consumer group

• The default is latest



This setting does not affect offsets that have been deleted or compacted due

to log cleanup. In those cases, if the offset specified in the offsets topic does

not exist, the broker will advance to the next highest offset and proceed from

there.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 396

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

To get into more detail, note that:

• There is a process called the group coordinator running in Kafka for each group. It is

involved whenever a consumer joins the group (and it also receives/detects heartbeats).

• When a consumer joins a group, it will receive partition assignments and request

committed offsets from Kafka.

This flowchart shows the sequence of events that happen from when a consumer joins a

consumer group:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 397

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Explaining the details:

1. Consumer joins group:

◦ When it starts

◦ When informed that a rebalance is in progress

◦ When metadata refresh for subscribed topics indicates new matching topic exists,

existing topic number of partitions has changed, or existing topic is deleted

2. Group coordinator sends partition assignments to group members

3. For each assigned partition, consumer sends a request for the committed offset to the

group coordinator.

4. The group coordinator retrieves the requested committed offset from the

__consumer_offsets topic.

5. If one exists, i.e., it has been previously consumed by a group member, the committed

offset is returned to the consumer. If no offset exists, a corresponding response is

returned to the consumer.

6. If the consumer receives the committed offset from the group coordinator, it fetches

records from the partition starting at that offset.

7. Depending upon the topic retention and how long it has been since the offset was last

committed, the fetched offset may or may not exist.

8. If the offsets topic did not contain a committed offset for the partition or if it did but

what an attempt to fetch that offset resulted in an exception indicating the offset does

not exist, e.g. its retention may have expired due to the amount of time that has elapsed

since the offset was committed to __consumer_offsets, the consumer will reset the

offset based upon the auto.offset.reset property.

9. If auto.offset.reset equals latest, the consumer will reset to the latest offset.

10. If auto.offset.reset equals earliest, the consumer will reset to the earliest offset.

11. The consumer will then fetch records using this earliest or latest offset.

12. The consumer will then process records received in the fetch response.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 398

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Do I Find a Consumer’s Current Offset?

Function Return Value

position(TopicPartition) Offset of next record that will be

fetched

offsetsForTimes(Map<TopicPartition, Long>
timestampsToSearch)

Offsets for given partitions by

timestamp

• The KafkaConsumer API provides ways to view offsets from which the Consumer will read

◦ position(TopicPartition) provides the offset of the next record that will be fetched

◦ offsetsForTimes(Map<TopicPartition,Long> timestampsToSearch) looks up the

offsets for the given Partitions by timestamp

▪ The returned offset for each partition is the earliest offset whose timestamp is

greater than or equal to the given timestamp in the corresponding partition. This is

useful to rewind offsets if applications need to re-consume messages for a certain

period of time, or in a multi-datacenter environment because the offset between two

different Kafka clusters are independent and users cannot use the offsets from the

failed datacenter to consume from the DR datacenter. In this case, searching by

timestamp will help because the messages should have same timestamp if users are

using CreateTime. Even if users are using LogAppendTime, a more granular search

based on timestamp can still help reduce the amount of messages to be re-

consumed.

Messages written to a topic using replication tools (e.g., MirrorMaker, Confluent Replicator)

will retain their original timestamps when copied to the new location.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 399

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if I Need to Reprocess Records?

• There are infrequent situations where a consumer application must begin processing at an

offset other than the default

◦ The application was updated and records need to be reprocessed

◦ A new release of an application had an error resulting in records being incorrectly

processed

▪ The previous release of the application must be restored

▪ Already processed records must be reprocessed correctly

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 400

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How to Reset the Current Offset (1)

Method Effect

seek(TopicPartition, offset) Seek to specific offset in

specified partition

seekToBeginning(Collection<TopicPartition>) Seek to first offset of each

specified partition

seekToEnd(Collection<TopicPartition>) Seek to one beyond the last

offset of each specified

partition

• The KafkaConsumer API provides ways to dynamically change the offset from which the

consumer will read

◦ seek(TopicPartition, offset) seeks to a specific offset in the specified Partition

◦ seekToBeginning(Collection<TopicPartition>) seeks to the first offset of each of

the specified partitions

◦ seekToEnd(Collection<TopicPartition>) seeks the offset to one more than latest

offset that has data (in other words, have the consumer ready to read the next

message that comes in) in each of the specified partitions

Outside of code, the kafka-consumer-groups command has the ability to reset the entire

consumer group to the offsets corresponding to specific timestamps within the partitions:

kafka-consumer-groups \
 --bootstrap-server broker101:9092 \
 --group my-group \
 --topic my_topic \
 --reset-offsets \
 --execute \
 --to-datetime 2017-08-01T17:14:23.933`

You can also change the offset for (a) particular partition(s). This alteration would change

the offset for partition 2 only:

 --topic my_topic:2

This alteration would change the offset for three partitions only:

 --topic my_topic:2,4,7

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 401

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How to Reset the Current Offset (2)

• Example: Reset offset to particular timestamp:

 1 for (TopicPartition partition : partitions)
 2 {
 3 timestampsToSearch.put(partition, MY_TIMESTAMP);
 4 }
 5
 6 Map<TopicPartition, OffsetAndTimestamp> result = consumer.offsetsForTimes
 (timestampsToSearch);
 7
 8 for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry : result.entrySet())
 9 {
10 consumer.seek(entry.getKey(), entry.getValue().offset());
11 }

◦ Add each partition and timestamp to HashMap

◦ Get offset for each partition

◦ Seek to specified offset for each Partition

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 402

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How to Reset the Current Offset (3)

• Example: Seek to beginning of all partitions for topic my_topic:

 1 ConsumerRebalanceListener listener = new
 2 ConsumerRebalanceListener()
 3 {
 4 @Override
 5 public void onPartitionsRevoked(Collection<TopicPartition> partitions)
 6 {
 7 // nothing to do...
 8 }
 9
10 @Override
11 public void onPartitionsAssigned(Collection<TopicPartition> partitions)
12 {
13 consumer.seekToBeginning(partitions);
14 }
15 };
16 consumer.subscribe(Arrays.asList("my_topic"), listener);
17 consumer.poll(Duration.ofMillis(0));

Summary of code:

• Subscribe to topics & register ConsumerRebalanceListener

• poll(Duration.ofMillis(0)) retrieves metadata from broker

◦ Example: to seek to the beginning of all partitions that are being read by a consumer for

a particular topic, you might do something like:

The poll method has several functions:

• Fetch messages from assigned partitions

• Trigger partition assignment (if necessary)

• Commit offsets if auto offset commit is enabled

In this example, the data returned by poll (i.e., messages fetched from the partitions) is not

important since we are resetting the place that it is reading from so the data is not assigned

to an object. Calling poll immediately after the subscribe triggers the partition

assignment.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 403

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if Messages Get Reprocessed After a Consumer

Fails?

c1

c2

rebalance

consumer c2 reads from here

consumed by c1 prior to failure

p
0

1

4

2

3

In a rebalance scenario, any records that were processed but not committed by the previous

consumer of the partition would be reprocessed by the new consumer. In many use cases,

this is completely fine; consumers process one record at a time without side effects, so

reprocessing a couple of records during a rebalance is acceptable.

However, there are certain use cases where this is not ideal. For example, if the consumer is

sending emails, then reprocessing means resending those emails. Customers could get

annoyed by the duplicate emails.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 404

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

One Solution: Handle Data and Offsets Atomically

We could employ the help of an external transactional database for storing offsets.

pseudocode

 1 SELECT partition, offset FROM database_offset_table
 2 consumer.seek(partition, offset)
 3
 4 while true:
 5 input_data = consumer.poll()
 6 for purchase_input in input_data:
 7 purchase = purchase_input.process_purchase()
 8 BEGIN TRANSACTION
 9 INSERT purchase.id, purchase.amount INTO purchase_table
10 INSERT partition, consumer.position(partition) INTO database_offset_table
11 ON DUPLICATE KEY UPDATE
12 COMMIT TRANSACTION

This pseudocode describes the general idea of handling a Kafka message and its offset

together atomically. In this case, we use databases that supports transactions. We also

show another application of the consume-process-produce model.

We first obtain information about the partition and offset from one database, seek to that

offset on the partition in Kafka, and then enter the poll loop. Then:

1. The application acts as a consumer and polls for records (Line 5, the "consume")

2. For each record consumed:

a. The application processes the records (Line 7, the "process")

b. The application enters that data along with the partition and offset into databases as

part of an atomic transaction (Lines 8-12, the "produce")

Since the Kafka message and its offset are handled together atomically, a consumer

rebalance won’t lead to reprocessing. The tradeoff is that the throughput is limited to the

external system’s ability to process these transactions.

The offsets would almost certainly be stored in a different table that the business-relevant

data, so we intentionally use two different database tables (seen on Lines 9 and 10).

Additionally, note that the consumer will know its offset, but the polling/processing loop will

otherwise not, hence the explicit use of consumer.position() on Line 10. The insert is more

likely an "upsert," as shown on Line 11.

We could also employ a Kafka Connect sink connector that is idempotent to help with this.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 405

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Kafka Consumer - offsetsForTimes

Please work on Lab 12a: Kafka Consumer -

offsetsForTimes

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 406

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

13: Partitioning Considerations

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 407

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains two lessons:

a. How Should You Scale Partitions and

Consumers?

b. How Can You Create a Custom Partitioner?

Where this fits in:

• Hard Prerequisite: Groups, Consumers, and

Partitions in Practice

• Recommended Follow-Up: Other modules in this

branch, other courses

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 408

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

13a: How Should You Scale Partitions and

Consumers?

Description

Discussions about choosing a number of partitions, a number of consumers, and the effects

of changing the number of partitions.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 409

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• List some considerations in choosing the number of

partitions for a topic.

• Evaluate some considerations in choosing the number of

consumers in a group, given partitioning information.

• Evaluate and work around implications of changing the

number of partitions for a topic.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 410

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Discussion: Deciding Number of Partitions

Producer

partitioner

partition 0

partition 1

partition 2

• How many partitions should you create for your topic?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 411

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Guideline for Choosing Number of Partitions

• Suggested number of partitions: max(t/p, t/c)

◦ t: target throughput

◦ p: producer throughput per partition

◦ c: consumer throughput per partition

This slide is a guideline for establishing the number of partitions for a topic if the design

requires a specific target throughput, but it is by no means a complete answer. An

important takeaway is that performance testing is needed to make a good plan for the

number of partitions.

The limiting factor is likely to be the consumers, so the number of partitions will likely be t/c.

Topics should be sized so that Consumers can keep up with the throughput from a physical

(NIC speed) and computational (processing time per poll) standpoint.

For what it’s worth, Solutions Architects at Confluent have anecdotally observed that 30

partitions is enough to scale most applications. The number 30 is divisible by 2, 3, 5, 6, 10, 15,

and 30, so there are lots of options for scaling the number of consumers as well (next

discussion!). Overhead for partitions is negligible until there are more than 4000 per broker

or 200,000 per cluster, so "over-partitioning" when a topic is created is the recommended

course of action.

• You might also vary producer properties:

◦ Replication factor

◦ Message size

◦ In flight requests per connection (max.in.flight.requests.per.connection)

◦ Batch size (batch.size)

◦ Batch wait time (linger.ms) a|* Vary Consumer properties:

◦ Fetch size (fetch.min.bytes)

◦ Fetch wait time (fetch.max.wait.ms)

• You might also vary consumer properties:

◦ Fetch size (fetch.min.bytes)

◦ Fetch wait time (fetch.max.wait.ms)

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 412

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Discussion: Deciding the Number of Consumers

• How does a topic’s partition count affect consumer group scalability?

• Why should all topics have a highly divisible number of partitions?

• With the default partition assignment strategy (range), what would happen if a consumer

group of 10 consumers subscribed to 10 topics, each topic with 1 partition?

Refer back to the "Groups, Consumers, and Partitions" module in your handbook

(specifically lesson 5a) if you need to review what range means.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 413

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Discussion: Deciding the Number of Consumers, notes

A consumer group’s scalability is limited by the number of partitions, and with the default

partition assignment strategy (RangeAssignor), subscribing to multiple topics has other

considerations as well.

Consider 1 topic for a moment. Because of the way partitions are assigned, it is ideal for the

topic to have a number of partitions that is highly divisible, so that the consumer group can

scale effectively to many consumers while maintaining a balanced load. With 30 partitions,

for example, consumer groups can scale to 1, 2, 3, 5, 6, 10, 15, or 30 consumers with balanced

load.

If a consumer group is subscribed to multiple topics with the default partition assignment

strategy, then these topics may have different numbers of partitions, so it becomes even

more important that all topics have partition counts that are highly divisible. If one topic has

30 partitions, and another has 24, then the consumer group could consume from both topics

with balanced load for 1, 2, 3, or 6 consumers.

