
1

What Is This Course About?

Here is an overview of what to expect from this course.

We'll cover the following

• What to expect
• Part 1: System design case studies

• Part 2: System design patterns

One common challenge senior engineers face is the lack of experience in

designing scalable systems. The reason because it is not easy to get an

opportunity to work on a large project, especially from the ground up. Most

of the time, software engineers get to work on a small part of a bigger

system. For these reasons, most engineers feel less prepared for system

design interviews, as they lack the adequate knowledge required for

designing large systems. This course is created to help developers learn key

system design skills that will help them in interviews and in their

professional careers.

One way to improve software designing skills is to understand the

architecture of famous systems. This is equivalent to learning from others

who have worked on designing large systems. In our experience, if a

developer has a good understanding of the architecture of a complex system,

it becomes pretty easy for them to gain knowledge from other systems even

in a different domain. This is true because most system design techniques

can easily be adapted and applied to other distributed systems.

2

One way to learn system design is to read the technical papers of famous

systems. Unfortunately, reading a paper is generally believed hard, and

keeping the system design interview in mind, we are not interested in a lot of

details mentioned in the papers. This course extracts out the most relevant

details about the system architecture that the creators had in mind while

designing the system. Keeping system design interviews in mind, we will

focus on the various tradeoffs that the original developers had considered

and what prompted them to choose a certain design given their constraints.

Furthermore, systems grow over time; thus, original designs are revised,

adapted, and enhanced to cater to emerging requirements. This means

reading original papers is not enough. This course will cover criticism on

the original design and the architectural changes that followed to overcome

design limitations and satisfy growing needs.

What to expect #

The course has two parts: System Design Case Studies and System Design

Patterns.

Part 1: System design case studies #

3

Next

Dynamo: Introduction

In the first part, we will go through the architecture of a carefully chosen set

of distributed systems:

1. Key-value store: Dynamo

2. No-SQL wide column stores: Cassandra and BigTable

3. Distributed messaging and streaming system: Kafka

4. Distributed file storage systems: GFS and HDFS

5. Distributed coordination and locking service: Chubby (similar to

Zookeeper)

Part 2: System design patterns #

In the second part of this course, we will describe a set of design problems

(and their solutions) that are common to distributed systems. We call these

techniques ‘System Design Patterns,’ as they can be applied to all kinds of

distributed systems and are very handy, especially in a system design

interview. A few examples of such patterns are:

Write-ahead logging

Bloom filters

Heartbeat

Quorum

Checksum

Lease

Split Brain

Happy learning!

4

5

Yoda
Dynamo: How to Design a Key-value Store?

Dynamo: Introduction

Let’s explore Dynamo and its use cases.

We'll cover the following

• Goal

• What is Dynamo?

• Background

• Design goals

• Dynamo’s use cases

• System APIs

Goal #

Design a distributed key-value store that is highly available (i.e., reliable),

highly scalable, and completely decentralized.

What is Dynamo? #

Dynamo is a highly available key-value store developed by Amazon for

their internal use. Many Amazon services, such as shopping cart, bestseller

lists, sales rank, product catalog, etc., need only primary-key access to data. A

multi-table relational database system would be an overkill for such services

and would also limit scalability and availability. Dynamo provides a flexible

design to let applications choose their desired level of availability and

consistency.
6

Background #

Dynamo – not to be confused with DynamoDB, which was inspired by

Dynamo’s design – is a distributed key-value storage system that provides an

“always-on” (or highly available) experience at a massive scale. In CAP

theorem

(https://www.educative.io/collection/page/5668639101419520/5559029852536

832/5998984290631680) terms, Dynamo falls within the category of AP

systems (i.e., available and partition tolerant) and is designed for high

availability and partition tolerance at the expense of strong consistency.

The primary motivation for designing Dynamo as a highly available system

was the observation that the availability of a system directly correlates to the

number of customers served. Therefore, the main goal is that the system,

even when it is imperfect, should be available to the customer as it brings

more customer satisfaction. On the other hand, inconsistencies can be

resolved in the background, and most of the time they will not be noticeable

by the customer. Derived from this core principle, Dynamo is aggressively

optimized for availability.

The Dynamo design was highly influential as it inspired many NoSQL

databases, like Cassandra (https://cassandra.apache.org/), Riak

(https://riak.com/), and Voldemort (http://www.project-

voldemort.com/voldemort/) – not to mention Amazon’s own DynamoDB

(https://aws.amazon.com/dynamodb/).

Design goals #

As stated above, the main goal of Dynamo is to be highly available. Here is

the summary of its other design goals:

7

https://www.educative.io/collection/page/5668639101419520/5559029852536832/5998984290631680
https://cassandra.apache.org/
https://riak.com/
http://www.project-voldemort.com/voldemort/
https://aws.amazon.com/dynamodb/

Scalable: The system should be highly scalable. We should be able to

throw a machine into the system to see proportional improvement.

Decentralized: To avoid single points of failure and performance

bottlenecks, there should not be any central/leader process.

Eventually Consistent: Data can be optimistically replicated to

become eventually consistent. This means that instead of incurring

write-time costs to ensure data correctness throughout the system (i.e.,

strong consistency), inconsistencies can be resolved at some other time

(e.g., during reads). Eventual consistency is used to achieve high

availability.

High-level view of a distributed key-value store

Server

Server

Server

ServerClient

Server

Key Value

101 Austin

102 Olympia

103 Honolulu

Distributed and decentralized key-value store

Data

ClientClient

Dynamo’s use cases #

8

By default, Dynamo is an eventually consistent database. Therefore, any

application where strong consistency is not a concern can utilize Dynamo.

Though Dynamo can support strong consistency, it comes with a

performance impact. Hence, if strong consistency is a requirement for an

application, then Dynamo might not be a good option.

Dynamo is used at Amazon to manage services that have very high-

reliability requirements and need tight control over the trade-offs between

availability, consistency, cost-effectiveness, and performance. Amazon’s

platform has a very diverse set of applications with different storage

requirements. Many applications chose Dynamo because of its flexibility for

selecting the appropriate trade-offs to achieve high availability and

guaranteed performance in the most cost-effective manner.

Many services on Amazon’s platform require only primary-key access to a

data store. For such services, the common pattern of using a relational

database would lead to inefficiencies and limit scalability and availability.

Dynamo provides a simple primary-key only interface to meet the

requirements of these applications.

System APIs #

The Dynamo clients use put() and get() operations to write and read data

corresponding to a specified key. This key uniquely identifies an object.

get(key) : The get operation finds the nodes where the object

associated with the given key is located and returns either a single

object or a list of objects with conflicting versions along with a context .

The context contains encoded metadata about the object that is

meaningless to the caller and includes information such as the version

of the object (more on this below).

9

Back

What Is This Course About?

Next

High-level Architecture

put(key, context, object) : The put operation finds the nodes where

the object associated with the given key should be stored and writes the

given object to the disk. The context is a value that is returned with a

get operation and then sent back with the put operation. The context

is always stored along with the object and is used like a cookie to verify

the validity of the object supplied in the put request.

Dynamo treats both the object and the key as an arbitrary array of bytes

(typically less than 1 MB). It applies the MD5 hashing algorithm on the key to

generate a 128-bit identifier which is used to determine the storage nodes

that are responsible for serving the key.

10

High-level Architecture

This lesson gives a brief overview of Dynamo’s architecture.

We'll cover the following

• Introduction: Dynamo’s architecture
• Data distribution

• Data replication and consistency

• Handling temporary failures

• Inter-node communication and failure detection

• High availability

• Con�ict resolution and handling permanent failures

At a high level, Dynamo is a Distributed Hash Table (DHT) that is replicated

across the cluster for high availability and fault tolerance.

Introduction: Dynamo’s architecture #

Dynamo’s architecture can be summarized as follows (we will discuss all of

these concepts in detail in the following lessons):

Data distribution #

Dynamo uses Consistent Hashing to distribute its data among nodes.

Consistent hashing also makes it easy to add or remove nodes from a

Dynamo cluster.

11

Data replication and consistency #

Data is replicated optimistically, i.e., Dynamo provides eventual

consistency.

Handling temporary failures #

To handle temporary failures, Dynamo replicates data to a sloppy quorum

of other nodes in the system instead of a strict majority quorum.

Inter-node communication and failure
detection #

Dynamo’s nodes use gossip protocol to keep track of the cluster state.

High availability #

Dynamo makes the system “always writeable” (or highly available) by using

hinted handoff.

Conflict resolution and handling permanent
failures #

Since there are no write-time guarantees that nodes agree on values,

Dynamo resolves potential conflicts using other mechanisms:

Use vector clocks to keep track of value history and reconcile divergent

histories at read time.

In the background, dynamo uses an anti-entropy mechanism like

Merkle trees to handle permanent failures.

Let’s discuss each of these concepts one by one.

12

Back

Dynamo: Introduction

Next

Data Partitioning

13

Data Partitioning

Let’s learn how Dynamo distributes its data across a set of
nodes.

We'll cover the following

• What is data partitioning?

• Consistent hashing: Dynamo’s data distribution

• Virtual nodes

• Advantages of Vnodes

What is data partitioning? #

The act of distributing data across a set of nodes is called data partitioning.

There are two challenges when we try to distribute data:

1. How do we know on which node a particular piece of data will be

stored?

2. When we add or remove nodes, how do we know what data will be

moved from existing nodes to the new nodes? Furthermore, how can we

minimize data movement when nodes join or leave?

A naive approach will be to use a suitable hash function that maps the data

key to a number. Then, find the server by applying modulo on this number

and the total number of servers. For example:

14

Data partitioning through simple hashing

key = "California"

hash(key) = 17

17 % total-servers => 17 % 5 = 2

Server Server Server Server Server

51 2 3 4

Naive approach

The scheme described in the above diagram solves the problem of finding a

server for storing/retrieving the data. But when we add or remove a server,

we have to remap all the keys and move the data based on the new server

count, which will be a complete mess!

Dynamo uses consistent hashing to solve these problems. The consistent

hashing algorithm helps Dynamo map rows to physical nodes and also

ensures that only a small set of keys move when servers are added or

removed.

Consistent hashing: Dynamo’s data
distribution #

15

Consistent hashing represents the data managed by a cluster as a ring. Each

node in the ring is assigned a range of data. Dynamo uses the consistent

hashing algorithm to determine what row is stored to what node. Here is an

example of the consistent hashing ring:

Consistent Hashing ring

Server 4

Server 1

Server 2

Server 3

Data range (1-25)

Data range (26-50)Data range (51-75)

Data range (76-100)
1-25

26-50

51-75

76-100

Hash range = 1-100
Number of Nodes = 4
Number range per node = 100/4

All data in the range 1-25 is stored
at Server 1 and so on.

With consistent hashing, the ring is divided into smaller predefined ranges.

Each node is assigned one of these ranges. In Dynamo’s terminology, the start

of the range is called a token. This means that each node will be assigned

one token. The range assigned to each node is computed as follows:

Range start: Token value

Range end: Next token value - 1

Here are the tokens and data ranges of the four nodes described in the above

diagram:
16

Server Token Range Start Range End

Server 1 1 1 25

Server 2 26 26 50

Server 3 51 51 75

Server 4 76 76 100

Whenever Dynamo is serving a put() or a get() request, the first step it

performs is to apply the MD5 hashing algorithm to the key. The output of this

hashing algorithm determines within which range the data lies and hence,

on which node the data will be stored. As we saw above, each node in

Dynamo is supposed to store data for a fixed range. Hence, the hash

generated from the data key tells us the node where the data will be stored.

Here is an example showing how data gets distributed across the Consistent

Hashing ring:

Distributing data on the consistent hashing ring

Server 4

Server 1

Server 2

Server 3

Data range (1-25)

Data range (26-50)Data range (51-75)

Data range (76-100)
1-25

26-50

51-75

76-100

State City Zip

CA Sacramento 94203

WA Olympia 98501

TX Austin 73301

HI Honolulu 96801

NY Albany 12201

State City Zip

79 Sacramento 94203

3 Olympia 98501

75 Austin 73301

29 Honolulu 96801

49 Albany 12201

Key

Hash function

CA Sacramento 94203

WA Olympia 98501TX Austin 73301

HI Honolulu 96801

NY Albany 12201

Apply hash function to the key

17

The consistent hashing scheme described above works great when a node is

added or removed from the ring; as only the next node is affected in these

scenarios. For example, when a node is removed, the next node becomes

responsible for all of the keys stored on the outgoing node. However, this

scheme can result in non-uniform data and load distribution. Dynamo solves

these issues with the help of Virtual nodes.