If a consumer group of 10 consumers is subscribed to 10 topics, each with 1 partition, then all

10 partitions will be assigned to the first consumer and there will be 9 idle consumers. The

RangeAssignor assigns partitions topic-by-topic, each in exactly the same way.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 414

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Discussion: What If I Need More Partitions?

What are the consequences and options around increasing a topic’s number of partitions?

What happens if a topic is created with too few partitions to accommodate client

applications as they scale?

The next few slides offer the most recommended solutions and workarounds. Other

solutions and workarounds are:

Custom partitioner: Build a custom partitioner that keeps keys assigned to the same

partitions they’re currently on. The downside to this solution is the newly added partitions

will only be used when new keys are produced. Another downside is now you must maintain

a custom partitioner.

 We will discuss custom partitioners more in an upcoming lesson.

External, shared state: For the time before and after the partition count changes, change

consumers to store state in an external, shared system, rather than in local memory or disk.

For example, consider using HBase, Cassandra, etc. Although keep in mind that introducing

a write or lookup to these systems will introduce blocking IO in the consumer, and lower

throughput.

"Close" the upstream system before migrating: If the upstream system can be "closed" such

that all in-flight "transactions" in the Kafka log are finished, "close" the upstream system,

let consumers finish consuming all messages, then increase the partition count, restart

consumers, and "reopen" the upstream system.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 415

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Increasing Partitions: Accept Your Fate

consumer group

consumer group

p
0

p
1

change number of partitions

p
0

p
1

p
2

c1

c2

c3idle

c1

c2

c3

Accept the change in the guarantee: Some applications can just accept that keys will change

partitions and hence will happily continue consuming. This can be done with the command:

$ kafka-topics \
 --bootstrap-server kafka-1:9092 \
 --alter \
 --topic grow-topic \
 --partitions 12

On this slide, icons with same shapes represent records with same key. The topic originally

had 2 partitions and 3 consumers, which left one consumer idle. When we increase the

number of partitions to 3, the consumer group now utilizes all 3 consumers. However, keys

are now being delivered to different partitions than they were before. Squares are now

delivered to p0, stars stay on p1, and circles now go to p2.

Recall that semantic partitioning works on the idea that a message will be sent to the

partition determined by the formula hash(key) % n, where n is the number of partitions.

Increasing the n number could change the output of the formula. Once the number of

partitions is increased, a given key may move to a new partition.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 416

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Increasing Partitions: Migrate to a New Topic

ksqlDB makes it relatively simple to populate the new topic:

CREATE STREAM old-topic WITH (KAFKA_TOPIC='old-topic', VALUE_FORMAT='JSON');

CREATE STREAM new-topic WITH (KAFKA_TOPIC='new-topic', VALUE_FORMAT='JSON', PARTITIONS
=12)
 AS SELECT * FROM old-topic
 EMIT CHANGES;

Question: Is it easier to change the number of consumers or number of

partitions?

Create a new topic: Create a copy of the original topic, where the new topic has the desired,

larger number of partitions. Then, switch the consumers to the new topic, ensuring that the

consumers start at the right offset in the new topic. Offsets will be different in the new

topic, so a time-based approached will be required. The easiest way to do this would be with

ksqlDB.

For more on ksqlDB, consider our 3-day Stream Processing with Kafka Streams and

Confluent ksqlDB course.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 417

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Lab: Increasing Topic Partition Count

Please work on Lab 13a: Increasing Topic Partition

Count

Refer to the Exercise Guide

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 418

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

13b: How Can You Create a Custom

Partitioner?

Description

The motivation for and how to write a custom partitioner.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 419

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Create a custom partitioner.

• Configure a producer to use a custom partitioner.

• Compare and choose appropriate partitioning strategies.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 420

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partitioning with Keys

Default: hash(key) % numPartitions

But what if there is skew?

p
0

b
0

20 5 15

p
1

b
1

16

p
2

b
2

7 22 27 7 7 37 12 7 32 52 7

p
3

b
3

18 23 28 23 38 13

p
4

b
4

In the picture, only the keys of messages are shown. Here, we have one partition ignored

completely, while another has significantly more messages. In this example, we might chose

to handle the messages with key 7 differently and put them all on the last partition.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 421

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Custom Producer Partitioner

• Implement Partitioner interface and customize partition()

 1 public interface Partitioner extends Configurable, ...
 2 {
 3 void configure(java.util.Map<java.lang.String,?> configs);
 4 void close();
 5 void onNewBatch(String topic, Cluster cluster, int prePartition);
 6
 7 int partition(java.lang.String topic,
 8 java.lang.Object key,
 9 byte[] keyBytes,
10 java.lang.Object value,
11 byte[] valueBytes,
12 Cluster cluster);
13 }

• Set producer property partitioner.class

Sometimes it makes sense to implement a custom partitioner. For example, a stock trading

company may trade many stocks and set the key for trade events as a share ID. If the

company trades 1000 stocks, but only 5 stocks make up 90% of their trades, then it makes

sense to write a partitioner that assigns each of those "hot keys" its own dedicated

partition.

• To create a custom Partitioner, you should implement the Partitioner interface:

◦ This interface includes configure(), close(), onNewBatch(), and partition()
methods, although often you will only implement partition()

• partition() is given the Topic, key, serialized key, value, serialized value, and cluster

metadata

◦ It should return the number of the Partition this particular message should be sent to

(0-based)

• onNewBatch() was added in AK 2.4 to allow for "batch aware" partitioning of messages

with null keys. This allows a new partition to be chosen when a batch fills and a new batch

is opened. For more information, see KIP-480

You then need to register the custom partitioner with the partitioner.class producer

config property. Also, configure and close are optional lifecycle methods called once by

the producer client library when the producer starts and is closed, and partition is called

for every message. So whatever the partition method does, it should ideally be fast,

otherwise it can slow down the entire producer.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 422

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/display/KAFKA/KIP-480%3A+Sticky+Partitioner

Custom Partitioner: Example (1)

• In this example, we want to store all messages with a particular key in one partition and

distribute all other messages across the remaining partitions. The following code sets the

stage:

 1 public class MyPartitioner implements Partitioner
 2 {
 3 public void configure(Map<String, ?> configs) {}
 4 public void close() {}
 5 public void onNewBatch() {}
 6
 7 public int partition(String topic, Object key, byte[] keyBytes,
 8 Object value, byte[] valueBytes, Cluster cluster)
 9 {
10 int numPartitions = cluster.partitionsForTopic(topic).size();
11
12 if ((keyBytes == null) || (!(key instanceof String)))
13 throw new InvalidRecordException("Record did not have a string Key");

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 423

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Custom Partitioner: Example (2)

• And the remaining code contains the decision logic:

13 // This key will always go to Partition 0
14 if (((String) key).equals("OurBigKey"))
15 return 0;
16
17 // Other records will go to remaining partitions using a hashing function
18 return (Math.abs(Utils.murmur2(keyBytes)) % (numPartitions - 1)) + 1;
19 }
20 }

This sample partitioner verifies that messages have a non-null String-type key. Then it

returns 0 for messages with the specified key and a non-0 partition number for any other

key, based on the standard hashing function.

This custom partitioner MyPartitioner would then be passed into the producer Java code

using the partitioner.class property and is used by the KafkaProducer as part of the

send() call. The developer code does not call the partitioner directly.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 424

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

An Alternative to a Custom Partitioner

• Specify partition when defining ProducerRecord:

ProducerRecord<String, String> record
 = new ProducerRecord<String, String>("my_topic", 0, key, value);

writes message to partition 0

Question: When might this be useful?

• It is also possible to specify the partition to which a message should be written when

creating the ProducerRecord

• Answer:

◦ Writing the partitioning logic directly into the producer code is simpler than creating a

new class so it may be useful in very simple cases…

◦ It is convenient to use for testing.

◦ But… see the activity!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 425

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Analyzing a Partitioning Strategy

Say a producer for driver_profiles includes code like this:

 1 hashedKey = hash(driverID);
 2 zipPopulation = getCityPopulationByZIPCode(driverZip);
 3
 4 if zipPop < MID_CITY_THRESHOLD //small towns: use 0-4
 5 part = hashedKey%5;
 6 else if zipPop < LARGE_CITY_THRESHOLD //medium cities: use 5-14
 7 part = hashedKey%10 + 10;
 8 else //big cities: use 15-29
 9 part = hashedKey%15 + 15;
10
11 newRec = new ProducerRecord<>("driver_profiles", part, key, val);

Then:

a. Evaluate this way of partitioning.

b. Say we ultimately wanted to join driver_profiles with

driver_positions downstream. Re-evaluate.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 426

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

14: Message Considerations

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 427

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains three lessons:

a. How Do You Guarantee How Messages are

Delivered?

b. How Should You Deal with Kafka’s Message

Size Limit?

c. How Do You Send Messages in Transactions?

Where this fits in:

• Hard Prerequisite: Preparing Producers for

Practical Uses

• Recommended Prerequisite: Groups, Consumers,

and Partitions in Practice

• Recommended Follow-Up: Other modules in this

branch, other courses

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 428

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

14a: How Do You Guarantee How Messages

are Delivered?

Description

How to deal with guaranteeing ordered delivery of messages and non-duplicated writes

with idempotence, along with how it works.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 429

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Solve the problem of out-of-order message delivery with

idempotence

• Guarantee non duplicate delivery of messages

• Explain how Kafka implements idempotence

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 430

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Problem: Producing Duplicates to the Log

• acks = all

• retries > 0

Producer

Producer

m1 m2 leader

m1 m2 follower

m1 follower

m1 m2 failed

m1 m2 m2 leader

m1 follower

Here, the producer has settings acks=all with retries enabled. The leader fails before

record batch m2 is committed to all the brokers. The new leader already received m2, but

the retry means that m2 is duplicated. Now all the followers will have a duplicate for m2.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 431

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Solution: Idempotent Producers

• enable.idempotence = true

• acks = all

Producer
pid: 1
seq: 0

m1

retry m1

ack

Producer
pid: 1
seq: 0

m1

m1

“Wait,
I’ve already
seen this!

Next please!”

The enable.idempotence = true setting in the producer ensures messages aren’t

duplicated, even in the case of producer retries or broker failure. This is possible due to

headers in the message format for producer ID and sequence number.

• Producer ID: A unique identifier for a producer session

• Sequence number: Each message a producer sends is given a sequence number that

increments with each message.

In this example, we see that the broker recognizes the sequence number from this producer,

so it acknowledges the producer without appending a duplicate of m1 to the log.

The broker will retain a map { PID : sequence number } in memory that is occasionally

snapshotted to the log in a .snapshot file. If the broker recovers from failure, it could read

through the log and catch up to the current mapping of PID → Sequence number, but this

could take a while. The .snapshot file speeds up this process.



Enabling idempotent producers usually has negligible performance impact, thus

making it useful in many situations. The caveats to enabling idempotence are

that max.in.flight.requests.per.connection must be less than or equal to

5, retries must be greater than 0, and acks must be "all." If these values are

not explicitly set by the user, suitable values will be chosen. If incompatible

values are set, a ConfigException will be thrown.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 432

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka Streams also supports Exactly Once Semantics. In a Kafka Streams app, we set

processing.guarantee=exactly_once to get exactly once processing. (Default:

at_least_once.)

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 433

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Problem: Producing Messages Out of Order

• max.in.flight.requests.per.connection > 1

• retries > 0

Producer
retry m1

Producer

m1

m2

m2

m2 m1

We’ve not addressed max.in.flight.requests.per.connection before, so… it allows for

pipelining. Remember from the module "Preparing Producers for Practical Uses" that calling

send() puts a message into the producer’s local buffer and doesn’t simply write it to the

producer; a lot happens before the message is successfully written. Generally we want to

allow multiple requests to be going between the producer and the cluster, and

max.in.flight.requests.per.connection has a default value of 5 in that spirit. But…

With max.in.flight.requests.per.connection and retries producer properties set to

greater than 1, it is possible for messages to be appended to the log out of order. In this

example, we see record batch m1 fails for some reason, but m2 succeeds. The producer

retries m1, and thus the log has the records from m1 and m2 out of order.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 434

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Solution: Idempotent Producers

ack

Producer
pid: 1
seq: 0

m1
(m3, pid: 1, seq: 2)

(m2, pid: 1, seq: 1)

“m3? You are
out of sequence!

I will wait for m2.”

Here we see record batch m1 has been appended to the log with sequence number 0 and

there are two in-flight requests to the broker for m2 and m3. For some reason, m2 fails to

reach the broker, but m3 doesn’t. The broker notices that the sequence number for m3 is not

the next number in the sequence for this particular producer, so it sends an

OutOfOrderSequenceException.

Remember, the record batches will sit in the producer’s memory buffer for up to the time

configured by delivery.timeout.ms (Default: 2 minutes). After this time, the producer

would decrement the sequence number of batches it is sending. This allows future batches

to be accepted by Kafka and not rejected because of missing sequence numbers due to

expired batches.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 435

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity: Justifying a Configuration PR

Quick review:

You made a pull request wherein you made one change to your

producer code, adding this:

props.put("enable.idempotence", "true");

A colleague is hesitant to approve this and asks you why you

did this. Tell your colleague two problems this could prevent

(better if you can phrase them in the context of what your

company/application does).

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 436

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

Manual Committing and Weaker Message Delivery

Guarantees

If you want to commit offsets manually, set enable.auto.commit=false

Synchronous

• commitSync()

• blocks until success or exception

Asynchronous

• commitAsync()

• non-blocking, should have callback

But be careful! Consider these two code examples:

1 records=consumer.poll();
2 consumer.commitSync();
3 ... // process records

1 records=consumer.poll();
2 ... // process records
3 consumer.commitSync();

Question: Which code block represents an "at most once" guarantee, and which represents

"at least once"?

• A consumer can manually commit offsets to control the committed position

◦ Disable automatic commits: set enable.auto.commit to false

• commitSync()

◦ Blocks until it succeeds, retrying as long as it does not receive a fatal error

◦ For “at most once” delivery, call commitSync() immediately after poll() and then

process the messages

◦ Consumer should ensure it has processed all the records returned by poll() or it may

miss messages

• commitAsync()

◦ Returns immediately

◦ Optionally takes a callback that will be triggered when the Broker responds

◦ Has higher throughput since the consumer can process next message batch before

commit returns

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 437

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

▪ Tradeoff: Consumer may find out later the commit failed

▪ Tradeoff: Less control over commits

◦ commitAsync is also useful for slow-performing consumers (e.g. consumers who need to

call an external service API), as an alternative to increasing the session timeout

This slide doesn’t explicitly show that commitSync/commitAsync can be called with

parameters to specify topic/partition/offset to commit, allowing more fine-grained offset

updates, not just committing the whole batch returned in the last poll call.

• A consumer can combine both commitSync and commitAsync:

◦ commitAsync() during normal processing of messages and

◦ commitSync() just before exiting the Consumer or before a rebalance (in the “finally“

clause)

Developers should make sure to commit offsets before a partition rebalance by using the

sync methods as part of the onParititionsRevoked method.

Regarding the examples…

The code block on the left represents "at most once" delivery. The consumer commits its

offset before actually processing the records, so if there is a failure during processing, the

next consumer will pick up the committed offset and skip all of the records from the poll in

line 1. This ensures no record will be reprocessed, but at the cost of potentially skipping

records.

The code block on the right represents "at least once" delivery. The records are processed

before the consumer commits its offset, so if there is a failure during processing, the records

from the poll in line 1 will be reprocessed. This ensures all records are processed at least

once, but at the cost of potentially reprocessing records.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 438

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

14b: How Should You Deal with Kafka’s

Message Size Limit?

Description

Understanding message size limits, best practices, and strategies for dealing with natural

demands for large messages.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 439

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• State the default message size max

• Explain why not to change the message size limit

• State strategies for dealing with applications needing larger

messages

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 440

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kafka’s Message Size Requirements

• Broker default for message.max.bytes is 1 MB

• Producer default for max.request.size is also 1 MB

 Confluent Cloud has larger defaults.

• Increasing message size limit can lead to:

◦ poor garbage collection performance

◦ less memory available for other important broker business

◦ more resources needed to handle requests

Question: So how can we deal with this?

Kafka is not optimized for large messages. When a Broker receives a large record batch, a

byte buffer is allocated to receive the entire record batch. The larger the record batch, the

more likely that performance issues might occur (e.g., fragmentation in the Java heap). The

default maximum is 1 MB, and it is strongly recommended not to change this default. The

vast majority of use cases can be attained with record batch sizes of less than 1 MB.

• The occasional large record won’t degrade broker performance, so if you absolutely must

change the maximum size for a batch of messages that the broker can receive from a

producer:

◦ globally, adjust message.max.bytes on broker

◦ per topic, adjust max.message.bytes

◦ on the producer, adjust max.request.size



Confluent Cloud has a max message size of 8 MB for the standard package and

20 MB for a dedicated cluster. See this page for more details and the most up-

to-date information on Confluent Cloud sizing and options. If large message

sizes are business critical, then Confluent Cloud is an excellent option.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 441

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/cloud/current/clusters/cluster-types.html

Solution 1: Compression

Producer Consumer

1. Producer batches and then compresses the record batch

2. Compressed record batch stored in Kafka

3. Consumer decompresses

Change the producer’s compression.type property from none to gzip, snappy, lz4, or

zstd. Compression applies to full batches of data, so the efficacy of batching will also

impact the compression ratio (more batching means better compression). The compression

type used by a producer is noted as a header of the record batch. This allows multiple

producers writing to the same topic to use different compression types. Consumers will

decompress batches of messages according to the compression type denoted in the header.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 442

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Solution 2: Pass Reference to External Store

Producer

data
storage

data data

ref

refref

ref

Kafka

Consumer

1

2

6

5

3 4

If compression alone isn’t enough, then another strategy is to store a large message in

object storage like S3, a document database like MongoDB, or a cache like Redis, and then

produce a reference to the data’s true location to Kafka. The consumer will read that

reference and retrieve the data from the external system. This design pattern is sometimes

called "claim check," since it behaves like a luggage claim at the airport.

This strategy brings new complexity. Teams must manage a new external system and

account for more failure scenarios. For example, what happens if the producer fails after

sending the large message but before sending the reference to Kafka? There are a few ways

to handle this, like living with the fact that some messages won’t be claimed and settings

time-to-live (TTL) for the message in the external system to clean up unclaimed messages.

A more complex solution would be:

1. Set unique keys for each large message.

2. Produce a "preparing reference" record to Kafka on a compacted topic.

3. Write the data to the data store and receive the reference.

4. Produce the reference record to Kafka, which deletes the "preparing reference" record

due to compaction.

5. When a consumer receives a "preparing reference" message, it sets a timeout. When the

timeout is reached, throw an exception to record the fact that the reference was not

received in that time.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 443

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

The benefit to this complex solution is that there would be a trace of which large messages

were unclaimed, which allows for more flexibility in how to recover.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 444

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Solution 3: Record Chunking

large
payload

Kafka

MessageChunker

KStreams

producer

record_id = 1

chunk-store

key = k1

record_id = 1

chunk_pos = 0

chunk_total = 3

key = k1

record_id = 1

chunk_pos = 1

chunk_total = 3

key = k1

record_id = 1

chunk_pos = 2

chunk_total = 3

1

1

Producer Transactions API2

Kafka Streams for state management3

2 3

0

1

2

If compression isn’t enough and reference passing doesn’t suffice, then consider breaking

down large payloads into "chunks" and sending those chunks as individual messages. This is

quite advanced, so we only discuss a brief overview of the strategy. Here are the steps:

1. The first step is to implement some sort of MessageChunker class to break a large

payload into a list of Kafka producer records.

2. Once the records are made, they must be sent to Kafka atomically and in order. This

requires the enable.idempotence=true property and the producer’s transactional API.

Transactions are usually done in the context of Exactly Once Semantics, but this is a use

case where transactions are appropriate outside of this pattern. Transactions will be

discussed in greater detail in an upcoming lesson.

3. The difficulty of consuming these messages is state management. The consumer must

keep track of the message chunks and assemble them into the original payload when all

chunks are present. You could implement your own "chunk-store" in the consumer, but if

there is a rebalance, that state would have to be shuffled to the new consumer reading

from that partition. As we have seen, Kafka Streams is designed to handle state shuffling

elegantly, so the approach would be to use the Kafka Streams API (the Processor API in

particular) to create a state store to track the chunks. Note that since the chunks were

produced using a transaction, the Kafka Streams application’s consumers must be

configured with isolation.level=read_committed. This will be explained in more detail

in an upcoming lesson.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 445

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/streams/developer-guide/processor-api.html

14c: How Do You Send Messages in

Transactions?

Description

What a transaction is, committed vs. aborted transactions, how Kafka marks them, and

what a single-partition log looks like with transactions involved. Consumer side of

transactions. Code for a transactional producer. How the above would change if the

producer first consumed or if it produced to more than one partition.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 446

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Upon completion of this lesson and associated lab exercises,

you will be able to:

• Explain what a transaction is

• Distinguish between a transaction that should be

committed vs. aborted

• Explain how Kafka marked committed vs. aborted messages

in the logs — and why not other ways

• Illustrate a log for a partition that contains messages from

committed transactions, aborted transactions, and non-

transactional messages

• Specify what configuration change must happen on the

consumer end to make a consumer transaction aware

• Explain — or edit — code for a simple application that is only

producing and producing one transaction

• Illustrate what is different if messages form a transaction

• Explain what one must do differently in code if an

application is consuming and processing before producing

transactional messages and why

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 447

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Overview

The idea: Group messages together as a transaction. Process them only if all can be

processed.

Kafka has a Transactions API. Support for this is part of core Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 448

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Interactive Example Overview

A producer is going to send some messages in transactions and

some other messages

We see here which ultimately succeed and fail to make it to Kafka

We’ll assess sequentially which ones consumers should process

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 449

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Interactive Example - Scenario 1

Messages 1, 2, and 3 are in a transaction. All are successfully written to Kafka.

Q: For each message, should a consumer be allowed to read it and process it?

Virtual Classroom Poll:

consumer should

be allowed to

process message

consumer should

not be allowed to

process message

We won’t know the fate of transactional messages until all have been sent. There are a few

cases. In this case, once we know all messages in the transaction have made it to Kafka, we

can assess whether consumers should be able to read those messages. Since the whole

transaction was successful in this case, consumers should be able to read all of these

messages.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 450

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Interactive Example - Scenario 2

Message 4 is not in a transaction. It is successfully written to Kafka.

Q: For each message, should a consumer be allowed to read it and process it?

Virtual Classroom Poll:

consumer should

be allowed to

process message

consumer should

not be allowed to

process message

Just because we have a transactional producer does not rule out the ability to send

messages that are not part of a transaction. Those messages will always be okay to

consume.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 451

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Interactive Example - Scenario 3

Messages 5 and 6 are in a transaction. One is successfully written to Kafka; one is not.

Q: For each message, should a consumer be allowed to read it and process it?

Virtual Classroom Poll:

consumer should

be allowed to

process message

consumer should

not be allowed to

process message

Once again, we can’t assess whether consumers should consume messages in a transaction

until all have been attempted (and retries and timeouts have run out). In this case, one

message in our transaction made it to Kafka and one did not. Consumers should not process

the message that made it to Kafka, so we can call it "bad."

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 452

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Putting it all Together and Going Further

Here’s everything from the last three slides and more:

Question: So how can Kafka logs denote committed transactions?

This slide shows everything we’ve seen, along with a few more message send attempts.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 453

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Commit and Abort Markers

• Remember, messages are immutable.

• commitTransaction() causes a C marker to be written to the

log

• abortTransaction() causes an A marker to be written to the

log

• Consumers use these markers

We cannot put anything in the metadata to tag messages as good or bad, nor can we delete

individual messages. In Kafka, we use commit markers and abort markers — special

messages added to the logs after successful or unsuccessful transactions. Consumers can

use these markers, along with metadata added to messages that are transactional, to

"filter out" messages that are part of failed transactions. How do you make that happen?

See the slides to come!

You may notice we say each of the above methods "causes a … marker to be written to the

log" rather than "writes…" It is a process called the Transaction Coordinator that handles

this. See the "A Step Beyond" page at the end of the lesson to learn more.

What about what happens if a producer dies before we get to call abortTransacation()?

Well, the transaction will timeout based upon the transaction.timeout.ms setting

(default: 1 minute). When that happens, the transaction coordinator will write abort

markers for all messages that are part of the incomplete transaction. Details.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 454

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_transaction.timeout.ms

Setting up a Transactional Producer

1. Need EOS → turn on idempotence

◦ Set enable.idempotence = true

◦ Causes messages to have metadata:

▪ Producer ID

▪ Sequence number

2. Start transactions

◦ Call producer.initTransactions()

◦ Metadata effects:

▪ Messages will have transactional ID

▪ All messages in a transaction share that transactional ID

For transactions to work, we need three things added to the metadata. The two steps here

make that happen.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 455

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactional Producer Code Example

 1 producer.initTransactions();
 2
 3 try
 4 {
 5 producer.beginTransaction();
 6 producer.send(...);
 7 producer.send(...);
 8 producer.send(...);
 9 producer.commitTransaction();
10 }
11 catch(ProducerFencedException pfe)
12 {
13 producer.close();
14 }
15 catch(KafkaException ke)
16 {
17 producer.abortTransaction();
18 }

Notes:

• We must tell our producer to be transactional. That’s Line 1.