Virtual nodes #

Adding and removing nodes in any distributed system is quite common.

Existing nodes can die and may need to be decommissioned. Similarly, new

nodes may be added to an existing cluster to meet growing demands.

Dynamo efficiently handles these scenarios through the use of virtual nodes

(or Vnodes).

As we saw above, the basic Consistent Hashing algorithm assigns a single

token (or a consecutive hash range) to each physical node. This was a static

division of ranges that requires calculating tokens based on a given number

of nodes. This scheme made adding or replacing a node an expensive

operation, as, in this case, we would like to rebalance and distribute the data

to all other nodes, resulting in moving a lot of data. Here are a few potential

issues associated with a manual and fixed division of the ranges:

Adding or removing nodes: Adding or removing nodes will result in

recomputing the tokens causing a significant administrative overhead

for a large cluster.

Hotspots: Since each node is assigned one large range, if the data is not

evenly distributed, some nodes can become hotspots.

Node rebuilding: Since each node’s data is replicated on a fixed

number of nodes (discussed later), when we need to rebuild a node, only

its replica nodes can provide the data. This puts a lot of pressure on the

replica nodes and can lead to service degradation.
18

To handle these issues, Dynamo introduced a new scheme for distributing

the tokens to physical nodes. Instead of assigning a single token to a node,

the hash range is divided into multiple smaller ranges, and each physical

node is assigned multiple of these smaller ranges. Each of these subranges is

called a Vnode. With Vnodes, instead of a node being responsible for just one

token, it is responsible for many tokens (or subranges).

Comparing Consistent Hashing ring with and without Vnodes

Server 1

Server 4

Server 2

Server 3

With Vnodes

Server 4

Server 1

Server 2

Server 3

Without Vnodes

Practically, Vnodes are randomly distributed across the cluster and are

generally non-contiguous so that no two neighboring Vnodes are assigned to

the same physical node. Furthermore, nodes do carry replicas of other nodes

for fault-tolerance. Also, since there can be heterogeneous machines in the

clusters, some servers might hold more Vnodes than others. The figure

below shows how physical nodes A, B, C, D, & E are using Vnodes of the

Consistent Hash ring. Each physical node is assigned a set of Vnodes and

each Vnode is replicated once.

19

Mapping Vnodes to physical nodes on a Consistent Hashing ring

1
2

3

4

5

6

7

89

10

11

12

13

14

15
16

Server B

Server A

Server C

1

2

4

5

6

7

8

9

10

11

12

15

16
1

2

3

4

5

6

7 9

10

11

12

13 15

Server D

Server E

14

13

16

3
14

8

Advantages of Vnodes #

Vnodes give the following advantages:

1. Vnodes help spread the load more evenly across the physical nodes on

the cluster by dividing the hash ranges into smaller subranges. This

speeds up the rebalancing process after adding or removing nodes.

When a new node is added, it receives many Vnodes from the existing

nodes to maintain a balanced cluster. Similarly, when a node needs to

be rebuilt, instead of getting data from a fixed number of replicas, many

nodes participate in the rebuild process.

2. Vnodes make it easier to maintain a cluster containing

heterogeneous machines. This means, with Vnodes, we can assign a

20

Back

High-level Architecture

Next

Replication

high number of ranges to a powerful server and a lower number of

ranges to a less powerful server.

3. Since Vnodes help assign smaller ranges to each physical node, the

probability of hotspots is much less than the basic Consistent Hashing

scheme which uses one big range per node.

21

Replication

Let’s learn how Dynamo replicates its data and handles
temporary failures through replication.

We'll cover the following

• What is optimistic replication?

• Preference List

• Sloppy quorum and handling of temporary failures

• Hinted handoff

What is optimistic replication? #

To ensure high availability and durability, Dynamo replicates each data item

on multiple N nodes in the system where the value N is equivalent to the

replication factor and is configurable per instance of Dynamo. Each key is

assigned to a coordinator node (the node that falls first in the hash range),

which first stores the data locally and then replicates it to N − 1 clockwise

successor nodes on the ring. This results in each node owning the region on

the ring between it and its Nth predecessor. This replication is done

asynchronously (in the background), and Dynamo provides an eventually

consistent model. This replication technique is called optimistic

replication, which means that replicas are not guaranteed to be identical at

all times.

22

Replication in consistent hashing

Server 4

Server 1

Server 2

Server 3

Server 5

Server 6
Key "K"

Server 1, 2, & 3 store data
for keys in the range
between server 6 & 1

Replica
Replica

Replication factor = 3

Server 2, 3, & 4 store data for keys in
the range between server 1 & 2

Each node in Dynamo serves as a replica for a different range of data. As

Dynamo stores N copies of data spread across different nodes, if one node is

down, other replicas can respond to queries for that range of data. If a client

cannot contact the coordinator node, it sends the request to a node holding a

replica.

Preference List #

The list of nodes responsible for storing a particular key is called the

preference list. Dynamo is designed so that every node in the system can

determine which nodes should be in this list for any specific key (discussed

later). This list contains more than N nodes to account for failure and skip

virtual nodes on the ring so that the list only contains distinct physical nodes.

23

Sloppy quorum and handling of
temporary failures #

Following traditional quorum approaches, any distributed system becomes

unavailable during server failures or network partitions and would have

reduced availability even under simple failure conditions. To increase the

availability, Dynamo does not enforce strict quorum requirements, and

instead uses something called sloppy quorum. With this approach, all

read/write operations are performed on the first N healthy nodes from the

preference list, which may not always be the first N nodes encountered

while moving clockwise on the consistent hashing ring.

Consider the example of Dynamo configuration given in the figure below

with N = 3. In this example, if Server 1 is temporarily down or

unreachable during a write operation, its data will now be stored on Server

4 . Thus, Dynamo transfers the replica stored on the failing node (i.e., Server

1) to the next node of the consistent hash ring that does not have the replica

(i.e., Server 4). This is done to avoid unavailability caused by a short-term

machine or network failure and to maintain desired availability and

durability guarantees. The replica sent to Server 4 will have a hint in its

metadata that suggests which node was the intended recipient of the replica

(in this case, Server 1). Nodes that receive hinted replicas will keep them in

a separate local database that is scanned periodically. Upon detecting that

Server 1 has recovered, Server 4 will attempt to deliver the replica to

Server 1 . Once the transfer succeeds, Server 4 may delete the object from

its local store without decreasing the total number of replicas in the system.

24

Sloppy quorum

Server 4

Server 1

Server 2

Server 3

Server 5

Server 6

When server 1 is down,
server 4 will accepts the

writes that are supposed to
go to server 1

Hinted Replica

Replica

Replica

Replication factor = 3

Hinted handoff #

The interesting trick described above to increase availability is known as

hinted handoff, i.e., when a node is unreachable, another node can accept

writes on its behalf. The write is then kept in a local buffer and sent out

once the destination node is reachable again. This makes Dynamo “always

writeable.” Thus, even in the extreme case where only a single node is alive,

write requests will still get accepted and eventually processed.

The main problem is that since a sloppy quorum is not a strict majority, the

data can and will diverge, i.e., it is possible for two concurrent writes to the

same key to be accepted by non-overlapping sets of nodes. This means that

multiple conflicting values against the same key can exist in the system, and

we can get stale or conflicting data while reading. Dynamo allows this and

resolves these conflicts using Vector Clocks.

25

Back

Data Partitioning

Next

Vector Clocks and Con�icting Data

26

Vector Clocks and Con�icting Data

Let’s learn how Dynamo uses vector clocks to keep track of
data history and reconcile divergent histories at read time.

We'll cover the following

• What is clock skew?

• What is a vector clock?

• Con�ict-free replicated data types (CRDTs)

• Last-write-wins (LWW)

As described in the previous lesson

(https://www.educative.io/collection/page/5668639101419520/5559029852536

832/4935298205614080), sloppy quorum means multiple conflicting values

against the same key can exist in the system and must be resolved somehow.

Let’s understand how this can happen.

What is clock skew? #

On a single machine, all we need to know about is the absolute or wall clock

time: suppose we perform a write to key k with timestamp t1 and then

perform another write to k with timestamp t2 . Since t2 > t1 , the second

write must have been newer than the first write, and therefore the database

can safely overwrite the original value.

In a distributed system, this assumption does not hold. The problem is clock

skew, i.e., different clocks tend to run at different rates, so we cannot

assume that time t on node a happened before time t + 1 on node b . The

27

most practical techniques that help with synchronizing clocks, like NTP, still

do not guarantee that every clock in a distributed system is synchronized at

all times. So, without special hardware like GPS units and atomic clocks, just

using wall clock timestamps is not enough.

What is a vector clock? #

Instead of employing tight synchronization mechanics, Dynamo uses

something called vector clock in order to capture causality between

different versions of the same object. A vector clock is effectively a (node,

counter) pair. One vector clock is associated with every version of every

object stored in Dynamo. One can determine whether two versions of an

object are on parallel branches or have a causal ordering by examining their

vector clocks. If the counters on the first object’s clock are less-than-or-equal

to all of the nodes in the second clock, then the first is an ancestor of the

second and can be forgotten. Otherwise, the two changes are considered to

be in conflict and require reconciliation. Dynamo resolves these conflicts at

read-time. Let’s understands this with an example:

1. Server A serves a write to key k1 , with value foo . It assigns it a

version of [A:1] . This write gets replicated to server B .

2. Server A serves a write to key k1 , with value bar . It assigns it a

version of [A:2] . This write also gets replicated to server B .

3. A network partition occurs. A and B cannot talk to each other.

4. Server A serves a write to key k1 , with value baz . It assigns it a

version of [A:3] . It cannot replicate it to server B , but it gets stored in

a hinted handoff buffer on another server.

5. Server B sees a write to key k1 , with value bax . It assigns it a version

of [B:1] . It cannot replicate it to server A , but it gets stored in a hinted

handoff buffer on another server.

6. The network heals. Server A and B can talk to each other again.
28

7. Either server gets a read request for key k1 . It sees the same key with

different versions [A:3] and [A:2][B:1] , but it does not know which

one is newer. It returns both and tells the client to figure out the version

and write the newer version back into the system.

Con�ict resolution using vector clocks

Write handled by A

k1=foo ([A:1])Server A Server B

k1=bar ([A:2])

Write handled by A

Network partition

Write handled by A Write handled by B

k1=baz ([A:3]) k1=bax ([A:2], [B:1])
Network repaired

Client reads and reconciles
k1=baz ([A:3])

k1=bax ([A:2], [B:1])

k1=baz ([A:4])

Write handled by A

Conflict - both values will be
returned to the client

29

As we saw in the above example, most of the time, new versions subsume

the previous version(s), and the system itself can determine the correct

version (e.g., [A:2] is newer than [A:1]). However, version branching may

happen in the presence of failures combined with concurrent updates,

resulting in conflicting versions of an object. In these cases, the system

cannot reconcile the multiple versions of the same object, and the client

must perform the reconciliation to collapse multiple branches of data

evolution back into one (this process is called semantic reconciliation). A

typical example of a collapse operation is “merging” different versions of a

customer’s shopping cart. Using this reconciliation mechanism, an add

operation (i.e., adding an item to the cart) is never lost. However, deleted

items can resurface.

Resolving conflicts is similar to how Git works. If Git can merge

different versions into one, merging is done automatically. If not,

the client (i.e., the developer) has to reconcile conflicts manually.

Dynamo truncates vector clocks (oldest first) when they grow too large. If

Dynamo ends up deleting older vector clocks that are required to reconcile

an object’s state, Dynamo would not be able to achieve eventual consistency.

Dynamo’s authors note that this is a potential problem but do not specify

how this may be addressed. They do mention that this problem has not yet

surfaced in any of their production systems.

Conflict-free replicated data types
(CRDTs) #

30

Back

Replication

Next

The Life of Dynamo’s put() & get() Op…

A more straightforward way to handle conflicts is through the use of CRDTs.

To make use of CRDTs, we need to model our data in such a way that

concurrent changes can be applied to the data in any order and will produce

the same end result. This way, the system does not need to worry about any

ordering guarantees. Amazon’s shopping cart is an excellent example of

CRDT. When a user adds two items (A & B) to the cart, these two operations

of adding A & B can be done on any node and with any order, as the end

result is the two items are added to the cart. (Removing from the shopping

cart is modeled as a negative add.) The idea that any two nodes that have

received the same set of updates will see the same end result is called strong

eventual consistency. Riak has a few built-in CRDTs

(https://docs.riak.com/riak/kv/2.2.0/developing/data-types/).