• A transaction might succeed, but it might fail, so we put our transaction in a try block,

seen on Lines 3-10.

• In a happy case, we do our sending between starting our transaction (Line 5) and

committing in (Line 9).

◦ As seen in Lines 6 to 8, we can have two or more send(…) calls.

◦ Line 9 will cause the C marker(s) to be written.

• If one or more messages in our transaction fails, it will cause an exception, leaving the try
block. This triggers the exception caught in the catch block in Lines 15-18.

◦ Line 17 will cause the A marker(s) to be written.

◦ There is no special exception for a message in a transaction failing, so a standard

KafkaException will do, but…

• The ProducerFencedException catch block beginning on Line 11 is necessary in the case

of any "zombie producers" that would have transactional metadata that would cause

consumers not to be able to handle this transaction successfully.

◦ As it is a kind of KafkaException, we must catch it first.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 456

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consuming with Transactions

• Consumer property isolation_level has two options:

◦ read_uncommitted (default) - process all messages, whether they are part of

transactions or not

◦ read_committed - process transactional messages from committed transactions only,

as well as all non-transactional messages

→ Set this if using transactions

 This still does not protect against failures on the consumer end.

In addition to the setup on the producer end from two slides back and using the proper

transactions API on the producer end, we must also configure consumers to think

transactionally. This setting is how to do that.

Back in Kafka, the leader maintains a marker called the last stable offset (LSO), the

smallest offset of any open transaction. When a consumer has read_committed set, the

response returned by consumer.poll() only includes records up to the last stable offset.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 457

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if Messages in a Transaction Land on Different

Partitions?

Producers could send messages from the same transaction to different partitions. This is

okay:

• Need to write C or A markers to all

affected partitions

• Kafka’s Transactions API handles

remembering affected partitions for this

balance-update topic

m1 p1C

m0 p0C

You don’t need to do anything special here — Kafka takes care of it for you — but you should

be aware of this matter. The Producer API handles partitioning and might send messages in

a transaction to different partitions. The Transactions API tracks affected partitions and

writes the C and A markers to all affected partitions.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 458

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if I Consume, Process, and THEN Produce

Transactionally?

• Want to advance relevant

committed consumer offset only

if transaction was successful

• We must also call
sendOffsetsToTxn()

◦ Causes C to be written in

__consumer_offsets too
balance-update topic

m1 p1C

m0 p0C

1 C p6

Consumer Group Coordinator

transfer topic

0 1 2 3 4

Kafkaapp

consumer

producer

FundsTransfer App

producer.sendOffsetsToTxn()

Recall the consume-process-produce model of processing. The consumption step might

result in producing multiple messages that all need to be successful, so transactions may be

needed.

Consider transferring money from one bank account to another. One might

1. Consume from a topic containing transfer requests.

2. Process those transfer requests, i.e. set up the need to:

a. withdraw money from one account.

b. deposit money to another account

3. Produce the messages to change the balances of the two affected accounts. Because

both things must happen, we need a transaction.

Should our transaction succeed, we would want the consumer offset committed for the

transfer topic to advance, like in normal consumption. But should the transaction fail, we do

not. The additional line of code makes this happen properly.

Here’s a revised copy of the code from a few slides back showing the additional line of code,

now Line 9:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 459

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

 1 producer.initTransactions();
 2
 3 try
 4 {
 5 producer.beginTransaction();
 6 producer.send(...);
 7 producer.send(...);
 8 producer.send(...);
 9 producer.sendOffsetsToTxn();
10 producer.commitTransaction();
11 }
12 catch(ProducerFencedException pfe)
13 {
14 producer.close();
15 }
16 catch(KafkaException ke)
17 {
18 producer.abortTransaction();
19 }

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 460

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond

The Transaction Coordinator

Behind the scenes,

• There is a Transaction Coordinator making everything happen.

• It maintains a transaction log

◦ Using internal topic __transaction_state

◦ Tracks the status of the transaction

◦ In the event of failure, is used to prevent the need for redoing work

◦ All affected partitions are recorded in the log

▪ So Transaction Coordinator knows where to write markers

▪ This is both in data partitions and partitions of __consumer_offsets if using the

consume-process-produce model

Here’s a visual:

1 C p6

Consumer Group Coordinator

transfer topic

0 1 2 3 4

balance-update topic

Kafkaapp

m1 p1C

m0 p0C

consumer

producer

FundsTransfer App
tid -> pid

tid -> p0

tid -> p1

tid -> p6

tid -> prepare

tid -> committed

Transaction Coordinator

See the Appendix for a 14-step demo with a great deal of detail of a consume-process-

produce application that uses transactions. The image here is the concluding step of that

demo.

Here’s a blog post with a lot more detail

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 461

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/blog/transactions-apache-kafka/

15: Robust Development

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 462

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This module contains two lessons:

a. What Should You Think About When Testing

Kafka Applications?

b. How Can You Leverage Error Handling Best in

Kafka Connect?

Where this fits in:

• Hard Prerequisite: Starting with Consumers, Kafka

Connect

• Recommended Prerequisite: Groups, Consumers,

and Partitions in Practice

• Recommended Follow-Up: Other modules in this

branch, other courses

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 463

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

15a: What Should You Think About When

Testing Kafka Applications?

Description

Testing considerations as they apply to Kafka development.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 464

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Create a plan for testing producers and consumers in your

Kafka deployment.

• Distinguish between three categories of testing.

• List some considerations to stress and load test a Kafka

system.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 465

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Kinds of Testing

Unit Testing Integration
Testing

Stress &
Load Testing

Here we note four different classes of testing:

• Unit Testing - testing individual components of your system - i.e., producers by themseles,

consumers by themselves - to see that they work on their own

• Integration Testing - testing what happens when the inidividual components are put

together

• Stress and Load Testing - testing what happens when we put the system under more

stress than normal use cases

We’ll go into some more detail on the slides to come.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 466

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Considerations

• Test inidiviudal producers and consumers before testing how they integrate with Kafka.

• Mock or stub dependencies for unit testing.

• Consider the "Anatomy of a Kafka Streams Application" lesson

◦ Having getTopology() and getProperties() as individual methods facilitates better

testing.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 467

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Stress & Load Testing Considerations

Input Output

Kafka

large topics

high-frequency data

Some things to consider testing:

• You should have an expectation for how much data you expect to be produced under

normal use cases. Stress the system by trying to produce more. How does it react?

• You should have an expectation for how much data you expect to be consumed under

normal use cases. Stress the system by trying to produce more. How does it react? How

would your consumers hold up on the day of a new product release of a sale that had 10

times as many purchases as a normal day?

• Consider the "key space," i.e., how many distinct keys your data has. What is the effect of

having many more keys than normal?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 468

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Activity

Class discussion:

• What are some things you found out about a system via

testing that you wouldn’t have thought of otherwise?

• What are some experiences you’ve had testing a Kafka

system that you can share with us?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 469

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

15b: How Can You Leverage Error Handling

Best in Kafka Connect?

Description

Kafka Connect error handling framework options. Dead letter queue.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 470

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Learning Objectives

Completing this lesson and associated exercises will enable

you to:

• Compare and contrast error handling options provided by

the Kafka Connect framework.

• Describe how a dead letter queue applies in Kafka Connect.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 471

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Handling Errors in Connect

Copying to/from external systems can fail…

• source system unavailable

• destination system unavailable

• messages that cannot be processed

• transient failure

What to do?

• Give up completely?

• Allow some errors?

• Retry on failure?

• Log problem messages to handle separately?

A common situation with any software that ingests data into Kafka, or other systems such

as a database, is error management. How to handle situations where the target or source is

unavailable, overloaded or simply what to do when the record is stored and failed, for

example for deserialization.

Since Apache Kafka 2.0, KIP-298 was introduced to have a common error management for

Kafka Connect, so errors don’t have to be handled on a per-connector basis.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 472

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Fail Fast Scenario

Why? How?

• Poisoned messages

i.e., cannot be processed

• Source/target system unavailable

Confirguration settings:

disable retries on failure (default 0)
errors.retry.timeout=0

do not log the error and their
contexts
errors.log.enable=false

do not record errors in a
dead letter queue topic
errors.deadletterqueue.topic.name=""

Fail on first error
errors.tolerance=none

The fail-fast (i.e. non-managed errors) behavior can be achieved by disabling the error

management framework, this can be done with the configuration shown on the right side of

the slide. This is certainly not a good practice; if we are running an Apache Kafka version

newer or equal than 2.0.0, it is always recommended to enable error management.

A situation that we may find is if a connector shows a status of FAILED, but we are not able

to bring it back to a RUNNING state, even after multiple restart attempts.

We should work to remove the impediment that is causing this fast failure. Usual problems

that could cause this situation are poisoned messages as well when the source or target

systems are not available, or underperforming.

What are Poisoned messages?

These are messages that can not be processed and so are rejected. As the message was not

successfully consumed, the connector will retry again and again.

The second situation is source or target systems are unavailable:

A situation that could arise from time to time in our deployment is when one of the systems

the connectors are pulling data from or pushing data to becomes unavailable. This could be

for multiple reasons, e.g., this target system is being taken offline for maintenance, or an

upgrade, or simply because the target system is currently overloaded.

Each connector handles this slightly different. The JDBC connector handles connection

attempts or operation retries, both with exponential back off for easy recovery. Other

popular connectors such as the HDFS sink have an option to retry delivery of messages with

exponential back off.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 473

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

To plan for such scenarios, it is very important to check the different options present in the

configuration of the connector and search for how each one is handling timeouts and

reconnection attempts.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 474

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Dead Letter Queue

• Problem: Writing

message to external

system fails

• Solution:

◦ Rather than giving

up, produce this

message to a special

Kafka topic

→ Called the dead

letter queue (DLQ)

◦ Can inspect those

messages separately

and decide how to

handle

read
message

write bad
message
to DLQ?

send good
message
to sink?

sink connector

external system

 The DLQ is for sink connectors only.

More on DLQ:

• Deep Dive on Connect Error Handling

• DLQ in Confluent Cloud

• Retries, configurable via the settings on the slides to come, happen before a message that

could not be written to the sink system is written to the DLQ.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 475

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/blog/kafka-connect-deep-dive-error-handling-dead-letter-queues/
https://docs.confluent.io/cloud/current/connectors/dead-letter-queue.html

Error Management Options

To configure error management, configure the connector settings:

Name Default Source

Connectors

?

Sink

Connectors

?

errors.retry.timeout 0 yes yes

errors.retry.delay.max.ms 1 min yes yes

errors.tolerance - yes yes

errors.deadletterqueue.topic.name "" no yes

errors.log.enable false yes yes

errors.log.include.messages false yes yes

The Connect error framework handles:

• Retry on failure: Which handles how an operation is retried after failing.

• Task error tolerance: How many errors to tolerate per task.

• Dead letter queue: For sink connectors, the original record (from the Kafka topic the sink

connector is consuming from) which caused the failure will be written to another topic

used as queue.

See next slide for an example configuration.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 476

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Recommended Error Management Config

Here’s an example of configuring error management:

retry for at most 10 minutes waiting up
to 30 seconds between consecutive failures
errors.retry.timeout=600000
errors.retry.delay.max.ms=30000

log error context along with application logs
but do not include configs and messages
errors.log.enable=true
errors.log.include.messages=false

produce error context into the Kafka topic
errors.deadletterqueue.topic.name=my-connector-errors

Tolerate all errors.
errors.tolerance=all

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 477

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Conclusion

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 478

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Course Contents

Now that you have completed this course, you should have the

skills to:

• Write Producers and Consumers to send data to and read

data from Apache Kafka

• Create schemas, describe schema evolution, and integrate

with Confluent Schema Registry

• Integrate Kafka with external systems using Connect

• Write streaming apps with Kafka Streams & ksqlDB

• Describe common issues faced by Kafka developers and

ways to troubleshoot

• Make design decisions about acks, keys, partitions, batching,

replication, and retention polices

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 479

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Other Confluent Training Courses

• Confluent Stream Processing Using Apache Kafka® Streams

& ksqlDB

◦ recommended to take this next!