Last-write-wins (LWW) #

Unfortunately, it is not easy to model the data as CRDTs. In many cases, it

involves too much effort. Therefore, vector clocks with client-side resolution

are considered good enough.

Instead of vector clocks, Dynamo also offers ways to resolve the conflicts

automatically on the server-side. Dynamo (and Apache Cassandra) often uses

a simple conflict resolution policy: last-write-wins (LWW), based on the

wall-clock timestamp. LWW can easily end up losing data. For example, if

two conflicting writes happen simultaneously, it is equivalent to flipping a

coin on which write to throw away.

31

https://docs.riak.com/riak/kv/2.2.0/developing/data-types/

The Life of Dynamo’s put() & get() Operations

Let’s learn how Dynamo handles get() and put() requests.

We'll cover the following

• Strategies for choosing the coordinator node

• Consistency protocol

• ‘put()’ process

• ‘get()’ process

• Request handling through state machine

Strategies for choosing the
coordinator node #

Dynamo clients can use one of the two strategies to choose a node for their

get() and put() requests:

Clients can route their requests through a generic load balancer.

Clients can use a partition-aware client library that routes the requests

to the appropriate coordinator nodes with lower latency.

In the first case, the load balancer decides which way the request would be

routed, while in the second strategy, the client selects the node to contact.

Both approaches are beneficial in their own ways.

32

In the first strategy, the client is unaware of the Dynamo ring, which helps

scalability and makes Dynamo’s architecture loosely coupled. However, in

this case, since the load balancer can forward the request to any node in the

ring, it is possible that the node it selects is not part of the preference list.

This will result in an extra hop, as the request will then be forwarded to one

of the nodes in the preference list by the intermediate node.

The second strategy helps in achieving lower latency, as in this case, the

client maintains a copy of the ring and forwards the request to an

appropriate node from the preference list. Because of this option, Dynamo is

also called a zero-hop DHT, as the client can directly contact the node that

holds the required data. However, in this case, Dynamo does not have much

control over the load distribution and request handling.

How clients connect to Dynamo

Server

Server

Server

Server

Server

Server

Client connecting directly to the Coordinator node

Replica
Replica

Coordinator node

Server

Server

Server

Server

Server

Server

Client connecting through the Load Balancer

Replica
Replica

Coordinator node

Client
Load

Balancer

Intermediate node

Client

Consistency protocol #

Dynamo uses a consistency protocol similar to quorum systems. If R/W is

the minimum number of nodes that must participate in a successful

read/write operation respectively:
33

Then R + W > N yields a quorum-like system

A Common (N ,R,W) configuration used by Dynamo is (3, 2, 2).

(3, 3, 1): fast W , slow R, not very durable

(3, 1, 3): fast R, slow W , durable

In this model, the latency of a get() (or put()) operation depends

upon the slowest of the replicas. For this reason, R and W are usually

configured to be less than N to provide better latency.

In general, low values of W and R increase the risk of inconsistency, as

write requests are deemed successful and returned to the clients even if

a majority of replicas have not processed them. This also introduces a

vulnerability window for durability when a write request is successfully

returned to the client even though it has been persisted at only a small

number of nodes.

For both Read and Write operations, the requests are forwarded to the

first ‘N ’ healthy nodes.

‘put()’ process #

Dynamo’s put() request will go through the following steps:

1. The coordinator generates a new data version and vector clock

component.

2. Saves new data locally.

3. Sends the write request to N − 1 highest-ranked healthy nodes from

the preference list.

4. The put() operation is considered successful after receiving W − 1
confirmation.

‘get()’ process #

34

Dynamo’s get() request will go through the following steps:

1. The coordinator requests the data version from N − 1 highest-ranked

healthy nodes from the preference list.

2. Waits until R − 1 replies.

3. Coordinator handles causal data versions through a vector clock.

4. Returns all relevant data versions to the caller.

Request handling through state
machine #

Each client request results in creating a state machine on the node that

received the client request. The state machine contains all the logic for

identifying the nodes responsible for a key, sending the requests, waiting for

responses, potentially doing retries, processing the replies, and packaging

the response for the client. Each state machine instance handles exactly one

client request. For example, a read operation implements the following state

machine:

1. Send read requests to the nodes.

2. Wait for the minimum number of required responses.

3. If too few replies were received within a given time limit, fail the

request.

4. Otherwise, gather all the data versions and determine the ones to be

returned.

5. If versioning is enabled, perform syntactic reconciliation and generate

an opaque write context that contains the vector clock that subsumes all

the remaining versions.

35

Back

Vector Clocks and Con�icting Data

Next

Anti-entropy Through Merkle Trees

After the read response has been returned to the caller, the state machine

waits for a short period to receive any outstanding responses. If stale

versions were returned in any of the responses, the coordinator updates

those nodes with the latest version. This process is called Read Repair

because it repairs replicas that have missed a recent update.

As stated above, put() requests are coordinated by one of the top N nodes

in the preference list. Although it is always desirable to have the first node

among the top N to coordinate the writes, thereby serializing all writes at a

single location, this approach has led to uneven load distribution for

Dynamo. This is because the request load is not uniformly distributed across

objects. To counter this, any of the top N nodes in the preference list is

allowed to coordinate the writes. In particular, since each write operation

usually follows a read operation, the coordinator for a write operation is

chosen to be the node that replied fastest to the previous read operation,

which is stored in the request’s context information. This optimization

enables Dynamo to pick the node that has the data that was read by the

preceding read operation, thereby increasing the chances of getting “read-

your-writes” consistency.

36

Anti-entropy Through Merkle Trees

Let's understand how Dynamo uses Merkle trees for anti-entropy
operations.

We'll cover the following

• What are Merkle trees?

• Merits and demerits of Merkle trees

As we know, Dynamo uses vector clocks to remove conflicts while serving

read requests. Now, if a replica falls significantly behind others, it might take

a very long time to resolve conflicts using just vector clocks. It would be nice

to be able to automatically resolve some conflicts in the background. To do

this, we need to quickly compare two copies of a range of data residing on

different replicas and figure out exactly which parts are different.

What are Merkle trees? #

A replica can contain a lot of data. Naively splitting up the entire data range

for checksums is not very feasible; there is simply too much data to be

transferred. Therefore, Dynamo uses Merkle trees to compare replicas of a

range. A Merkle tree is a binary tree of hashes, where each internal node is

the hash of its two children, and each leaf node is a hash of a portion of the

original data.

37

Merkle tree

H1 = Hash(Data Part1) H2 = Hash(Data Part2) H3 = Hash(Data Part3) H4 = Hash(Data Part4)

H12 = Hash(H1 + H2) H34 = Hash(H3 + H4)

H1234 = Hash(H12 + H34)

Data part2Data part1 Data part3 Data part4

Comparing Merkle trees is conceptually simple:

1. Compare the root hashes of both trees.

2. If they are equal, stop.

3. Recurse on the left and right children.

Ultimately, this means that replicas know precisely which parts of the range

are different, and the amount of data exchanged is minimized.

Merits and demerits of Merkle trees #

The principal advantage of using a Merkle tree is that each branch of the tree

can be checked independently without requiring nodes to download the

entire tree or the whole data set. Hence, Merkle trees minimize the amount

of data that needs to be transferred for synchronization and reduce the

number of disk reads performed during the anti-entropy process.

38

Back

The Life of Dynamo’s put() & get() Op…

Next

Gossip Protocol

The disadvantage of using Merkle trees is that many key ranges can change

when a node joins or leaves, and as a result, the trees need to be

recalculated.

39

Gossip Protocol

Let's explore how Dynamo uses gossip protocol to keep track of
the cluster state.

We'll cover the following

• What is gossip protocol?

• External discovery through seed nodes

What is gossip protocol? #

In a Dynamo cluster, since we do not have any central node that keeps track

of all nodes to know if a node is down or not, how does a node know every

other node’s current state? The simplest way to do this is to have every node

maintain heartbeats with every other node. When a node goes down, it will

stop sending out heartbeats, and everyone else will find out immediately. But

then O(N) messages get sent every tick (N being the number of nodes),

which is a ridiculously high amount and not feasible in any sizable cluster.

Dynamo uses gossip protocol that enables each node to keep track of state

information about the other nodes in the cluster, like which nodes are

reachable, what key ranges they are responsible for, and so on (this is

basically a copy of the hash ring). Nodes share state information with each

other to stay in sync. Gossip protocol is a peer-to-peer communication

mechanism in which nodes periodically exchange state information about

themselves and other nodes they know about. Each node initiates a gossip

round every second to exchange state information about itself and other

2

40

nodes with one other random node. This means that any new event will

eventually propagate through the system, and all nodes quickly learn about

all other nodes in a cluster.

41

Gossip protocol

Server 3

Server 1

Server 2

Server 4

Server 5

[1, 3, 5]
[2, 4, 5]

[1, 3, 5]

[1, 2, 3, 5]

[2, 4]

Server 3

Server 1

Server 2

Server 4

Server 5

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

Every second each server exchanges information with one randomly selected server

Every second each server exchanges information about all the servers it knows about

42

Back

Anti-entropy Through Merkle Trees

Next

Dynamo Characteristics and Criticism

External discovery through seed
nodes #

As we know, Dynamo nodes use gossip protocol to find the current state of

the ring. This can result in a logical partition of the cluster in a particular

scenario. Let’s understand this with an example:

An administrator joins node A to the ring and then joins node B to the ring.

Nodes A and B consider themselves part of the ring, yet neither would be

immediately aware of each other. To prevent these logical partitions,

Dynamo introduced the concept of seed nodes. Seed nodes are fully

functional nodes and can be obtained either from a static configuration or a

configuration service. This way, all nodes are aware of seed nodes. Each

node communicates with seed nodes through gossip protocol to reconcile

membership changes; therefore, logical partitions are highly unlikely.

43

Dynamo Characteristics and Criticism

Let's explore the characteristics and the criticism of
Dynamo's architecture.

We'll cover the following

• Responsibilities of a Dynamo’s node

• Characteristics of Dynamo

• Criticism on Dynamo

• Datastores developed on the principles of Dynamo

Responsibilities of a Dynamo’s node #

Because Dynamo is completely decentralized and does not rely on a

central/leader server (unlike GFS, for example), each node serves three

functions:

1. Managing get() and put() requests: A node may act as a coordinator

and manage all operations for a particular key or may forward the

request to the appropriate node.

2. Keeping track of membership and detecting failures: Every node

uses gossip protocol to keep track of other nodes in the system and their

associated hash ranges.

3. Local persistent storage: Each node is responsible for being either the

primary or replica store for keys that hash to a specific range of values.

These (key, value) pairs are stored within that node using various

44

storage systems depending on application needs. A few examples of

such storage systems are:

BerkeleyDB Transactional Data Store

MySQL (for large objects)

An in-memory buffer (for best performance) backed by persistent

storage

Characteristics of Dynamo #

Here are a few reasons behind Dynamo’s popularity:

Distributed: Dynamo can run on a large number of machines.

Decentralized: Dynamo is decentralized; there is no need for any

central coordinator to oversee operations. All nodes are identical and

can perform all functions of Dynamo.

Scalable: By adding more nodes to the cluster, Dynamo can easily be

scaled horizontally. No manual intervention or rebalancing is required.

Additionally, Dynamo achieves linear scalability and proven fault-

tolerance on commodity hardware.

Highly Available: Dynamo is fault-tolerant, and the data remains

available even if one or several nodes or data centers go down.

Fault-tolerant and reliable: Since data is replicated to multiple nodes,

fault-tolerance is pretty high.

Tunable consistency: With Dynamo, applications can adjust the trade-

off between availability and consistency of data, typically by configuring

replication factor and consistency level settings.

Durable: Dynamo stores data permanently.

Eventually Consistent: Dynamo accepts the trade-off of strong

consistency in favor of high availability.

45

Criticism on Dynamo #

The following list contains criticism on Dynamo’s design:

Each Dynamo node contains the entire Dynamo routing table. This is

likely to affect the scalability of the system as this routing table will

grow larger and larger as nodes are added to the system.

Dynamo seems to imply that it strives for symmetry, where every node

in the system has the same set of roles and responsibilities, but later, it

specifies some nodes as seeds. Seeds are special nodes that are

externally discoverable. These are used to help prevent logical

partitions in the Dynamo ring. This seems like it may violate Dynamo’s

symmetry principle.

Although security was not a concern as Dynamo was built for internal

use only, DHTs can be susceptible to several different types of

attacks. While Amazon can assume a trusted environment, sometimes a

buggy software can act in a manner quite similar to a malicious actor.

Dynamo’s design can be described as a “leaky abstraction,” where

client applications are often asked to manage inconsistency, and the

user experience is not 100% seamless. For example, inconsistencies in

the shopping cart items may lead users to think that the website is

buggy or unreliable.

Datastores developed on the
principles of Dynamo #

Dynamo is not open-source and was built for services running within

Amazon. Two of the most famous datastores built on the principles of

Dynamo are Riak (https://riak.com/) and Cassandra

46

https://riak.com/
https://cassandra.apache.org/

Back

Gossip Protocol

Next

Summary: Dynamo

(https://cassandra.apache.org/). Riak is a distributed NoSQL key-value data

store that is highly available, scalable, fault-tolerant, and easy to operate.

Cassandra is a distributed, decentralized, scalable, and highly available

NoSQL wide-column database. Here is how they adopted different

algorithms offered by Dynamo:

Technique Apache
Cassandra

Riak

Consistent Hashing with virtual nodes

Hinted Handoff

Anti-entropy with Merkle trees
(manual repair)

Vector Clocks
(last-write-wins)

Gossip-based protocol

47

https://riak.com/
https://cassandra.apache.org/

Summary: Dynamo

Here is a quick summary of Dynamo for you!

We'll cover the following

• Summary

• System design patterns

• References and further reading

Summary #

���%ZOBNP�JT�B�IJHIMZ�BWBJMBCMF�LFZ�WBMVF�TUPSF�EFWFMPQFE�CZ�"NB[PO�GPS

UIFJS�JOUFSOBM�VTF�

���%ZOBNP�TIPXT�IPX�CVTJOFTT�SFRVJSFNFOUT�DBO�ESJWF�TZTUFN�EFTJHOT�

"NB[PO�IBT�DIPTFO�UP�TBDSJGJDF�TUSPOH�DPOTJTUFODZ�GPS�IJHIFS

BWBJMBCJMJUZ�CBTFE�PO�UIFJS�CVTJOFTT�SFRVJSFNFOUT�

���%ZOBNP�XBT�EFTJHOFE�XJUI�UIF�VOEFSTUBOEJOH�UIBU�TZTUFN�IBSEXBSF

GBJMVSFT�DBO�BOE�EP�PDDVS�

���%ZOBNP�JT�B�QFFS�UP�QFFS�EJTUSJCVUFE�TZTUFN�J�F��JU�EPFT�OPU�IBWF�BOZ

MFBEFS�PS�GPMMPXFS�OPEFT��"MM�OPEFT�BSF�FRVBM�BOE�IBWF�UIF�TBNF�TFU�PG

SPMFT�BOE�SFTQPOTJCJMJUJFT��5IJT�BMTP�NFBOT�UIBU�UIFSF�JT�OP�TJOHMF�QPJOU

PG�GBJMVSF�

���%ZOBNP�VTFT�UIF�$POTJTUFOU�)BTIJOH�BMHPSJUIN�UP�EJTUSJCVUF�UIF�EBUB

BNPOH�OPEFT�JO�UIF�DMVTUFS�BVUPNBUJDBMMZ�

���%BUB�JT�SFQMJDBUFE�BDSPTT�OPEFT�GPS�GBVMU�UPMFSBODF�BOE�SFEVOEBODZ�

%ZOBNP�SFQMJDBUFT�XSJUFT�UP�B�TMPQQZ�RVPSVN�PG�PUIFS�OPEFT�JO�UIF

TZTUFN�JOTUFBE�PG�B�TUSJDU�NBKPSJUZ�RVPSVN�
48

���'PS�BOUJ�FOUSPQZ�BOE�UP�SFTPMWF�DPOGMJDUT�%ZOBNP�VTFT�.FSLMF�USFFT�

���%JGGFSFOU�TUPSBHF�FOHJOFT�DBO�CF�QMVHHFE�JOUP�%ZOBNPÇT�MPDBM�TUPSBHF�

���%ZOBNP�VTFT�UIF�HPTTJQ�QSPUPDPM�GPS�JOUFS�OPEF�DPNNVOJDBUJPO�

����%ZOBNP�NBLFT�UIF�TZTUFN�ÉBMXBZT�XSJUFBCMFÊ�CZ�VTJOH�IJOUFE�IBOEPGG�

����%ZOBNPÇT�EFTJHO�QIJMPTPQIZ�JT�UP�"-8":4�BMMPX�XSJUFT��5P�TVQQPSU�UIJT

%ZOBNP�BMMPXT�DPODVSSFOU�XSJUFT��8SJUFT�DBO�CF�QFSGPSNFE�CZ�EJGGFSFOU

TFSWFST�DPODVSSFOUMZ�SFTVMUJOH�JO�NVMUJQMF�WFSTJPOT�PG�BO�PCKFDU�

%ZOBNP�BUUFNQUT�UP�USBDL�BOE�SFDPODJMF�UIFTF�DIBOHFT�VTJOH�WFDUPS

DMPDLT��8IFO�%ZOBNP�DBOOPU�SFDPODJMF�BO�PCKFDUÇT�TUBUF�GSPN�JUT�WFDUPS

DMPDLT�JU�TFOET�JU�UP�UIF�DMJFOU�BQQMJDBUJPO�GPS�SFDPODJMJBUJPO�	the thought

being that the clients have more semantic information on the object and

may be able to reconcile it
�

����%ZOBNP�JT�BCMF�UP�TVDDFTTGVMMZ�QVMM�UPHFUIFS�TFWFSBM�EJTUSJCVUFE

UFDIOJRVFT�TVDI�BT�DPOTJTUFOU�IBTIJOH�Q�Q�HPTTJQ�WFDUPS�DMPDLT�BOE

RVPSVN�BOE�DPNCJOF�UIFN�JOUP�B�DPNQMFY�TZTUFN�

����"NB[PO�CVJMU�%ZOBNP�GPS�JOUFSOBM�VTF�POMZ�TP�OP�TFDVSJUZ�SFMBUFE

JTTVFT�XFSF�DPOTJEFSFE�

5IF�GPMMPXJOH�UBCMF�QSFTFOUT�B�TVNNBSZ�PG�UIF�MJTU�PG�UFDIOJRVFT�%ZOBNP

VTFT�BOE�UIFJS�SFTQFDUJWF�BEWBOUBHFT�

Problem Technique Advantage

Partitioning Consistent Hashing Incremental Scalability

High availability for
writes

Vector clocks with reconcili-
ation during reads

Version size is decoupled
from update rates.

Handling temporary
failures

Sloppy Quorum and Hinted
Handoff

Provides high availability
and durability guarantee

when some of the replicas
are not available

49

Recovering from perma-
nent failures

Anti-entropy using Merkle
trees

Synchronizes divergent
replicas on the background

Membership and failure
detection

Gossip-based membership
protocol and failure

detection

Preserves symmetry and
avoid centralized

monitoring

System design patterns #

)FSF�JT�B�TVNNBSZ�PG�TZTUFN�EFTJHO�QBUUFSOT�VTFE�JO�%ZOBNP�

$POTJTUFOU�)BTIJOH��%ZOBNP�VTFT�$POTJTUFOU�)BTIJOH�UP�EJTUSJCVUF�JUT

EBUB�BDSPTT�OPEFT�

2VPSVN��5P�FOTVSF�EBUB�DPOTJTUFODZ�FBDI�%ZOBNP�XSJUF�PQFSBUJPO�DBO

CF�DPOGJHVSFE�UP�CF�TVDDFTTGVM�POMZ�JG�UIF�EBUB�IBT�CFFO�XSJUUFO�UP�BU

MFBTU�B�RVPSVN�PG�SFQMJDB�OPEFT�

(PTTJQ�QSPUPDPM��%ZOBNP�VTFT�HPTTJQ�QSPUPDPM�UIBU�BMMPXT�FBDI�OPEF�UP

LFFQ�USBDL�PG�TUBUF�JOGPSNBUJPO�BCPVU�UIF�PUIFS�OPEFT�JO�UIF�DMVTUFS�

)JOUFE�)BOEPGG��%ZOBNP�OPEFT�VTF�)JOUFE�)BOEPGG�UP�SFNFNCFS�UIF

XSJUF�PQFSBUJPO�GPS�GBJMJOH�OPEFT�

3FBE�3FQBJS��%ZOBNP�VTFT�Æ3FBE�3FQBJSÇ�UP�QVTI�UIF�MBUFTU�WFSTJPO�PG

UIF�EBUB�UP�OPEFT�XJUI�UIF�PMEFS�WFSTJPOT�

7FDUPS�DMPDLT��5P�SFDPODJMF�DPODVSSFOU�VQEBUFT�PO�BO�PCKFDU�%ZOBNP

VTFT�7FDUPS�DMPDLT�

.FSLMF�USFFT��'PS�BOUJ�FOUSPQZ�BOE�UP�SFTPMWF�DPOGMJDUT�JO�UIF

CBDLHSPVOE�%ZOBNP�VTFT�.FSLMF�USFFT�

50

Back

Dynamo Characteristics and Criticism

Next

Quiz: Dynamo

References and further reading #

"NB[POÇT�%ZOBNP

	IUUQT���XXX�BMMUIJOHTEJTUSJCVUFE�DPN���������BNB[POT@EZOBNP�IUNM

&WFOUVBMMZ�$POTJTUFOU

	IUUQT���XXX�BMMUIJOHTEJTUSJCVUFE�DPN���������FWFOUVBMMZ@DPOTJTUFOU�IU

NM

#JHUBCMF�	IUUQT���SFTFBSDI�HPPHMF�QVCT�QVC������

%ZOBNP%#�	IUUQT���XXX�BMMUIJOHTEJTUSJCVUFE�DPN���������BNB[PO�

EZOBNPEC�IUNM

$3%5�	IUUQT���FO�XJLJQFEJB�PSH�XJLJ�$POGMJDU�GSFF@SFQMJDBUFE@EBUB@UZQF

"�%FDBEF�PG�%ZOBNP�	IUUQT���XXX�BMMUIJOHTEJTUSJCVUFE�DPN���������B�

EFDBEF�PG�EZOBNP�IUNM

3JBL�	IUUQT���EPDT�SJBL�DPN�SJBL�LW�������MFBSO�EZOBNP�

%ZOBNP�"SDIJUFDUVSF�	IUUQT���XXX�ZPVUVCF�DPN�XBUDI W�X��M-TC*�R�

%ZOBNP��"�GMBXFE�BSDIJUFDUVSF�	IUUQT���OFXT�ZDPNCJOBUPS�DPN�JUFN

JE�������

51

https://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
https://www.allthingsdistributed.com/2007/12/eventually_consistent.html
https://research.google/pubs/pub27898/
https://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://www.allthingsdistributed.com/2017/10/a-decade-of-dynamo.html
https://docs.riak.com/riak/kv/2.2.0/learn/dynamo/
https://www.youtube.com/watch?v=w96lLsbI1q8
https://news.ycombinator.com/item?id=915212

52

Yoda
Cassandra: How to Design a Wide-column NoSQL Database?

Cassandra: Introduction

Let’s explore Cassandra and its use cases.

We'll cover the following

• Goal

• Background

• What is Cassandra?

• Cassandra use cases

Goal #

Design a distributed and scalable system that can store a huge amount of

structured data, which is indexed by a row key where each row can have an

unbounded number of columns.

Background #

Cassandra is an open-source Apache project. It was originally developed at

Facebook in 2007 for their inbox search feature. The Apache Cassandra

architecture is designed to provide scalability, availability, and reliability

to store large amounts of data. Cassandra combines the distributed nature of

Amazon’s Dynamo which is a key-value store and the data model of

Google’s BigTable which is a column-based data store. With Cassandra’s

decentralized architecture, there is no single point of failure in a cluster,

and its performance can scale linearly with the addition of nodes.

53

What is Cassandra? #

Cassandra is a distributed, decentralized, scalable, and highly available

NoSQL database. In terms of CAP theorem

(https://www.educative.io/collection/page/5668639101419520/5559029852536

832/5998984290631680), Cassandra is typically classified as an AP (i.e.,

available and partition tolerant) system which means that availability and

partition tolerance are generally considered more important than the

consistency. Cassandra can be tuned with replication-factor and consistency

levels to meet strong consistency requirements, but this comes with a

performance cost. In other words, data can be highly available with low

consistency guarantees, or it can be highly consistent with lower availability.