• Apache Kafka® Administration by Confluent

• Confluent Advanced Skills for Optimizing Apache Kafka®

• Managing Data in Motion with Confluent Cloud

For more details, see https://confluent.io/training

• Confluent Stream Processing Using Apache Kafka® Streams & ksqlDB covers:

◦ Identify common patterns and use cases for real-time stream processing

◦ Understand the high level architecture of Kafka Streams

◦ Write real-time applications with the Kafka Streams API to filter, transform, enrich,

aggregate, and join data streams

◦ Describe how ksqlDB combines the elastic, fault-tolerant, high-performance stream

processing capabilities of Kafka Streams with the simplicity of a SQL-like syntax

◦ Author ksqlDB queries that showcase its balance of power and simplicity

◦ Test, secure, deploy, and monitor Kafka Streams applications and ksqlDB queries

• Apache Kafka® Administration by Confluent covers:

◦ Data Durability in Kafka

◦ Replication and log management

◦ How to optimize Kafka performance

◦ How to secure the Kafka cluster

◦ Basic cluster management

◦ Design principles for high availability

◦ Inter-cluster design

• Confluent Advanced Skills for Optimizing Apache Kafka

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 480

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://confluent.io/training

◦ Formulate the Apache Kafka® Confluent Platform specific needs of your organization

◦ Monitor all essential aspects of your Confluent Platform

◦ Tune the Confluent Platform according to your specific needs

◦ Provide first level production support for your Confluent Platform

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 481

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent Certified Developer for Apache

Kafka

Duration: 90 minutes

Qualifications: Solid understanding of Apache Kafka

and Confluent products, and 6-to-9 months hands-on

experience

Availability: Live, online, 24-hours a day!

Cost: $150

Register online: www.confluent.io/certification

Benefits:

• Recognition for your Confluent skills with an official credential

• Digital certificate and use of the official Confluent Certified Developer Associate logo

Exam Details:

• The exam is linked to the current Confluent Platform version

• Multiple choice questions

• 90 minutes

• Designed to validate professionals with a minimum of 6-to-9 months hands-on experience

• Remotely proctored on your computer

• Available globally in English

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 482

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent Certified Administrator for Apache

Kafka

Duration: 90 minutes

Qualifications: Solid work foundation in Confluent

products and 6-to-9 months hands-on experience

Availability: Live, online, 24-hours per day!

Cost: $150

Register online: www.confluent.io/certification

This course prepares you to manage a production-level Kafka environment, but does not

guarantee success on the Confluent Certified Administrator Certification exam. We

recommend running Kafka in Production for a few months and studying these materials

thoroughly before attempting the exam.

Benefits:

• Recognition for your Confluent skills with an official credential

• Digital certificate and use of the official Confluent Certified Administrator Associate logo

Exam Details:

• The exam is linked to the current Confluent Platform version

• Multiple choice and multiple select questions

• 90 minutes

• Designed to validate professionals with a minimum of 6 - 12 months of Confluent

experience

• Remotely proctored on your computer

• Available globally in English

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 483

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

We Appreciate Your Feedback!

Please complete the course survey now.

Your instructor will give you details on how to access the survey

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 484

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Thank You!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 485

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix: Additional Problems to Solve

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 486

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Overview

This section contains a few additional problems to be solved that will reinforce the concepts

in this course.

These problems were originally written as warm-up problems for instructor-led training for

this course. Your instructor may or may not choose to incorporate some or all of these

problems in class; you may find them to provide additional enrichment in any case. Some

other problems originally created as warm-up problems have been adapted into activities in

the content of this version of this course.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 487

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Problem A: Comparing Producers and

Consumers

We looked at Java code for writing custom producers and consumers yesterday…

a. To create producers, we instantiated objects of three different classes. What were they?

How are they related?

b. What are the analogous classes for consumers?

c. What additional step must we do for consumers in setting them up? Why not for

producers?

d. What is the main operation a producer does? A consumer?

Prerequisite Modules:

• 2: Starting with Producers

• 4: Starting with Consumers

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 488

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Problem B: Partitioning with Keys

Suppose we have 5 brokers and 5 partitions. The five partitions are p0, p1, p2, p3, and p4; and

they are stored on brokers b0, b1, b2, b3, and b4, respectively. Suppose we are using default

Kafka settings and hash(n) = n. Then…

Suppose we send these messages:

• m0 with key 1

• m1 with key 7

• m2 with key 12

• m3 with key 18

• m4 with key 27

• m5 with key 10

Which partitions contain which messages after the Kafka cluster has received them all?

Here’s an illustration of the situation:

p
0

b
0

p
1

b
1

p
2

b
2

p
3

b
3

p
4

b
4

Prerequisite Modules:

• Fundamentals Class

• 2: Starting with Producers

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 489

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Problem C: Groups, Consumers, and

Partitions

Suppose we have partitions p0, p1, p2 each with first offset 0 and with most recent offsets of

12, 15, and 20, respectively (where every offset between contains data). Suppose we have

consumer group g0 with consumers c0, c1, and c2 and consumer group g1 with consumers c3,

and c4. (Some details may be missing - you interpret!)

The setup might look like this:

p
0

p
1

p
2

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

0

0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Your quest:

a. Give a valid assignment of consumers to partitions that could result.

b. How many different consumer offsets are stored in this scenario? Explain/list them.

c. For each consumer offset in your list, give a valid value it could have

d. Suppose c1, goes down. What happens? Concretely illustrate the scenario now.

e. For any one consumer, tell the offsets of the messages read in the case that it gets 2

messages in the next batch. Repeat for some other consumer in the case that this other

consumer gets 3 messages in the next batch.

f. Give two examples of things that could happen that would trigger a consumer/partition

assignment rebalance. One must not involve anything with consumers changing (before

the rebalance).

Prerequisite Modules:

• 5: Groups, Consumers, and Partitions

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 490

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Problem D: Partitioning without Keys

We will again work with this scenario of five brokers and five partitions:

p
0

b
0

p
1

b
1

p
2

b
2

p
3

b
3

p
4

b
4

Suppose instead of the keyed messages in another problem, we have messages with null

keys.

Skim KIP 480 for more on how Kafka handles partitioning by default when messages do not

have keys.

Suppose we have messages that get assigned to partitions in the buffer and these were the

batches before being flushed:

batch 0: a, b, c

batch 1: d, e

batch 2: f, g, h, i

batch 3: j

batch 4: k, l, m, n

batch 5: o, p

batch 6: q, r

batch 7: s, t, u

batch 8: v, w, x, y, z

Give an illustration of which messages would land on which partitions…

• …if you are in a breakout room with an even number: assume we had relatively decent

luck, or

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 491

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=120722025

• …if you are in a breakout room with an odd number: assume we had not such great luck

Prerequisite Modules:

• None, really, other than Fundamentals course.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 492

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix: Additional Content

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 493

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Overview

This appendix contains a few additional lessons. These lessons are for additional information

for you, but are not designed the same as the rest; namely, they do not have activities or

labs to reinforce the content like the rest.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 494

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix A: A Taste of Kafka Security for

Developers

Description

What Kafka security supports vs. does not for self-managed vs. Confluent Cloud. High level

overview of security options in Kafka/CP. Simple, basic config examples.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 495

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Security Overview (1)

Authentication

Confluent RBAC
Mutual SSL

SASL

Authorization

Confluent RBAC
Simple ACLs

Encryption in
Transport

SSL (aka TLS)
Plaintext

• Encryption in Transport: Can people spy on your messages?

◦ Apache Kafka offers encryption over SSL (aka TLS) when the broker’s keystore is

trusted by the client’s truststore. Transport encryption is a requirement in most secure

contexts.

TLS 1.3 is the default TLS protocol when using Java 11 or higher, and TLS 1.2 is the

default for earlier Java versions. TLS 1.0 and 1.1 are disabled by default due to known

security vulnerabilities, though users can still enable them if required.

• Authentication: Are you who you say you are?

◦ With mutual SSL, not only does the client trust the broker certificate, but the broker

trusts the client certificate as well, which means the client’s identity is established.

◦ Open source Apache Kafka comes with its own authentication features via SASL

(Simple Authentication and Security Layer)

• Authorization: Are you allowed to do what you’re trying to do?

◦ Open source Apache Kafka comes with the ability to manage Access Control Lists


Confluent RBAC is a commercial feature of Confluent Platform that provides a

unified, flexible, and scalable security posture with respect to authentication

and authorization. Details of RBAC are beyond the scope of this course.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 496

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Security Overview (2)

Security is mostly out of your hands as a developer, but be aware:

• For all deployments of Kafka, authorization and authentication are supported

• So is encryption. But… what is suppored varies:

◦ For self-managed deployments of Kafka, only encryption of data in transport

◦ For Confluent Cloud deployments, encryption at rest also (and standard)

• Authorization rights can be set to allow clients to

◦ Describe topics

◦ Read from topics

◦ Write to topics


If your application is failing but you suspect your logic is correct, make sure you

have the appropriate permissions.

Security falls in the administration track of our training, so we don’t go into it in detail here.

However, this slide summarizes a few things worth knowing as a developer.

Here’s one additional tidbit: You may recall in our code examples where we set

bootstrap.servers to connect to a cluster, we specified host:port pairs. Administrators

can configure different ports with different security settings. So, you may end up choosing a

port number based on security requirements/configurations.

For more information on all security topics:

• See the security documentation: https://docs.confluent.io/current/security/index.html

• Consider attending Apache Kafka® Administration by Confluent

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 497

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/security/index.html

Appendix B: Confluent Cloud vs. Self-

Managed Kafka

Description

Defining what Confluent Cloud is and comparing CCloud deployments to self-managed

deployments. Key considerations for developing clients for CCloud vs. for self-managed

deployments.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 498

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What is Confluent Cloud?

• Can deploy CP as self-managed software but…

• Confluent Cloud = fully-managed deployment of CP

◦ Many administrative tasks done for you

• Confluent Cloud available on

◦ AWS

◦ Google Cloud Platform

◦ Microsoft Azure

Confluent Cloud removes some administrative tasks from your organization’s

responsibilities.

Currently there are two ways to deploy the Confluent Streaming Platform:

1. Fully managed service with Confluent Cloud (shown on right)

2. Self-managed Confluent Platform (shown on left)

Confluent Cloud™ is a fully-managed event streaming platform service built upon Apache

Kafka. Confluent Cloud comes in two flavors:

• Standard:

◦ Consumption based pricing

• Dedicated:

◦ Custom pricing

◦ Unlimited data throughput and retention

◦ Higher SLA

◦ Enterprise level security & compliance

◦ VPC peering

For more details, see https://www.confluent.io/confluent-cloud/compare/

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 499

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://www.confluent.io/confluent-cloud/compare/

Quick Look at the UI

CLI GUI

$ ccloud kafka topic list
demo-topic
other-topic
my-topic

$ ccloud kafka topic create product-
topic \
 --replication-factor 3 \
 --partitions 6

One more example CLI command:

$ ccloud kafka topic describe product-topic
Topic: products PartitionCount: 6 ReplicationFactor: 3
 Topic | Partition | Leader | Replicas | ISR
+---------------+-----------+--------+----------+---------+
 product-topic | 0 | 2 | [2 4 9] | [2 4 9]
 product-topic | 1 | 3 | [3 2 0] | [3 2 0]
 product-topic | 2 | 1 | [1 3 8] | [1 3 8]
...

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 500

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What’s Different?

Topics, partitions, replication, producing, consuming, etc. all behave the same whether you’re

developing for Confluent Cloud or developing for a self-managed deployment of Confluent

Platform.

The biggest differences are administrative:

• With self-managed Kafka, there is no security setup out of the box. With CCloud, there is.

• With self-managed Kafka security enabled, there is no support for encryption of data at

rest, only data in transit. With CCloud, data is encrypted at rest.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 501

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Can I Learn More?

• Managing Data in Motion with Confluent Cloud instructor-led training class - one-day

• Free self-paced course "Introduction to Confluent Cloud" available via Content Raven -

sign up at http://training.confluent.io

• Introductory exercise using Confluent Cloud in Fundamentals course: Getting Started in

Confluent Cloud

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 502

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

http://training.confluent.io
https://confluent-training.github.io/kafka-fundamentals/fun-exercise-book.html#_getting_started_in_confluent_cloud
https://confluent-training.github.io/kafka-fundamentals/fun-exercise-book.html#_getting_started_in_confluent_cloud

Appendix C: Developing with the REST Proxy

Description

What is the REST Proxy, why one would use it, how a REST producer might look, how a REST

consumer might look, examples of other places in the DEV modules where REST fits in.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 503

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent REST Proxy (1)

Producer

Consumer

Confluent
REST Proxy

native Java
Kafka libraries

your
app

Confluent Community includes a REST Proxy for Kafka. This allows any language to access

Kafka via a REST interface over HTTP.

REST Proxy API reference: https://docs.confluent.io/current/kafka-rest/api.html#crest-

long-api-reference

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 504

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka-rest/api.html#crest-long-api-reference
https://docs.confluent.io/current/kafka-rest/api.html#crest-long-api-reference

Confluent REST Proxy (2)

• The Confluent REST Proxy allows you to use HTTP to perform actions on the Kafka cluster

• The REST calls are translated into Java Kafka client calls

• This allows virtually any language to access Kafka

• Uses POST to send data to Kafka:

◦ JSON, binary, Avro, Protobuf and JSON Schema

• Uses GET to retrieve data from Kafka

The Confluent REST Proxy is an open source Confluent Community component. The proxy

provides a RESTful interface to a Kafka cluster, making it easy to produce and consume

messages, view the state of the cluster, and perform administrative actions without using

the native Kafka protocol or clients.

Some example use cases are:

• Reporting data to Kafka from any frontend app built in any language not supported by

official Kafka clients

• Ingesting messages into a stream processing framework that doesn’t yet support Kafka

• Scripting administrative actions


Configuring the REST proxy is not part of this course. Refer to the

documentation for more details: https://docs.confluent.io/platform/current/

kafka-rest/production-deployment/index.html

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 505

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/platform/current/kafka-rest/production-deployment/index.html
https://docs.confluent.io/platform/current/kafka-rest/production-deployment/index.html

Creating a Producer with REST Proxy

 1 import requests
 2 import json
 3
 4 url = "http://restproxy:8082/topics/my_topic"
 5 headers = {"Content-Type" : "application/vnd.kafka.json.v2+json"}
 6 # Create one or more messages
 7 payload = {"records":
 8 [{
 9 "key": "firstkey",
10 "value": "firstvalue"
11 }]}
12 # Send the message
13 r = requests.post(url, data=json.dumps(payload), headers=headers)
14 if r.status_code != 200:
15 print "Status Code: " + str(r.status_code)
16 print r.text


This is just a Confluent REST Proxy example. This is not the Python producer

client.

The target topic is specified as part of the URL, after the REST proxy.

This example shows how to use the JSON format with vnd.kafka.json. Refer to the REST

Proxy documentation for examples using the other formats (e.g., Avro-encoded JSON).

A question that often comes up: How are all the producer and consumer properties

configured through the REST Proxy? In almost all cases, the configs have to be defined on

the REST server itself, and cannot be specified as part of the client request.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 506

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka-rest/api.html#content-types
https://docs.confluent.io/current/kafka-rest/api.html#content-types

Creating a Consumer with REST Proxy (1)

• Main Logic

 1 import requests
 2 import json
 3 import sys
 4
 5 FORMAT = "application/vnd.kafka.v2+json"
 6 POST_HEADERS = { "Content-Type": FORMAT }
 7 GET_HEADERS = { "Accept": FORMAT }
 8
 9 base_uri = create_consumer_instance("group1", "my_consumer")
10 subscribe_to_topic(base_uri, "hello_world_topic")
11 consume_messages(base_uri)
12 delete_consumer(base_uri)


This is just a Confluent REST Proxy example. This is not the Python consumer

client.

Using the REST Proxy as a consumer has a few more steps than the producer.

First we define a few global variables:

1. FORMAT: defines Kafka’s specific JSON format in version 2, used in HTTP request

2. POST_HEADERS: headers used for POST requests

3. GET_HEADERS: headers used for GET requests

The actual application logic:

1. Create a consumer instance called my_consumer in consumer group group1

2. Subscribe the consumer to the topic hello_world_topic

3. Now consume messages

4. When done, delete the consumer instance to avoid resource leaks

 base_uri is used to identify the consumer instance

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 507

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Creating a Consumer with REST Proxy (2)

• Creating the Consumer Instance

13 def create_consumer_instance(group_name, instance_name):
14 url = f'http://rest-proxy:8082/consumers/{group_name}'
15 payload = {
16 "name": instance_name,
17 "format": "json"
18 }
19 r = requests.post(url, data=json.dumps(payload), headers=POST_HEADERS)
20
21 if r.status_code != 200:
22 print ("Status Code: " + str(r.status_code))
23 print (r.text)
24 sys.exit("Error thrown while creating consumer")
25
26 return r.json()["base_uri"]

In this part of the example, we are creating the instance of the consumer. Notice that the

url is referencing the consumers rather than a topic name as we saw in the producer

example.

1. We define the url to the desired consumer group

2. The payload defines among other things the instance name we want to use

3. Now we do an HTTP POST request to the url

4. In case of an error we stop the application with sys.exit(…)

5. As a last step, we return base_uri, which is used to identify the consumer instance

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 508

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Creating a Consumer with REST Proxy (3)

• Subscribing to a topic

27 def subscribe_to_topic(base_uri, topic_name):
28 payload = {
29 "topics": [topic_name]
30 }
31
32 r = requests.post(base_uri + "/subscription",
33 data=json.dumps(payload),
34 headers=POST_HEADERS)
35
36 if r.status_code != 204:
37 print("Status Code: " + str(r.status_code))
38 print(r.text)
39 delete_consumer(base_uri)
40 sys.exit("Error thrown while subscribing the consumer to the topic")

In the body of the POST request we send the list of topics (here only a single one) that we

want this consumer to subscribe to.

If there is an error, we delete the consumer and then exit the application

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 509

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Creating a Consumer with REST Proxy (4)

• Consuming and processing messages

41 def consume_messages(base_uri):
42 r = requests.get(base_uri + "/records", headers=GET_HEADERS, timeout=20)
43
44 if r.status_code != 200:
45 print ("Status Code: " + str(r.status_code))
46 print (r.text)
47 sys.exit("Error thrown while getting message")
48
49 for message in r.json():
50 if message["key"] is not None:
51 print ("Message Key:" + message["key"])
52 print ("Message Value:" + message["value"])

In a more realistic example you would loop indefinitely, since a topic is an open ended stream

of data.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 510

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Creating a Consumer with REST Proxy (5)

• Deleting the consumer

53 def delete_consumer(base_uri):
54 r = requests.delete(base_uri, headers=POST_HEADERS)
55
56 if r.status_code != 204:
57 print ("Status Code: " + str(r.status_code))
58 print (r.text)

For more information about the REST Proxy API, see

https://docs.confluent.io/current/kafka-rest/api.html#consumers

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 511

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/kafka-rest/api.html#consumers

Configuring Connectors with the REST API

• Add, modify delete connectors

• Distributed Mode:

◦ Config only via REST API

◦ Config stored in Kafka topic

◦ REST call to any worker

• Standalone Mode:

◦ Config also via REST API

◦ Changes not persisted!

• Control Center uses REST API

• Connectors can be added, modified, and deleted via a REST API on port 8083

• In distributed mode, configuration can be done only via this REST API

◦ Changes made this way will persist after a worker process restart

◦ Connector configuration data is stored in a special Kafka Topic

◦ The REST requests can be made to any worker

• In standalone mode, configuration can also be done via a REST API

◦ However, typically configuration is done via a properties file

▪ Changes made via the REST API when running in standalone mode will not persist

after worker restart

• Confluent Control Center leverages this REST API to let users configure and manage

connectors through the GUI

To make changes to connectors, the Worker will also run a REST API as part of its code. This

allows HTTP calls to be sent to any of the Workers that will then configure the connectors.

Changes made via the REST API take effect immediately and without a reboot.


The REST API included with a Connect Worker is different from the Confluent

REST Proxy.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 512

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Using the REST API with Connect

Some important REST endpoints

Method Path Description

GET /connectors Get a list of active connectors

POST /connectors Create a new Connector

GET /connectors/(string:
name)/config

Get configuration information for a

Connector

PUT /connectors/(string:
name)/config

Create a new Connector, or update

the configuration of an existing

Connector

At times a requirement exists for the Connect REST API to return certain HTTP headers. The

response.http.headers.config setting can be used to customize HTTP response

headers.

Example:

response.http.headers.config="add Cache-Control: no-cache, no-store, must-revalidate",
add X-XSS-Protection: 1; mode=block, add Strict-Transport-Security: max-age=31536000;
includeSubDomains, add X-Content-Type-Options: nosniff

Output of Response Header:

< HTTP/1.1 200 OK
< Date: Sat, 07 Mar 2020 17:33:39 GMT
< Strict-Transport-Security: max-age=31536000;includeSubDomains
< X-XSS-Protection: 1; mode=block
< X-Content-Type-Options: nosniff
< Cache-Control: no-cache, no-store, must-revalidate
< Content-Type: application/json
< Vary: Accept-Encoding, User-Agent
< Content-Length: 136

More information on the REST API can be found at

https://docs.confluent.io/current/connect/references/restapi.html

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 513

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/connect/references/restapi.html

REST API and CCC

Note that many features of Confluent Control Center use the REST API under the hood…

• ksqlDB interactive mode uses the REST API

◦ Can access REST API directly

◦ Or indirectly via CCC

• Rather than configuring Kafka Connect connectors via the REST API as just shown, you

can use CCC

◦ …but this uses the REST API indirectly

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 514

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix D: Comparing the Java and .NET

Consumer API

Description

A comparison of a basic consumer written in Java with a basic consumer written in

C#/.NET.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 515

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Comparing a Java Consumer with a C#/.NET

Consumer

Here we will look at a partial solution to an old basic Consumer lab in two languages.

Remember that the C# client is based on the librdkafka library, so this is, on a different level,

a comparison of a JVM-based client and a librdkafka-based client.

Top matter, e.g., import / using statements, is omitted.

That said, here’s the full Java consumer code:

 1 public class ConsumerEx
 2 {
 3 public static void main(String[] args)
 4 {
 5 Properties settings;
 6 KafkaConsumer<String, String> consumer;
 7 ConsumerRecords<String, String> records;
 8
 9 System.out.println("*** Starting VP Consumer ***");
10
11 settings = new Properties();
12 settings.put(ConsumerConfig.GROUP_ID_CONFIG, "vp-consumer");
13 settings.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka:9092");
14 settings.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
15 settings.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
16 StringDeserializer.class);
17 settings.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
18 StringDeserializer.class);
19
20 consumer = new KafkaConsumer<>(settings);
21
22 try
23 {
24 consumer.subscribe(Arrays.asList("vehicle-positions"));
25
26 while (true)
27 {
28 records = consumer.poll(Duration.ofMillis(100));
29
30 for (ConsumerRecord<String, String> record : records)
31 {
32 System.out.printf("offset = %d, key = %s, value = %s\n",
33 record.offset(), record.key(),
34 record.value());
35 }
36 }
37 }
38 finally
39 {
40 System.out.println("*** Ending VP Consumer ***");
41 consumer.close();
42 }
43 }
44 }

Here’s the full C#/.NET consumer code:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 516

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

 1 class Program
 2 {
 3 public static void Main(string[] args)
 4 {
 5 Console.WriteLine("Starting consumer (.NET)");
 6
 7 var conf = new ConsumerConfig
 8 {
 9 GroupId = "vp-consumer-group-net",
10 BootstrapServers = "kafka:9092",
11 AutoOffsetReset = AutoOffsetReset.Earliest
12 };
13
14 using (var c = new ConsumerBuilder<Ignore, string>(conf).Build())
15 {
16 c.Subscribe("vehicle-positions");
17
18 CancellationTokenSource cts = new CancellationTokenSource();
19 Console.CancelKeyPress += (_, e) => {
20 e.Cancel = true; // prevent the process from terminating.
21 cts.Cancel();
22 };
23 try
24 {
25 while (true)
26 {
27 try
28 {
29 var cr = c.Consume(cts.Token);
30 Console.WriteLine($"Consumed message '{cr.Value}' at:" +
31 " '{cr.TopicPartitionOffset}'.");
32 }
33 catch (ConsumeException e)
34 {
35 Console.WriteLine($"Error occured: {e.Error.Reason}");
36 }
37 }
38 }
39 finally
40 {
41 c.Close();
42 }
43 }
44 }
45 }

The overall structure has some differences to be aware of. But we can pull out seven

different things that happen in a consumer:

1. Setting configuration

2. Initializing the consumer

3. Subscribing to topic(s)

4. Polling for records

5. Breaking up the batch received and processing it

6. Looping to continue polling and processing

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 517

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

7. Closing the consumer

We’ll look at these in turn in each consumer.

Setting Configuration

Java code:

11 settings = new Properties();
12 settings.put(ConsumerConfig.GROUP_ID_CONFIG, "vp-consumer");
13 settings.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka:9092");
14 settings.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
15 settings.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
16 StringDeserializer.class);
17 settings.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
18 StringDeserializer.class);

C#/.NET code:

 7 var conf = new ConsumerConfig
 8 {
 9 GroupId = "vp-consumer-group-net",
10 BootstrapServers = "kafka:9092",
11 AutoOffsetReset = AutoOffsetReset.Earliest
12 };

The analog to a Properties object is populating an instance of ConsumerConfig, which

then gets parsed automatically to set the properties. (More)

In C#, the common standard serializers can be inferred automatically from the generic

types. Serializers can be explicitly configured if needed, though. To set explicit deserializers,

could do something like this, replacing line 14 (as addressed below):

14 using (var c =
15 new ConsumerBuilder<Ignore, string>(conf)
16 .SetKeyDeserializer(new AvroDeserializer<string>(schemaRegistry))
17 .SetValueDeserializer(new AvroDeserializer<User>(schemaRegistry))
18 .Build())

Initializing the Consumer

Java code:

20 consumer = new KafkaConsumer<>(settings);

C#/.NET code:

14 using (var c = new ConsumerBuilder<Ignore, string>(conf).Build())

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 518

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://github.com/confluentinc/confluent-kafka-dotnet/blob/4d56f9cd8a1b1d94b30c967e959a0efd887d68a2/src/Confluent.Kafka/Config_gen.cs#L994

The setup is similar, but

• The class name is different

• The instantion happens in C# in the using block header

Subscribing to Topic(s)

Java code:

24 consumer.subscribe(Arrays.asList("vehicle-positions"));

C#/.NET code:

16 c.Subscribe("vehicle-positions");

The only significant difference is the placement of the statement

Polling for Records

Java code:

12 records = consumer.poll(Duration.ofMillis(100));

C#/.NET code:

29 var cr = c.Consume(cts.Token);

The idea is the same, but the syntax is, of course, different.