Cassandra uses peer-to-peer architecture, with each node connected to all

other nodes. Each Cassandra node performs all database operations and can

serve client requests without the need for any leader node.

Disclaimer: All of the following lessons are Cassandra version agnostic

and try to explore the general design and architectural layout of

different Cassandra components and operations.

Cassandra use cases #

By default, Cassandra is not a strongly consistent database (it is eventually

consistent), hence, any application where consistency is not a concern can

utilize Cassandra. Though Cassandra can support strong consistency, it

comes with a performance impact. Cassandra is optimized for high

throughput and faster writes, and can be used for collecting big data for

performing real-time analysis. Here are some of its top use cases:

54

https://www.educative.io/collection/page/5668639101419520/5559029852536832/5998984290631680

Back

Mock Interview: Dynamo

Next

High-level Architecture

Storing key-value data with high availability - Reddit and Digg use

Cassandra as a persistent store for their data. Cassandra’s ability to scale

linearly without any downtime makes it very suitable for their growth

needs.

Time series data model - Due to its data model and log-structured

storage engine, Cassandra benefits from high-performing write

operations. This also makes Cassandra well suited for storing and

analyzing sequentially captured metrics (i.e., measurements from

sensors, application logs, etc.). Such usages take advantage of the fact

that columns in a row are determined by the application, not a

predefined schema. Each row in a table can contain a different number

of columns, and there is no requirement for the column names to

match.

Write-heavy applications - Cassandra is especially suited for write-

intensive applications such as time-series streaming services, sensor

logs, and Internet of Things (IoT) applications.

55

High-level Architecture

This lesson gives a brief overview of Cassandra’s
architecture.

We'll cover the following

• Cassandra common terms

• High-level architecture
• Data partitioning

• Cassandra keys

• Clustering keys

• Partitioner

• Coordinator node

Cassandra common terms #

Before digging deep into Cassandra’s architecture, let’s first go through some

of its common terms:

Column: A column is a key-value pair and is the most basic unit of data

structure.

Column key: Uniquely identifies a column in a row.

Column value: Stores one value or a collection of values.

Row: A row is a container for columns referenced by primary key. Cassandra

does not store a column that has a null value; this saves a lot of space.

56

Components of a Cassandra row

Row Key

Column1

Value1

Column2

Value2

Column3

Value3

Column4

Value4

Primary key Column key (or column name)

Column value (or cell)

Cassandra row

Table: A table is a container of rows.

Keyspace: Keyspace is a container for tables that span over one or more

Cassandra nodes.

Cluster: Container of Keyspaces is called a cluster.

Node: Node refers to a computer system running an instance of Cassandra. A

node can be a physical host, a machine instance in the cloud, or even a

Docker container.

NoSQL: Cassandra is a NoSQL database which means we cannot have joins

between tables, there are no foreign keys , and while querying, we cannot

add any column in the where clause other than the primary key. These

constraints should be kept in mind before deciding to use Cassandra.

High-level architecture #

Data partitioning #

57

Cassandra uses consistent hashing for data partitioning. Please take a look

at Dynamo’s data partitioning

(https://www.educative.io/collection/page/5668639101419520/5559029852536

832/6501426287607808); all consistent hashing details described in it applies

to Cassandra too.

Let’s look into mechanisms that Cassandra applies to uniquely identify rows.

Cassandra keys #

The Primary key uniquely identifies each row of a table. In Cassandra

primary key has two parts:

Parts of a primary key

Primary key = Partition key Clustering key +

Decides how data is
distributed across nodes

Decides how data is
stored within a node

The partition key decides which node stores the data, and the clustering key

decides how the data is stored within a node. Let’s take the example of a

table with PRIMARY KEY (city_id , employee_id). This primary key has two

parts represented by the two columns:

1. city_id is the partition key. This means that the data will be

partitioned by the city_id field, that is, all rows with the same

city_id will reside on the same node.

2. employee_id is the clustering key. This means that within each node,

the data is stored in sorted order according to the employee_id column.

58

https://www.educative.io/collection/page/5668639101419520/5559029852536832/6501426287607808

Clustering keys #

As described above, clustering keys define how the data is stored within a

node. We can have multiple clustering keys; all columns listed after the

partition key are called clustering columns. Clustering columns specify the

order that the data is arranged on a node.

Clustering key

Partition key

State City Zip Rest of
columns

CA Sacramento 94203 x

Sacramento 94250 x

Los Angeles 90012 x

Los Angeles 90040 x

Los Angeles 90090 x

WA Redmond 98052 x

Seattle 98170 x

Seattle 98191 x

Clustering key

On a node, data is
ordered by the
clustering key.

Partitioner #

59

Partitioner is the component responsible for determining how data is

distributed on the Consistent Hash ring. When Cassandra inserts some data

into a cluster, the partitioner performs the first step, which is to apply a

hashing algorithm to the partition key. The output of this hashing algorithm

determines within which range the data lies and hence, on which node the

data will be stored.

Distributing data on the Consistent Hashing ring

Server 4

Server 1

Server 2

Server 3

Data range (1-25)

Data range (26-50)Data range (51-75)

Data range (76-100)
1-25

26-50

51-75

76-100

State City Zip

CA Sacramento 94203

WA Olympia 98501

TX Austin 73301

HI Honolulu 96801

NY Albany 12201

State City Zip

79 Sacramento 94203

3 Olympia 98501

75 Austin 73301

29 Honolulu 96801

49 Albany 12201

Key

Hash function

CA Sacramento 94203

WA Olympia 98501TX Austin 73301

HI Honolulu 96801

NY Albany 12201

Apply hash function to the key

Partitioner

By default, Cassandra uses the Murmur3 hashing function. Murmur3 will

always produce the same hash for a given partition key. This means that we

can always find the node where a specific row is stored. Cassandra does

allow custom hashing functions, however, once a cluster is initialized with a

particular partitioner, it cannot be changed later. In Cassandra’s default

configuration, a token is a 64-bit integer. This gives a possible range for

tokens from −2 to 2 − 1.

All Cassandra nodes learn about the token assignments of other nodes

through gossip (discussed later). This means any node can handle a request

for any other node’s range. The node receiving the request is called the

63 63

60

Back Next

coordinator, and any node can act in this role. If a key does not belong to

the coordinator’s range, it forwards the request to the replicas responsible

for that range.

Coordinator node #

A client may connect to any node in the cluster to initiate a read or write

query. This node is known as the coordinator node. The coordinator

identifies the nodes responsible for the data that is being written or read and

forwards the queries to them.

Client connecting to the coordinator node

Server

Server

Server

Server

Server

ServerCoordinator node

Client

As of now, we discussed the core concepts of Cassandra. Let’s dig deeper into

some of its advanced distributed concepts.

61

Replication

Let's explore Cassandra's replication strategy.

We'll cover the following

• Replication factor

• Replication strategy
• Simple replication strategy

• Network topology strategy

Each node in Cassandra serves as a replica for a different range of data.

Cassandra stores multiple copies of data and spreads them across various

replicas, so that if one node is down, other replicas can respond to queries

for that range of data. This process of replicating the data on to different

nodes depends upon two factors:

Replication factor

Replication strategy

Replication Factor Replication Strategy +

Decides how many replicas the
system will have

Decides which nodes will be
responsible for the replicas

Replication factor #
62

The replication factor is the number of nodes that will receive the copy of the

same data. This means, if a cluster has a replication factor of 3, each row will

be stored on three different nodes. Each keyspace in Cassandra can have a

different replication factor.

Replication strategy #

The node that owns the range in which the hash of the partition key falls will

be the first replica; all the additional replicas are placed on the consecutive

nodes. Cassandra places the subsequent replicas on the next node in a

clockwise manner. There are two replication strategies in Cassandra:

Simple replication strategy #

This strategy is used only for a single data center cluster. Under this strategy,

Cassandra places the first replica on a node determined by the partitioner

and the subsequent replicas on the next node in a clockwise manner.

63

Simple replication with 3 replicas

Server

Server

Server

Server

Server

ServerCoordinator node

Client

Replica node

Replication Factor = 3

Network topology strategy #

This strategy is used for multiple data-centers. Under this strategy, we can

specify different replication factors for different data-centers. This enables

us to specify how many replicas will be placed in each data center.

Additional replicas are always placed on the next nodes in a clockwise

manner.

64

Back

High-level Architecture

Next

Cassandra Consistency Levels

Network topology strategy for replication

Server

Server

Server

Server

Server

ServerCoordinator node

Client

Replica node

Replication Factor = 3

Server

Server

Server

Server

Server

Server

Replica node
Remote Coordinator

Replication Factor = 2

Different Replication Factor

Datacenter 1 Datacenter 2

65

Cassandra Consistency Levels

Let's explore how Cassandra manages data consistency.

We'll cover the following

• What are Cassandra’s consistency levels?

• Write consistency levels
• Hinted handoff

• Read consistency levels

• Snitch

What are Cassandra’s consistency
levels? #

Cassandra’s consistency level is defined as the minimum number of

Cassandra nodes that must fulfill a read or write operation before the

operation can be considered successful. Cassandra allows us to specify

different consistency levels for read and write operations. Also, Cassandra

has tunable consistency, i.e., we can increase or decrease the consistency

levels for each request.

There is always a tradeoff between consistency and performance. A higher

consistency level means that more nodes need to respond to a read or write

query, giving the user more assurance that the values present on each

replica are the same.

66

Write consistency levels #

For write operations, the consistency level specifies how many replica nodes

must respond for the write to be reported as successful to the client. The

consistency level is specified per query by the client. Because Cassandra is

eventually consistent, updates to other replica nodes may continue in the

background. Here are different write consistency levels that Cassandra

offers:

One or Two or Three: The data must be written to at least the specified

number of replica nodes before a write is considered successful.

Quorum: The data must be written to at least a quorum (or majority) of

replica nodes. Quorum is defined as floor(RF/2 + 1), where RF

represents the replication factor. For example, in a cluster with a

replication factor of five, if three nodes return success, the write is

considered successful.

All: Ensures that the data is written to all replica nodes. This

consistency level provides the highest consistency but lowest

availability as writes will fail if any replica is down.

Local_Quoram: Ensures that the data is written to a quorum of nodes in

the same datacenter as the coordinator. It does not wait for the response

from the other data-centers.

Each_Quorum: Ensures that the data is written to a quorum of nodes in

each datacenter.

Any: The data must be written to at least one node. In the extreme case,

when all replica nodes for the given partition key are down, the write

can still succeed after a hinted handoff (discussed below) has been

written. ‘Any’ consistency level provides the lowest latency and highest

availability, however, it comes with the lowest consistency. If all replica

nodes are down at write time, an ‘Any’ write is not readable until the

67

replica nodes for that partition have recovered and the latest data is

written on them.

How does Cassandra perform a write operation? For a write, the

coordinator node contacts all replicas, as determined by the replication

factor, and considers the write successful when a number of replicas equal

to the consistency level acknowledge the write.

Hinted handoff #

Depending upon the consistency level, Cassandra can still serve write

requests even when nodes are down. For example, if we have the replication

factor of three and the client is writing with a quorum consistency level. This

means that if one of the nodes is down, Cassandra can still write on the

remaining two nodes to fulfill the consistency level, hence, making the write

successful.

68

Hinted handoff

Server 5

Server 2

Server 3

Server 4

Server 6

Server 1Coordinator node

Client

Replica node

Replication Factor = 3

Stores a hint for Server 4

Now when the node which was down comes online again, how should we

write data to it? Cassandra accomplishes this through hinted handoff.

When a node is down or does not respond to a write request, the coordinator

node writes a hint in a text file on the local disk. This hint contains the data

itself along with information about which node the data belongs to. When

the coordinator node discovers from the Gossiper (will be discussed later)

that a node for which it holds hints has recovered, it forwards the write

requests for each hint to the target. Furthermore, each node every ten

minutes checks to see if the failing node, for which it is holding any hints,

has recovered.

With consistency level ‘Any,’ if all the replica nodes are down, the

coordinator node will write the hints for all the nodes and report success to

the client. However, this data will not reappear in any subsequent reads

69

until one of the replica nodes comes back online, and the coordinator node

successfully forwards the write requests to it. This is assuming that the

coordinator node is up when the replica node comes back. This also means

that we can lose our data if the coordinator node dies and never comes back.

For this reason, we should avoid using the ‘Any’ consistency level.