Breaking up the Batch Received and Processing It

Java code:

28 for (ConsumerRecord<String, String> record : records)
29 {
30 // ...

C#/.NET code:

// N/A

In the Java consumer, we use ConsumerRecords and consume zero or more messages at

once. The C# consumer - really the librdkafka consumer of which it is an instance - is

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 519

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

multithreaded internally and internally manages message buffers. So we’re still, potentially,

fetching multiple records at a time. There is no need to process the collection.

Looping to Continue Polling and Processing

Java code:

26 while (true)

C#/.NET code:

25 while (true)

The idea is exactly the same, and so is the syntax. See the full code blocks for the overall

placement and what’s inside.

Closing the Consumer

Java code:

41 consumer.close();

C#/.NET code:

41 c.Close();

Here again, the idea is the same and the difference is only in casing.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 520

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix E: Detailed Transactions Demo

Description

This section presents a more detailed demo of a consume-process-produce application that

uses transactions.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 521

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions (1/14)

Pictured is a stream processing application called FundsTransfer that follows the consume-

process-produce paradigm. The idea is to read a financial transaction from the "transfers"

topic and produce balance updates to the "balance-update" topic.

A Transaction Coordinator is a module that is available on any Broker. The Transaction

Coordinator is responsible for managing the lifecycle of a transaction in the "Transaction

Log" — the internal Kafka Topic __transaction_state partitioned by transactional.id.

The Broker that acts as the Transaction Coordinator is not necessarily a Broker that the

Producer is sending messages to. For a given Producer (identified by transactional.id),

the Transaction Coordinator is the leader of the Partition of the Transaction Log where

transactional.id resides. Because the Transaction Log is a Kafka Topic, it has durability

guarantees.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 522

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Initialize Consumer Group (2/14)

The consumer and producer are initialized before stream processing is started. Here we see

the consumer subscribe to the "transfers" topic and identify its Consumer Group

Coordinator using hash(group.id) % n, where n is the number of partitions of the

consumer offsets topic (Default: 50). Here, the p6 indicates that this Consumer Group

Coordinator is the broker that holds the lead replica for partition 6 of the consumer offsets

topic.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 523

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Transaction Coordinator (3/14)

Here we see the producer initiating the transaction. The producer identifies the Transaction

Coordinator using hash(transactional.id) % m, where m is the number of partitions of

the __transaction_state topic (Default: 50).

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 524

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Initialize (4/14)

During the initiation, the Producer registers itself to the Transaction Coordinator with its

transactional.id. The Transaction Coordinator records a mapping { Transactional ID
: Producer ID }. The Transaction Coordinator also increments an epoch associated with

the transactional.id.

The epoch is an internal piece of metadata stored for every transactional.id. Once the

epoch is bumped, any producers with same transactional.id and an older epoch are

considered zombies and are fenced off and future transactional writes from those

producers are rejected. This enables reliability semantics which span multiple producer

sessions since it allows the client to guarantee that transactions using the same

TransactionalId have been completed prior to starting any new transactions.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 525

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Consume and Process (5/14)

The Consumer polls for messages from the input Topic. Here, the consumer reads an event

that transfers $10 from Alice to Bob. The goal of the FundsTransfer app is to

transactionally write events to the "balance-update" topic that credits Bob with $10 and

debits $10 from Alice.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 526

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Begin Transaction (6/14)

The Producer begins the transaction.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 527

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Send (7/14)

The Producer sends a message to a partition. Here, the message is to credit Bob with $10.



The first time a new TopicPartition is written to as part of a transaction, the

producer sends a "Register Partitions" request to the transaction coordinator

and this TopicPartition is logged. The transaction coordinator needs this

information so that it can write the commit or abort markers to each

TopicPartition. If this is the first partition added to the transaction, the

coordinator will also start the transaction timer.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 528

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Send (8/14)

The Producer sends a message to a second partition. Here, the message is to debit $10 from

Alice. This message happens to land on a different partition from the previous message, so

this partition is also added to the transaction log.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 529

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Track Consumer Offset (9/14)

The sendOffsetsToTxn() method sends the consumer’s offset and consumer group

information to the transaction coordinator via an AddOffsetCommitsToTxnRequest. This

makes the consumer’s offset become a part of the transaction. If the transaction fails, the

consumer’s offset doesn’t move forward and the transaction can start over.

Of course, the consumer may be subscribed to multiple partitions across multiple topics, in

which case all relevant consumer offsets are included in the transaction state log. In this

simple example, there is only one partition’s offset to track.


To take advantage of the sendOffsetsToTxn() method, the consumer should

have enable.auto.commit=false and should also not commit offsets

manually. See the Java API documentation

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 530

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://docs.confluent.io/current/clients/javadocs/org/apache/kafka/clients/producer/KafkaProducer.html#sendOffsetsToTransaction-java.util.Map-java.lang.String-

Transactions - Commit Consumer Offset (10/14)

Also as part of sendOffsetsToTxn(), the producer will send a TxnOffsetCommitRequest to

the consumer coordinator to persist the offsets in the __consumer_offsets topic.

This guarantees the offsets and the output records will be committed as an atomic unit.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 531

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Prepare Commit (11/14)

Producer commits the transaction. The transaction coordinator marks the transaction as in

status of "preparing."

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 532

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Write Commit Markers (12/14)

The Transaction Coordinator writes commit markers to the Partitions the Producer writes

to as well as to the __consumer_offsets Partition. Commit markers are special messages

which log the producer id and the result of the transaction (committed or aborted). These

messages are internal only and are not exposed by standard consumer operations.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 533

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Commit (13/14)

The Transaction Coordinator marks the transaction as committed.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 534

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Transactions - Success (14/14)

As a final step the transaction coordinator sends an acknowledgment to the producer.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 535

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Appendix: Confluent Technical

Fundamentals of Apache Kafka®

Content

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 536

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Module Overview

This section contains 5 lessons - the content lessons

from the Fundamentals prerequisite:

Lessons of Presentation:

1. Getting Started

2. How are Messages Organized?

3. How Do I Scale and Do More Things With My

Data?

4. What’s Going On Inside Kafka?

5. Recapping and Going Further

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 537

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

1: Getting Started

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 538

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Why Kafka?

In a nutshell…

Kafka is good for Kafka is not meant for

• data in motion

• real-time processing

• batch processing

• archiving data

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 539

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

One Example Use Case: Ordering Food

Suppose we are building a system for a restaurant chain:

• customers order food via an app - mobile or kiosk

• staff receive orders to fulfill in real-time

• management tracks inventory based on orders

We will build up some of the fundamental details of Kafka and use this example.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 540

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Messages

The atomic unit of Kafka is a message or record or event

key

value

This treatment is deliberately simple: just key and value. You can specify other components

in specifying a message; there’s more in the Developer and Administrator training.

It is possible to have messages without keys; this course will assume all messages have keys

specified.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 541

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Topics

Messages are organized in logical groups called topics.

Example topics:

• orders

• menu items

• customers

• restaurants

The topics listed go along with the example use case from a few slides back.

The topic orders is bold because we’ll focus on that one specifically.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 542

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Three Basic Components

Let’s start simple - with an orders topic in place in Kafka, a producer, and a consumer:

consumerproducer
orders topic

Kafka

Here, we just show three components at a high level. The next three slides go into each in

more detail.

We’ll add even more detail in the lessons to come and wrap up with more detailed views of

these illustrations.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 543

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Life Cycle of a Message: Producing

A producer prepares messages and publishes them to Kafka.

consumer

producer

orders topic

Kafka

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 544

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Life Cycle of a Message: Kafka

Produced messages live in Kafka, organized by topic.

consumer

producer

orders topic

Kafka

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 545

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Life Cycle of a Message: Consumption

Consumers subscribe to topics in Kafka and poll for new messages.

consumer

producer

orders topic (subscribed to orders)

Kafka

When we set up consumers, we subscribe to topics to read from.

Note that the message is still shown in the topic in Kafka even though it is shown in the

consumer. This is correct. Consuming a message does not remove it from Kafka.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 546

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

2: How are Messages Organized?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 547

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Topics and Partitions

Topics are broken down into partitions

Simplest case: Topic with one partition

orders: partition 0

Kafka

The presentation is meant to be only about logical organization at this point, and the

messages in a partition are a (logical) subset of the messages in a topic. A partition is also a

physical grouping of messages; more on the physical later.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 548

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Offsets — in Kafka

• Each message in a partition has an offset

• Starting from 0

orders: part. 0

Kafka

first
message

0 1 2 3 4 5 6

last
message

A different way of thinking of a message’s offset is "how many messages were written to

this partition before this message?"

Here we point out the offset of the last message. The offset where the next message will be

written is illustrated too; the hands-on activity will show this offset being reported a Kafka

command line tool.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 549

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Offsets — Consumer Offsets

• Consumers track where they will read next via a consumer offset

orders: part. 0

Kafka

0 1 2 3 4 5 6

consumer

 In this picture, the consumer has last read the message at offset 3.

For now, let’s say our consumer is assigned to the orders topic and it has one partition, and

in turn our consumer must be assigned to that one partition. A consumer offset is:

• per consumer

• per partition

But there is only one of each so far, so there is one offset. Multiple consumers and multiple

consumers will come in the next lesson.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 550

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Check Your Knowledge!

Try a quick quiz on Lessons 1 and 2.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 551

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://forms.gle/Zmu2doLu8knXtCmy6

3: How Do I Scale and Do More Things With

My Data?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 552

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Scaling Up…

So far, we have seen…

• one partition

• one consumer

In practice…

• multiple consumers in a consumer group

• multiple consumer groups

• multiple partitions in a topic

In this lesson, we’ll expand on the last and look into having multiple consumers or partitions.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 553

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consumer Groups

Consumers exist in consumer groups

Consumers in a group:

• same application

• different data

orders topic

Kafka

order
processing
consumer
group

consumer 0

consumer 1

consumer 2

Technically, it is recommended but not required consumers be in groups. We’ll always model

consumers in groups.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 554

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Multiple Consumption

Could have multiple groups using the same data…

orders topic

Kafka

order
processing
consumer
group

inventory
consumer
group

consumer 0

consumer 1

consumer 2

consumer 3

consumer 4

When a consumer reads a message, that does not remove the message. Different

consumers could read the same message.

All of the consumers in a group are doing the same task. We see here our order processing

group as before, but we add a second group of consumers: they go through orders (with less

urgency) to tally what has been ordered and help alert a restaurant which ingredients or

supplies should be restocked.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 555

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Multiple Partitions

In practice, we want topics to have multiple partitions.

orders: partition 2

orders: partition 1

orders: partition 0

Kafka

Before, we said a partition was a subset of the messages in a topic, but we only saw one

partition. Here is where we first see a topic broken up into multiple partitions.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 556

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Consuming from Multiple Partitions

Now our consumers can consume in parallel:

• Consumers subscribed to a topic are assigned partitions

• Group covers all partitions

• Each consumer has an offset for each partition

Kafka

orders: part. 2 0 1 2 3 4

orders: part. 1 0 1 2 3

orders: part. 0 0 1 2 3 4 5 6

order
processing
consumer
group

consumer 0

consumer 1

consumer 2

Now that we have multiple partitions, different consumers could read from different

partitions all at the same time.

Kafka handles the assignment of consumers to partitions; all users need to do is subscribe

to topics. There are configuration settings and details; more on this in the Administrator and

Developer classes.

Each consumer could be reading from each partition at a different location, so consumer

offsets are per consumer and per partition. The picture illustrates three consumers all at

different locations in their assigned partitions.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 557

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Expanding the Last Picture

Kafka

orders: part. 2 0 1 2 3 4

orders: part. 1 0 1 2 3

orders: part. 0 0 1 2 3 4 5 6

order
processing
consumer
group

inventory
consumer
group

consumer 0

consumer 1

consumer 2

consumer 3

consumer 4

Here we bring back the second consumer group from a few slides ago. We can see these

consumers assigned to partitions. The group as a whole needs to read all messages in all

partitions and we have two consumers but three partitions, so one consumer has to handle

two partitions this time.