If a node is offline for some time, the hints can build up considerably on

other nodes. Now, when the failed node comes back online, other nodes tend

to flood that node with write requests. This can cause issues on the node, as

it is already trying to come back after a failure. To address this problem,

Cassandra limits the storage of hints to a configurable time window. It is also

possible to disable hinted handoff entirely.

Cassandra, by default, stores hints for three hours. After three hours, older

hints will be removed, which means, if now the failed node recovers, it will

have stale data. Cassandra can fix this stale data while serving a read

request. Cassandra can issue a Read Repair when it sees stale data; we will

go through this while discussing the read path.

One thing to remember: When the cluster cannot meet the consistency level

specified by the client, Cassandra fails the write request and does not store a

hint.

Read consistency levels #

The consistency level for read queries specifies how many replica nodes

must respond to a read request before returning the data. For example, for a

read request with a consistency level of quorum and replication factor of

three, the coordinator waits for successful replies from at least two nodes.

Cassandra has the same consistency levels for read requests as that of write

operations except Each_Quorum (because it is very expensive).

70

To achieve strong consistency in Cassandra: R+W > RF gives us strong

consistency. In this equation, R, W , and RF are the read replica count, the

write replica count, and the replication factor, respectively. All client reads

will see the most recent write in this scenario, and we will have strong

consistency.

Snitch: The Snitch is an application that determines the proximity of nodes

within the ring and also tells which nodes are faster. Cassandra nodes use

this information to route read/write requests efficiently. We will discuss this

in detail later.

Coordinator node forwards the read request to the fastest server

Server

Server

Server

Server

Server

Server

Coordinator node

Client

Snitch

Fastest server

Snitch provides information
about the fastest server

If read consistency is ONE, the coordinator node will
send the request only to the fastest node

71

How does Cassandra perform a read operation? The coordinator always

sends the read request to the fastest node. For example, for Quorum=2, the

coordinator sends the request to the fastest node and the digest of the data

from the second-fastest node. The digest is a checksum of the data and is

used to save network bandwidth.

If the digest does not match, it means some replicas do not have the latest

version of the data. In this case, the coordinator reads the data from all the

replicas to determine the latest data. The coordinator then returns the latest

data to the client and initiates a read repair request. The read repair

operation pushes the newer version of data to nodes with the older version.

Read repair

Server

Server

Server

Server

Server

Server

Coordinator node

Client

Snitch

Fastest server

With quorum=2, the coordinator sends a read request to the fastest node server for the
actual data and digest (hash of the data) request to one of the other replicas.

Hash(data)

data
Replica

request

data

digest request

data request

While discussing Cassandra’s write path, we saw that the nodes could

become out of sync due to network issues, node failures, corrupted disks, etc.

The read repair operation helps nodes to resync with the latest data. Read

72

operation is used as an opportunity to repair inconsistent data across

replicas. The latest write-timestamp is used as a marker for the correct

version of data. The read repair operation is performed only in a portion of

the total reads to avoid performance degradation. Read repairs are

opportunistic operations and not a primary operation for anti-entropy.

Read Repair Chance: When the read consistency level is less than ‘All,’

Cassandra performs a read repair probabilistically. By default, Cassandra

tries to read repair 10% of all requests with DC local read repair. In this case,

Cassandra immediately sends a response when the consistency level is met

and performs the read repair asynchronously in the background.

Snitch #

Snitch keeps track of the network topology of Cassandra nodes. It determines

which data-centers and racks nodes belong to. Cassandra uses this

information to route requests efficiently. Here are the two main functions of

a snitch in Cassandra:

Snitch determines the proximity of nodes within the ring and also

monitors the read latencies to avoid reading from nodes that have

slowed down. Each node in Cassandra uses this information to route

requests efficiently.

Cassandra’s replication strategy uses the information provided by the

Snitch to spread the replicas across the cluster intelligently. Cassandra

will do its best by not having more than one replica on the same “rack”.

To understand Snitch’s role, let’s take the example of Cassandra’s read

operation. Let’s assume that the client is performing a read with a quorum

consistency level, and the data is replicated on five nodes. To support

maximum read speed, Cassandra selects a single replica to query for the full

73

Back

Replication

Next

Gossiper

object and asks for the digest of the data from two additional nodes in order

to ensure that the latest version of the data is returned. The Snitch helps to

identify the fastest replica, and Cassandra asks this replica for the full object.

74

Gossiper

Let's explore how Cassandra uses gossip protocol to keep track
of the state of the system.

We'll cover the following

• How does Cassandra use gossip protocol?

• Node failure detection

How does Cassandra use gossip
protocol? #

Cassandra uses gossip protocol that allows each node to keep track of state

information about the other nodes in the cluster. Nodes share state

information with each other to stay in sync. Gossip protocol is a peer-to-peer

communication mechanism in which nodes periodically exchange state

information about themselves and other nodes they know about. Each node

initiates a gossip round every second to exchange state information about

themselves (and other nodes) with one to three other random nodes. This

way, all nodes quickly learn about all other nodes in a cluster.

Each gossip message has a version associated with it, so that during a gossip

exchange, older information is overwritten with the most current state for a

particular node.

Generation number: In Cassandra, each node stores a generation number

which is incremented every time a node restarts. This generation number is

included in each gossip message exchanged between nodes and is used to
75

distinguish the current state of a node from its state before a restart. The

generation number remains the same while the node is alive and is

incremented each time the node restarts. The node receiving the gossip

message can compare the generation number it knows and the gossip

message’s generation number. If the generation number in the gossip

message is higher, it knows that the node was restarted.

Seed nodes: To prevent problems in gossip communications, Cassandra

designates a list of nodes as the seeds in a cluster. This is critical for a node

starting up for the first time. By default, a node remembers other nodes it

has gossiped with between subsequent restarts. The seed node designation

has no purpose other than bootstrapping the gossip process for new nodes

joining the cluster. Thus, seed nodes are not a single point of failure, nor do

they have any other special purpose in cluster operations other than the

bootstrapping of nodes.

76

Gossip protocol

Server 3

Server 1

Server 2

Server 4

Server 5

[1, 3, 5]
[2, 4, 5]

[1, 3, 5]

[1, 2, 3, 5]

[2, 4]

Server 3

Server 1

Server 2

Server 4

Server 5

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

Every second each server exchanges information with one randomly selected server

Every second each server exchanges information about all the servers it knows about

Node failure detection #
77

Back

Cassandra Consistency Levels

Next

Anatomy of Cassandra's Write Operat…

Accurately detecting failures is a hard problem to solve as we cannot say

with 100% surety that if a system is genuinely down or is just very slow in

responding due to heavy load, network congestion, etc. Mechanisms like

Heartbeating outputs a boolean value telling us if the system is alive or not;

there is no middle ground. Heartbeating uses a fixed timeout, and if there is

no heartbeat from a server, the system, after the timeout, assumes that the

server has crashed. Here the value of the timeout is critical. If we keep the

timeout short, the system will be able to detect failures quickly but with

many false positives due to slow machines or faulty networks. On the other

hand, if we keep the timeout long, the false positives will be reduced, but the

system will not perform efficiently for being slow in detecting failures.

Cassandra uses an adaptive failure detection mechanism as described by Phi

Accrual Failure Detector. This algorithm uses historical heartbeat

information to make the threshold adaptive. A generic Accrual Failure

Detector, instead of telling that the server is alive or not, outputs the

suspicion level about a server; a higher suspicion level means there are

higher chances that the server is down. Using Phi Accrual Failure Detector, if

a node does not respond, its suspicion level is increased and could be

declared dead later. As a node’s suspicion level increases, the system can

gradually decide to stop sending new requests to it. Phi Accrual Failure

Detector makes a distributed system efficient as it takes into account

fluctuations in the network environment and other intermittent server

issues before declaring a system completely dead.

Now that we have discussed Cassandra’s major components, let’s see how

Cassandra performs its read and write operations.

78

Anatomy of Cassandra's Write Operation

Let’s dig deeper into the components involved in Cassandra’s
write path.

We'll cover the following

• Commit log

• MemTable

• SStable

Cassandra stores data both in memory and on disk to provide both high

performance and durability. Every write includes a timestamp. Write path

involves a lot of components, here is the summary of Cassandra’s write path:

1. Each write is appended to a commit log, which is stored on disk.

2. Then it is written to MemTable in memory.

3. Periodically, MemTables are flushed to SSTables on the disk.

4. Periodically, compaction runs to merge SSTables.

Let’s dig deeper into these parts.

Commit log #

When a node receives a write request, it immediately writes the data to a

commit log. The commit log is a write-ahead log and is stored on disk. It is

used as a crash-recovery mechanism to support Cassandra’s durability goals.

A write will not be considered successful on the node until it’s written to the

commit log; this ensures that if a write operation does not make it to the in-

79

memory store (the MemTable, discussed in a moment), it will still be possible

to recover the data. If we shut down the node or it crashes unexpectedly, the

commit log can ensure that data is not lost. That’s because if the node

restarts, the commit log gets replayed.

Cassandra's write path

Write
request

MemTableMemory

Disk

CommitLog SSTable

Flush

MemTable #

After it is written to the commit log, the data is written to a memory-resident

data structure called the MemTable.

Each node has a MemTable in memory for each Cassandra table.

Each MemTable contains data for a specific Cassandra table, and it

resembles that table in memory.

Each MemTable accrues writes and provides reads for data not yet

flushed to disk.
80

Commit log stores all the writes in sequential order, with each new

write appended to the end, whereas MemTable stores data in the sorted

order of partition key and clustering columns.

After writing data to the Commit Log and MemTable, the node sends an

acknowledgment to the coordinator that the data has been successfully

written.

Storing data to commit log and MemTable

ID State City Zip

2 WA Redmond 98052

2 WA Seattle 98170

5 CA Sacramento 94203

2 WA Kent 98042

2 OR Portland 97296

5 CA Los Angeles 90021

CommitLog MemTable

ID State City Zip

2 OR Portland 97296

2 WA Kent 98042

2 WA Redmond 98052

2 WA Seattle 98170

5 CA Los Angeles 90021

5 CA Sacramento 94203

Each new write gets appended to the CommitLog, whereas, MemTable
stores data in sorted order of the partition and clustering keys

Partition Key Clustering Key

SStable #

When the number of objects stored in the MemTable reaches a threshold, the

contents of the MemTable are flushed to disk in a file called SSTable. At this

point, a new MemTable is created to store subsequent data. This flushing is a

81

non-blocking operation; multiple MemTables may exist for a single table, one

current, and the rest waiting to be flushed. Each SStable contains data for a

specific table.

When the MemTable is flushed to SStables, corresponding entries in the

Commit Log are removed.

Why are they called ‘SSTables’? The term ‘SSTables’ is short for ‘Sorted

String Table’ and first appeared in Google’s Bigtable which is also a storage

system. Cassandra borrowed this term even though it does not store data as

strings on the disk.

Once a MemTable is flushed to disk as an SSTable, it is immutable and cannot

be changed by the application. If we are not allowed to update SSTables, how

do we delete or update a column? In Cassandra, each delete or update is

considered a new write operation. We will look into this in detail while

discussing Tombstones.

The current data state of a Cassandra table consists of its MemTables in

memory and SSTables on the disk. Therefore, on reads, Cassandra will read

both SSTables and MemTables to find data values, as the MemTable may

contain values that have not yet been flushed to the disk. The MemTable

works like a write-back cache that Cassandra looks up by key.

Generation number is an index number that is incremented every time a

new SSTable is created for a table and is used to uniquely identify SSTables.

Here is the summary of Cassandra’s write path:

82

Back

Gossiper

Next

Anatomy of Cassandra's Read Operati…

Anatomy of Cassandra's write path

1

MemTable

CommitLog SSTable

Row Cache Key Cache

Hints

Append to
CommitLog

2Add to
MemTable

3
Invalidate
cache, if row is
present in it

4
If MemTable is
full, flush it to
SSTable

5 If coordinator node, save
hints for failed writes

Memory

Disk

83

Anatomy of Cassandra's Read Operation

Let’s explore Cassandra’s read path.

We'll cover the following

• Caching

• Reading from MemTable

• Reading from SSTable
• Bloom �lters

• How are SSTables stored on the disk?

• Partition index summary �le

• Reading SSTable through key cache

Let’s dig deeper into the components involved in Cassandra’s read path.