Note, also, that different consumers reading from the same partition don’t have to be at

the same place, as shown in this picture.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 558

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

How Do Messages Get Partitioned?

• Producers decide which messages go to which partition

• Partitions are indexed from 0 to numberOfPartitions - 1

• Default partitioner: partitionIndex = hash(key) % numberOfPartitions

It is the producer that decided which messages go to which partition of a topic. The slide

gives the formula used by default - and which is used by the console producer you’ll use in

the hands-on exercise.

Developers may specify a partitioner in producer code.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 559

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Scaling is Easy!

Say you want to

• Increase the number of consumers in a group during a busy season

• Decrease the number of consumers in a group when things are slow

• Increase the number of partitions for a topic

When you do, Kafka automatically redistributes the assignments of consumers to partitions!

 More on how all of this works in both our Developer and Administrator training!

You can change some factors about your Kafka deployment after you’ve started using it.

When you change what’s on the slide, it will cause Kafka to change which consumers work

with which partitions in what is called a rebalance. The details of how this work are beyond

the scope of this course but get significant attention in the Developer and Administrator

classes.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 560

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

4: What’s Going On Inside Kafka?

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 561

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Going Deeper…

Now let’s learn about some more details about a Kafka cluster, especially physical things…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 562

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Brokers

A Kafka cluster consists of multiple brokers

101

102

103

104

Kafka

Brokers could be physical servers, but could also be VMs, Docker containers, etc.

The orange boxes represent brokers and the numbers are broker IDs.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 563

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partitions & Brokers

Partitions are really physical groupings of the messages in topics.

Partitions are stored on brokers.

101

102

103

104

Kafka

orders: partition 2

orders: partition 0

orders: partition 1

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 564

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Partitions & Brokers (2)

The number of partitions is a topic setting.

Kafka decides how partitions get

distributed across brokers.

101

Kafka

orders: partition 2

customers: partition 1

102 orders: partition 0

103 customers: partition 0

104 orders: partition 1

Here we see a second topic with a different number of partitions added to the illustration.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 565

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What if a Broker Goes Down?

• Want high availability of data in partitions

• Achieved via replication

• Writes are reads go to leader replica

• Follower replicas keep backup copies of the leader

• If leader dies, a follower becomes the leader

101

102

103

104

orders: part. 0 follower

orders: part. 0 leader

orders: part. 0 follower

Kafka

Note that this is a very simple treatment and replication is covered in much more detail in

the Developer and Administrator courses.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 566

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Serialization and Deserialization

• Kafka stores messages as byte arrays

• Producers must serialize messages

• Consumers must deserialize messages

In developing custom producers and consumers, developers must specify the serializers and

deserializers. There are also tools like Avro and Protobuf that can be used for complex data

types.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 567

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Immutable Messages

• Messages are immutable

• Once written, we cannot change anything about them

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 568

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

…But We Don’t Keep Messages Forever…

Control which messages stay in Kafka via a retention policy:

Policy Deletion Compaction

Idea Remove messages older than a certain

age (default 7 days)

Keep only the latest value for each key

Before 0offset

key

age in days

1 2 3 4

a b b a a

12 10 6 5 2

0offset

key

age in days

1 2 3 4

a b b a a

12 10 6 5 2

After 2offset

age in days

3 4

6 5 2

2offset

key

4

b a

 Partitions are divided into segments, which affect both retention policies.

Note that this is a very simple treatment and these policies are covered in much more detail

in the Developer and Administrator courses. In particular, the impact of segments matters.

Deletion is per segment - but the details of segments comes in the other courses.

Maybe, for a deletion use case, we might keep orders around for up to a week to track

trends on what people ordered in the last week.

Maybe, for a compaction use case, we might have some sort of greeting for a returning

customer like "last time, you ordered… would you like to order this again?"

But, above all, these policies are about smart use of storage.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 569

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Check Your Knowledge!

Try a quick quiz on Lessons 3 and 4.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 570

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://forms.gle/FhJXvtSLCLHmT7Np9

5: Recapping and Going Further

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 571

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Life Cycle of a Message: Producing

101

102

103

104

Kafka

orders: partition 2

orders: partition 0

orders: partition 1

producer

order
processing
consumer
group

consumer 0

consumer 1

consumer 2

• Producers serialize and partition messages

• Producers send messages

◦ …in batches - can be configured for throughput and latency desires

Let’s summarize what we’ve learned about the life cycle of a message… in the context of our

running example. We work with a setup similar to what we had in the first lesson, with some

of the details from later lessons added.

We start here with a message on a producer being sent…

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 572

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Life Cycle of a Message: Kafka

Produced messages live in Kafka, organized by topic.

101

102

103

104

Kafka

orders: partition 2

orders: partition 0

orders: partition 1

producer

order
processing
consumer
group

consumer 0

consumer 1

consumer 2

• Kafka consists of brokers

• Brokers contain partitions, which contain messages

• Brokers handle retention and replication

Now our message makes it to Kafka, specifically to a partition of a topic, and that partition

lives on a particular broker.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 573

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Life Cycle of a Message: Consumption

Consumers subscribe to topics in Kafka and poll for new messages.

101

102

103

104

Kafka

orders: partition 2

orders: partition 0

orders: partition 1

producer

order
processing
consumer
group

consumer 0

consumer 1

consumer 2

• Consumers operate in groups

• Consumers subscribe to topics, are assigned partitions of those topics

• Consumers poll for messages in partitions at consumer offsets

◦ …and fetch in batches - can be configured for throughput and latency desires

Now we see a group of consumers subscribed to the orders topic and see a message being

read by one of those consumers.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 574

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

A Step Beyond Fundamentals: Other Components

We’ve addressed some aspects of Core Kafka in this course. Some other topics you may

want to learn about include:

• Kafka Connect - a tool that helps you copy data to Kafka from other systems and vice-

versa

• Kafka Streams - a layer on top of the Producer and Consumer APIs that allows for stream

processing

• Confluent ksqlDB - a tool for stream processing using a more-accessible SQL-like syntax,

among other things

• Confluent Schema Registry - a tool for managing schemas, guiding schema evolution, and

enforcing data integrity

You can learn more about these topics in our Confluent Developer Skills for Building Apache

Kafka® and Apache Kafka® Administration by Confluent courses.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 575

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

What Does Confluent Platform Add to Kafka?

CONFLUENT PLATFORM

SECURITY & RESILIENCY

RBAC | Audit Logs | Schema Validation | Multi-Region Clusters | Replicator | Cluster Linking

PERFORMANCE & SCALABILITY

Tiered Storage | Self-Balancing Clusters | K8s Operator

MANAGEMENT & MONITORING

Control Center | Proactive Support

DEVELOPMENT & CONNECTIVITY

Connectors | Non-Java Clients | REST Proxy | Schema Registry | ksqlDB

APACHE KAFKA®

Core | Connect API | Streams API

Everything we’ve discussed in this course is part of core Apache Kafka. Confluent Platform

adds additional features beyond the core. The top two boxes in the medium shade of blue

are paid features; the next two in the teal shade of blue are free features.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 576

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Confluent Cloud

• Can deploy CP as self-managed software but…

• Confluent Cloud = fully-managed deployment of

CP

◦ Many administrative tasks done for you

• Confluent Cloud available on

◦ AWS

◦ Google Cloud Platform

◦ Microsoft Azure

Everything we’ve learned about in this course is independent of platform, but CP may be

deployed in a self-managed way or via Confluent Cloud, where our team handles many

management tasks for you.

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 577

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

Your Next Steps

1. Complete interactive lab on seeing console producers and consumers in

action.

→ Short Confluent Cloud version

→ Gitpod version: More involved version using Gitpod

2. Work though other Critical Thinking Challenge Exercises.

→ On the web

→ Solutions on the web too!

3. Enroll in and complete one of these courses, as suits your role:

◦ Apache Kafka® Administration by Confluent

◦ Confluent Developer Skills for Building Apache Kafka®

Labs:

Critical

Thinking:

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 578

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

https://confluent-training.github.io/kafka-fundamentals/fun-exercise-book.html#_getting_started_in_confluent_cloud
https://confluent-training.github.io/kafka-fundamentals/fun-exercise-book.html#_deeper_fundamentals_activity
https://confluent-training.github.io/kafka-fundamentals/fun-ctce.html

Thank You

Thank you for attending the course!

© 2014-2022 Confluent, Inc. Do not reproduce without prior written consent. 579

su
ch
ism

ita
de
bo
ffic
ial
@
gm
ail
.co
m

	Confluent Developer Skills for Building Apache Kafka® Applications
	Table of Contents
	Introduction
	Class Logistics and Overview
	Fundamentals Review

	Core Overview
	01: Introductory Concepts
	01a: How Can You Connect to a Cluster?
	01b: How Do You Control How Kafka Retains Messages?
	01c: How Can You Leverage Replication?
	Lab: Introduction
	Lab: Using Kafka’s Command-Line Tools

	02: Starting with Producers
	02a: What are the Basic Concepts of Kafka Producers?
	02b: How Do You Write the Code for a Basic Kafka Producer?
	Lab: Basic Kafka Producer

	03: Preparing Producers for Practical Uses
	03a: How Can Producers Leverage Message Batching?
	03b: How Do Producers Know Brokers Received Messages?
	03c: How Can a Producer React to Failed Delivery?

	04: Starting with Consumers
	04a: How Do You Request Data to Fetch from Kafka?
	04b: What are the Basic Concepts of Kafka Consumers?
	04c: How Do You Write the Code for a Basic Kafka Consumer?
	Lab: Basic Kafka Consumer

	05: Groups, Consumers, and Partitions in Practice
	05a: How Do Groups Distribute Workload Across Partitions?
	05b: How Does Kafka Manage Groups?
	05c: How Do Consumer Offsets Work with Groups?

	Additional Components of Kafka/CP Deployment Overview
	06: Starting with Schemas
	06a: Why Should You Care About Schemas?
	06b: How Do You Write Schemas in Avro or Protobuf?
	06c: How Do You Design Schemas that can Evolve?

	07: Integrating with the Schema Registry
	07a: How Do You Make Producers and Consumers Use the Schema Registry?
	Lab: Schema Registry, Avro Producer and Consumer

	08: Introduction to Streaming and Kafka Streams
	08a: What Can You Do with Streaming Applications?
	08b: What is Kafka Streams?
	08c: A Taste of the Kafka Streams DSL
	08d: How Do You Put Together a Kafka Streams App?
	Lab: Kafka Streams

	09: Introduction to ksqlDB
	09a: What Does a Kafka Streams App Look Like in ksqlDB?
	09b: What are the Basic Ideas You Should Know about ksqlDB?
	Lab: ksqlDB Exploration
	09c: How Do Windows Work?
	09d: How Do You Join Data from Different Topics, Streams, and Tables?

	10: Starting with Kafka Connect
	10a: What Can You Do with Kafka Connect?
	10b: How Do You Configure Workers and Connectors?
	10c: Deep Dive into a Connector & Finding Connectors

	11: Applying Kafka Connect
	Lab: Kafka Connect - Database to Kafka
	11a: Full Solutions Involving Other Systems

	More Advanced Kafka Development Matters
	12: Challenges with Offsets
	12a: How Does Compaction Affect Consumer Offsets?
	12b: What if You Want or Need to Adjust Consumer Offsets Manually?
	Lab: Kafka Consumer - offsetsForTimes

	13: Partitioning Considerations
	13a: How Should You Scale Partitions and Consumers?
	Lab: Increasing Topic Partition Count
	13b: How Can You Create a Custom Partitioner?

	14: Message Considerations
	14a: How Do You Guarantee How Messages are Delivered?
	14b: How Should You Deal with Kafka’s Message Size Limit?
	14c: How Do You Send Messages in Transactions?

	15: Robust Development
	15a: What Should You Think About When Testing Kafka Applications?
	15b: How Can You Leverage Error Handling Best in Kafka Connect?

	Conclusion
	Appendix: Additional Problems to Solve
	Problem A: Comparing Producers and Consumers
	Problem B: Partitioning with Keys
	Problem C: Groups, Consumers, and Partitions
	Problem D: Partitioning without Keys

	Appendix: Additional Content
	Appendix A: A Taste of Kafka Security for Developers
	Appendix B: Confluent Cloud vs. Self-Managed Kafka
	Appendix C: Developing with the REST Proxy
	Appendix D: Comparing the Java and .NET Consumer API
	Appendix E: Detailed Transactions Demo

	Appendix: Confluent Technical Fundamentals of Apache Kafka® Content
	1: Getting Started
	2: How are Messages Organized?
	3: How Do I Scale and Do More Things With My Data?
	4: What’s Going On Inside Kafka?
	5: Recapping and Going Further