Caching #

To boost read performance, Cassandra provides three optional forms of

caching:

1. Row cache: The row cache, caches frequently read (or hot) rows. It

stores a complete data row, which can be returned directly to the client

if requested by a read operation. This can significantly speed up read

access for frequently accessed rows, at the cost of more memory usage.

2. Key cache: Key cache stores a map of recently read partition keys to

their SSTable offsets. This facilitates faster read access into SSTables

84

stored on disk and improves the read performance but could slow down

the writes, as we have to update the Key cache for every write.

3. Chunk cache: Chunk cache is used to store uncompressed chunks of

data read from SSTable files that are accessed frequently.

Reading from MemTable #

As we know, data is sorted by the partition key and the clustering columns.

Let’s take an example. Here we have two partitions of a table with partition

keys ‘2’ and ‘5’. The clustering columns are the state and city names. When a

read request comes in, the node performs a binary search on the partition

key to find the required partition and then return the row.

Reading data from MemTable

ID State City Zip

2 OR Portland 97296

2 WA Kent 98042

2 WA Redmond 98052

2 WA Seattle 98170

5 CA Los Angeles 90021

5 CA Sacramento 94203

Partition Key Clustering Key

Partition key = 2

Partition key = 5

Here is the summary of Cassandra’s read path:

85

Anatomy of Cassandra's read path

2

MemTable

CommitLog SSTable

Row Cache Key Cache

Hints

Cache the key
for index

3
Check MemTable
to see if data is
present

1 Return the row, if
it is present in the

cache

4Retrieve data
from SSTable

5 Add row to the cache, if
row caching is enabled Memory

Disk

Reading from SSTable #

Bloom filters #

Each SStable has a Bloom filter associated with it, which tells if a particular

key is present in it or not. Bloom filters are used to boost the performance of

read operations. Bloom filters are very fast, non-deterministic algorithms for

testing whether an element is a member of a set. They are non-deterministic

because it is possible to get a false-positive read from a Bloom filter, but

false-negative is not possible. Bloom filters work by mapping the values in a

data set into a bit array and condensing a larger data set into a digest string

using a hash function. The digest, by definition, uses a much smaller amount

of memory than the original data would. The filters are stored in memory

and are used to improve performance by reducing the need for disk access

on key lookups. Disk access is typically much slower than memory access. So,

in a way, a Bloom filter is a special kind of key cache.

86

Cassandra maintains a Bloom filter for each SSTable. When a query is

performed, the Bloom filter is checked first before accessing the disk.

Because false negatives are not possible, if the filter indicates that the

element does not exist in the set, it certainly does not; but if the filter thinks

that the element is in the set, the disk is accessed to make sure.

How are SSTables stored on the disk? #

Each SSTable consists of two files:

1. Data File: Actual data is stored in a data file. It has partitions and rows

associated with those partitions. The partitions are in sorted order.

2. Partition Index file: Stored on disk, partition index file stores the

sorted partition keys mapped to their SSTable offsets. It enables locating

a partition exactly in an SSTable rather than scanning data.

Reading from an SSTable

2 9 11 12 19 22

| | | | | |
0 1057 3034 3914 5450 8120

Partition Key Byte Offset

2 0

9 1057

11 3034

12 3914

19 5450

22 8120

Partition Index file

Data file

Partition index summary file #
87

Stored in memory, the Partition Index Summary file stores the summary of

the Partition Index file. This is done for performance improvement.

Reading from partition index summary �le

2 9 11 12 19 22

| | | | | |
0 1057 3034 3914 5450 8120

Partition Key Byte Offset

2 0

9 1057

11 3034

12 3914

19 5450

22 8120

Partition Index file

Data file

Key range Byte Offset

0-9 0

10-21 32

22-27 80

Partition Index Summary file
Memory Disk

0

32

80

If we want to read data for key=12 , here are the steps we need to follow

(also shown in the figure below):

1. In the Partition Index Summary file, find the key range in which the

key=12 lies. This will give us offset (=32) into the Partition Index file.

2. Jump to offset 32 in the Partition Index file to search for the offset of

key=12 . This will give us offset (=3914) into the SSTable file.

3. Jump to SSTable at offset 3914 to read the data for key=12

88

Reading from partition index summary �le

2 9 11 12 19 22

| | | | | |
0 1057 3034 3914 5450 8120

Partition Key Byte Offset

2 0

9 1057

11 3034

12 3914

19 5450

22 8120

Partition Index file

Data file

Key range Byte Offset

0-9 0

10-21 32

22-27 80

Partition Index Summary file
Memory Disk

0

32

80

12

Reading SSTable through key cache #

As the Key Cache stores a map of recently read partition keys to their SSTable

offsets, it is the fastest way to find the required row in the SSTable.

89

Reading SSTable through key cache

2 9 11 12 19 22

| | | | | |
0 1057 3034 3914 5450 8120

Partition Key Byte Offset

2 0

9 1057

11 3034

12 3914

19 5450

22 8120

Partition Index file

Data file

Key range Byte Offset

0-9 0

10-21 32

22-27 80

Partition Index Summary file
Memory Disk

0

32

80

12

Key Byte Offset

12 3914

22 8120

Key cache

If data is not present in MemTable, we have to look it up in SSTables or other

data structures like partition index, etc. Here is the summary of Cassandra’s

read operation:

1. First, Cassandra checks if the row is present in the Row Cache. If

present, the data is returned, and the request ends.

2. If the row is not present in the Row Cache, bloom filters are checked. If a

bloom filter indicates that the data is present in an SSTable, Cassandra

looks for the required partition in that SSTable.

3. The key cache is checked for the partition key presence. A cache hit

provides an offset for the partition in SSTable. This offset is then used to

retrieve the partition, and the request completes.

4. Cassandra continues to seek the partition in the partition summary and

partition index. These structures also provide the partition offset in an

SSTable which is then used to retrieve the partition and return. The

caches are updated if present with the latest data read.

90

Back

Anatomy of Cassandra's Write Operat…

Next

Compaction

Cassandra's read operation work�ow

Read Request
yesRow Cache

enabled
Found in Row

Cache Client

Bloom filters?
(in RAM)

Key cache?

Partition Index
Summary file

Data File

Partition Index file

yes

No

Scan bloom filters
of next SSTable

No

yes

no

yes

yes

91

Compaction

Let's explore how Cassandra handles compaction.

We'll cover the following

• How does compaction work in Cassandra?

• Compaction strategies

• Sequential writes

How does compaction work in
Cassandra? #

As we have already discussed, SSTables are immutable, which helps

Cassandra achieve such high write speeds. Flushing of MemTable to SStable

is a continuous process. This means we can have a large number of SStables

lying on the disk. While reading, it is tedious to scan all these SStables. So, to

improve the read performance, we need compaction. Compaction in

Cassandra refers to the operation of merging multiple related SSTables into a

single new one. During compaction, the data in SSTables is merged: the keys

are merged, columns are combined, obsolete values are discarded, and a

new index is created.

On compaction, the merged data is sorted, a new index is created over the

sorted data, and this freshly merged, sorted, and indexed data is written to a

single new SSTable.

92

Compacting two SSTables into one

2

4

5

9

12

19

Compaction: Merge data based on partition key, keep the latest data,
remove deleted (tombstone) rows, and remove old SStables

1

3

4

9
(Tombstone)

22

1

2

3

4

5

12

19

22

SSTable1 SSTable2 Compacted SSTable

Compaction will reduce the number of SSTables to consult and therefore

improve read performance.

Compaction will also reclaim space taken by obsolete data in SSTable.

Compaction strategies #

SizeTiered Compaction Strategy: This compaction strategy is suitable for

insert-heavy and general workloads. This is the default compaction strategy

and is triggered when multiple SSTables of a similar size are present.

Leveled Compaction Strategy: This strategy is used to optimize read

performance. This strategy groups SSTables into levels, each of which has a

fixed size limit which is ten times larger than the previous level.

93

Back

Anatomy of Cassandra's Read Operati…

Next

Tombstones

Time Window Compaction Strategy: The Time Window Compaction

Strategy is designed to work on time series data. It compacts SSTables within

a configured time window. This strategy is ideal for time series data which is

immutable after a fixed time interval.

Sequential writes #

Sequential writes are the primary reason that writes perform so well in

Cassandra. No reads or seeks of any kind are required for writing a value to

Cassandra because all writes are ‘append’ operations. This makes the speed

of the disk one key limitation on performance. Compaction is intended to

amortize the reorganization of data, but it uses sequential I/O to do so, which

makes it efficient. If Cassandra naively inserted values where they ultimately

belonged, writing clients would pay for seeks upfront.

94

Tombstones

Let's explore how Tombstones work in Cassandra.

We'll cover the following

• What are Tombstones?

• Common problems associated with Tombstones

What are Tombstones? #

An interesting case with Cassandra can be when we delete some data for a

node that is down or unreachable, that node could miss a delete. When that

node comes back online later and a repair occurs, the node could “resurrect”

the data that had been previously deleted by re-sharing it with other nodes.

To prevent deleted data from being reintroduced, Cassandra uses a concept

called a tombstone. A tombstone is similar to the idea of a “soft delete” from

the relational database world. When we delete data, Cassandra does not

delete it right away, instead associates a tombstone with it, with a time to

expiry. In other words, a tombstone is a marker that is kept to indicate data

that has been deleted. When we execute a delete operation, the data is not

immediately deleted. Instead, it’s treated as an update operation that places a

tombstone on the value.

Each tombstone has an expiry time associated with it, representing the

amount of time that nodes will wait before removing the data permanently.

By default, each tombstone has an expiry of ten days. The purpose of this

delay is to give a node that is unavailable time to recover. If a node is down

95

Back

Compaction

Next

Summary: Cassandra

longer than this value, then it should be treated as failed and replaced.

Tombstones are removed as part of compaction. During compaction, any

row with an expired tombstone will not be propagated further.

Common problems associated with
Tombstones #

Tombstones make Cassandra writes actions efficient because the data is not

removed right away when deleted. Instead, it is removed later during

compaction. Having said that, Tombstones cause the following problems:

As a tombstone itself is a record, it takes storage space. Hence, it

should be kept in mind that upon deletion, the application will end up

increasing the data size instead of shrinking it. Furthermore, if there are

a lot of tombstones, the available storage for the application could be

substantially reduced.

When a table accumulates many tombstones, read queries on that table

could become slow and can cause serious performance problems like

timeouts. This is because we have to read much more data until the

actual compaction happens and removes the tombstones.

96

Summary: Cassandra

Here is a quick summary of Cassandra for you!

We'll cover the following

• Summary

• System design patterns

• Cassandra characteristics

• References and further reading

Summary #

���$BTTBOESB�JT�B�EJTUSJCVUFE�EFDFOUSBMJ[FE�TDBMBCMF�BOE�IJHIMZ

BWBJMBCMF�/P42-�EBUBCBTF�

���$BTTBOESB�XBT�EFTJHOFE�XJUI�UIF�VOEFSTUBOEJOH�UIBU

TPGUXBSF�IBSEXBSF�GBJMVSFT�DBO�BOE�EP�PDDVS�

���$BTTBOESB�JT�B�QFFS�UP�QFFS�EJTUSJCVUFE�TZTUFN�J�F��JU�EPFT�OPU�IBWF�BOZ

MFBEFS�PS�GPMMPXFS�OPEFT��"MM�OPEFT�BSF�FRVBM�BOE�UIFSF�JT�OP�TJOHMF

QPJOU�PG�GBJMVSF�

���%BUB�JO�$BTTBOESB�JT�BVUPNBUJDBMMZ�EJTUSJCVUFE�BDSPTT�OPEFT�

���%BUB�JT�SFQMJDBUFE�BDSPTT�UIF�OPEFT�GPS�GBVMU�UPMFSBODF�BOE�SFEVOEBODZ�

���$BTTBOESB�VTFT�UIF�$POTJTUFOU�)BTIJOH�BMHPSJUIN�UP�EJTUSJCVUF�UIF�EBUB

BNPOH�OPEFT�JO�UIF�DMVTUFS��$BTTBOESB�DMVTUFS�IBT�B�SJOH�UZQF

BSDIJUFDUVSF�XIFSF�JUT�OPEFT�BSF�MPHJDBMMZ�EJTUSJCVUFE�MJLF�B�SJOH�

���$BTTBOESB�VUJMJ[FT�UIF�EBUB�NPEFM�PG�(PPHMFÇT�#JHUBCMF�J�F��445BCMFT�BOE

.FN5BCMFT�

97

���$BTTBOESB�VUJMJ[FT�EJTUSJCVUFE�GFBUVSFT�PG�"NB[POÇT�%ZOBNP�J�F�

DPOTJTUFOU�IBTIJOH�QBSUJUJPOJOH�BOE�SFQMJDBUJPO�

���$BTTBOESB�PGGFST�5VOBCMF�DPOTJTUFODZ�GPS�CPUI�SFBE�BOE�XSJUF

PQFSBUJPOT�UP�BEKVTU�UIF�USBEFPGG�CFUXFFO�BWBJMBCJMJUZ�BOE�DPOTJTUFODZ�PG

EBUB�

����$BTTBOESB�VTFT�UIF�HPTTJQ�QSPUPDPM�GPS�JOUFS�OPEF�DPNNVOJDBUJPO�

System design patterns #

)FSF�JT�B�TVNNBSZ�PG�TZTUFN�EFTJHO�QBUUFSOT�VTFE�JO�$BTTBOESB�

$POTJTUFOU�)BTIJOH��$BTTBOESB�VTFT�$POTJTUFOU�)BTIJOH�UP�EJTUSJCVUF�JUT

EBUB�BDSPTT�OPEFT�

2VPSVN��5P�FOTVSF�EBUB�DPOTJTUFODZ�FBDI�$BTTBOESB�XSJUF�PQFSBUJPO

DBO�CF�DPOGJHVSFE�UP�CF�TVDDFTTGVM�POMZ�JG�UIF�EBUB�IBT�CFFO�XSJUUFO�UP�BU

MFBTU�B�RVPSVN�PG�SFQMJDB�OPEFT�

8SJUF�"IFBE�-PH��5P�FOTVSF�EVSBCJMJUZ�XIFOFWFS�B�OPEF�SFDFJWFT�B

XSJUF�SFRVFTU�JU�JNNFEJBUFMZ�XSJUFT�UIF�EBUB�UP�B�DPNNJU�MPH�XIJDI�JT�B

XSJUF�BIFBE�MPH�

4FHNFOUFE�-PH��$BTTBOESB�VTFT�UIF�TFHNFOUFE�MPH�TUSBUFHZ�UP�TQMJU�JUT

DPNNJU�MPH�JOUP�NVMUJQMF�TNBMMFS�GJMFT�JOTUFBE�PG�B�TJOHMF�MBSHF�GJMF�GPS

FBTJFS�PQFSBUJPOT��"T�XF�LOPX�XIFO�B�OPEF�SFDFJWFT�B�XSJUF�PQFSBUJPO

JU�JNNFEJBUFMZ�XSJUFT�UIF�EBUB�UP�B�DPNNJU�MPH��"T�UIF�DPNNJU�MPH�HSPXT

BOE�SFBDIFT�JUT�UISFTIPME�JO�TJ[F�B�OFX�DPNNJU�MPH�JT�DSFBUFE��)FODF

PWFS�UJNF�TFWFSBM�DPNNJU�MPHT�DPVME�CF�QSFTFOU�FBDI�PG�XIJDI�JT�DBMMFE�B

TFHNFOU��$PNNJU�MPH�TFHNFOUT�SFEVDF�UIF�OVNCFS�PG�TFFLT�OFFEFE�UP

XSJUF�UP�EJTL��$PNNJU�MPH�TFHNFOUT�BSF�USVODBUFE�XIFO�$BTTBOESB�IBT

GMVTIFE�DPSSFTQPOEJOH�EBUB�UP�445BCMFT��$PNNJU�MPH�TFHNFOUT�DBO�CF

BSDIJWFE�EFMFUFE�PS�SFDZDMFE�PODF�BMM�JUT�EBUB�IBT�CFFO�GMVTIFE�UP

445BCMFT�
98

(PTTJQ�QSPUPDPM��$BTTBOESB�VTFT�HPTTJQ�QSPUPDPM�UIBU�BMMPXT�FBDI�OPEF

UP�LFFQ�USBDL�PG�TUBUF�JOGPSNBUJPO�BCPVU�UIF�PUIFS�OPEFT�JO�UIF�DMVTUFS�

(FOFSBUJPO�OVNCFS��*O�$BTTBOESB�FBDI�OPEF�LFFQT�B�HFOFSBUJPO

OVNCFS�XIJDI�JT�JODSFNFOUFE�XIFOFWFS�B�OPEF�SFTUBSUT��5IJT

HFOFSBUJPO�OVNCFS�JT�JODMVEFE�JO�HPTTJQ�NFTTBHFT�FYDIBOHFE�CFUXFFO

OPEFT�BOE�JT�VTFE�UP�EJTUJOHVJTI�UIF�OPEFÇT�DVSSFOU�TUBUF�GSPN�JUT�TUBUF

CFGPSF�B�SFTUBSU�

1IJ�"DDSVBM�'BJMVSF�%FUFDUPS��$BTTBOESB�VTFT�BO�BEBQUJWF�GBJMVSF

EFUFDUJPO�NFDIBOJTN�BT�EFTDSJCFE�CZ�UIF�1IJ�"DDSVBM�'BJMVSF�%FUFDUPS

BMHPSJUIN��5IJT�BMHPSJUIN�JOTUFBE�PG�QSPWJEJOH�B�CJOBSZ�PVUQVU�UFMMJOH�JG

UIF�TZTUFN�JT�VQ�PS�EPXO�VTFT�IJTUPSJDBM�IFBSUCFBU�JOGPSNBUJPO�UP

PVUQVU�UIF�TVTQJDJPO�MFWFM�BCPVU�B�OPEF��"�IJHIFS�TVTQJDJPO�MFWFM�NFBOT

UIFSF�BSF�IJHI�DIBODFT�UIBU�UIF�OPEF�JT�EPXO�

#MPPN�GJMUFST��*O�$BTTBOESB�FBDI�44UBCMF�IBT�B�#MPPN�GJMUFS�BTTPDJBUFE

XJUI�JU�XIJDI�UFMMT�JG�B�QBSUJDVMBS�LFZ�JT�QSFTFOU�JO�JU�PS�OPU�

)JOUFE�)BOEPGG��$BTTBOESB�OPEFT�VTF�)JOUFE�)BOEPGG�UP�SFNFNCFS�UIF

XSJUF�PQFSBUJPO�GPS�GBJMJOH�OPEFT�

3FBE�3FQBJS��$BTTBOESB�VTFT�Æ3FBE�3FQBJSÇ�UP�QVTI�UIF�MBUFTU�WFSTJPO�PG

UIF�EBUB�UP�OPEFT�XJUI�UIF�PMEFS�WFSTJPOT�

Cassandra characteristics #

)FSF�BSF�B�GFX�SFBTPOT�CFIJOE�$BTTBOESBÇT�QFSGPSNBODF�BOE�QPQVMBSJUZ�

%JTUSJCVUFE�NFBOT�JU�DBO�SVO�PO�B�MBSHF�OVNCFS�PG�NBDIJOFT�

%FDFOUSBMJ[FE�NFBOT�UIFSFÇT�OP�MFBEFS�GPMMPXFS�QBSBEJHN��"MM�OPEFT

BSF�JEFOUJDBM�BOE�DBO�QFSGPSN�BMM�GVODUJPOT�PG�$BTTBOESB�

99

4DBMBCMF�NFBOT�UIBU�$BTTBOESB�DBO�CF�FBTJMZ�TDBMFE�IPSJ[POUBMMZ�CZ

BEEJOH�NPSF�OPEFT�UP�UIF�DMVTUFS�XJUIPVU�BOZ�QFSGPSNBODF�JNQBDU��/P

NBOVBM�JOUFSWFOUJPO�PS�SFCBMBODJOH�JT�SFRVJSFE��$BTTBOESB�BDIJFWFT

MJOFBS�TDBMBCJMJUZ�BOE�QSPWFO�GBVMU�UPMFSBODF�PO�DPNNPEJUZ�IBSEXBSF�

)JHIMZ�"WBJMBCMF�NFBOT�$BTTBOESB�JT�GBVMU�UPMFSBOU�BOE�UIF�EBUB

SFNBJOT�BWBJMBCMF�FWFO�JG�POF�PS�TFWFSBM�OPEFT�PS�EBUB�DFOUFST�HP�EPXO�

'BVMU�5PMFSBOU�BOE�SFMJBCMF�BT�EBUB�JT�SFQMJDBUFE�UP�NVMUJQMF�OPEFT

GBVMU�UPMFSBODF�JT�QSFUUZ�IJHI�

5VOBCMF�DPOTJTUFODZ�NFBOT�UIBU�JU�JT�QPTTJCMF�UP�BEKVTU�UIF�USBEFPGG

CFUXFFO�BWBJMBCJMJUZ�BOE�DPOTJTUFODZ�PG�EBUB�PO�$BTTBOESB�OPEFT

UZQJDBMMZ�CZ�DPOGJHVSJOH�SFQMJDBUJPO�GBDUPS�BOE�DPOTJTUFODZ�MFWFM�TFUUJOHT�

%VSBCMF�NFBOT�$BTTBOESB�TUPSFT�EBUB�QFSNBOFOUMZ�

&WFOUVBMMZ�$POTJTUFOU�BT�$BTTBOESB�GBWPST�IJHI�BWBJMBCJMJUZ�BU�UIF�DPTU

PG�TUSPOH�DPOTJTUFODZ�

(FPHSBQIJD�EJTUSJCVUJPO�NFBOT�$BTTBOESB�TVQQPSUT�HFPHSBQIJDBM

EJTUSJCVUJPO�BOE�FGGJDJFOU�EBUB�SFQMJDBUJPO�BDSPTT�NVMUJQMF�DMPVET�BOE

EBUB�DFOUFST�

References and further reading #

#JHUBCMF�	IUUQT���SFTFBSDI�HPPHMF�QVCT�QVC������

%ZOBNP�	IUUQ���XXX�SFBE�TFBT�IBSWBSE�FEV�_LPIMFS�DMBTT�DT����

X���EFDBOEJB��EZOBNP�QEG

%BUBTUBY�EPDT�	IUUQT���EPDT�EBUBTUBY�DPN�FO�ETF�����ETF�

BSDI�EBUBTUBY@FOUFSQSJTF�EC"SDI�BSDI50$�IUNM

5PNCTUPOFT�DPNNPO�QSPCMFNT�	IUUQT���PQFODSFEP�DPN�CMPHT�DBTTBOESB�

UPNCTUPOFT�DPNNPO�JTTVFT�

5IF�1IJ�"DDSVBM�'BJMVSF�%FUFDUPS

	IUUQ���DJUFTFFSY�JTU�QTV�FEV�WJFXEPD�EPXOMPBE

EPJ����������������SFQ�SFQ��UZQF�QEG

100

https://research.google/pubs/pub27898/
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/decandia07dynamo.pdf
https://docs.datastax.com/en/dse/6.8/dse-arch/datastax_enterprise/dbArch/archTOC.html
https://opencredo.com/blogs/cassandra-tombstones-common-issues/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.7427&rep=rep1&type=pdf

Back

Tombstones

Next

Quiz: Cassandra

$BTTBOESB�JOUSPEVDUJPO�WJEFP�	IUUQT���XXX�DPVSTFSB�PSH�MFDUVSF�DMPVE�

BQQMJDBUJPOT�QBSU��������DBTTBOESB�JOUSPEVDUJPO�PMNQV

101

https://www.coursera.org/lecture/cloud-applications-part2/2-3-1-cassandra-introduction-olmpu

102

Yoda
Kafka: How to Design a Distributed Messaging System?

Messaging Systems: Introduction

This lesson gives a brief overview of messaging systems.

We'll cover the following

• Goal

• Background

• What is a messaging system?

• Queue

• Publish-subscribe messaging system

Goal #

Design a distributed messaging system that can reliably transfer a high

throughput of messages between different entities.

Background #

One of the common challenges among distributed systems is handling a

continuous influx of data from multiple sources. Imagine a log aggregation

service that is receiving hundreds of log entries per second from different

sources. The function of this log aggregation service is to store these logs on

disk at a shared server and also build an index so that the logs can be

searched later. A few challenges of this service are:

103

1. How will the log aggregation service handle a spike of messages? If the

service can handle (or buffer) 500 messages per second, what will

happen if it starts receiving a higher number of messages per second? If

we decide to have multiple instances of the log aggregation service, how

do we divide the work among these instances?

2. How can we receive messages from different types of sources? The

sources producing (or consuming) these logs need to decide upon a

common protocol and data format to send log messages to the log

aggregation service. This leads us to a strongly coupled architecture

between the producer and consumer of the log messages.

3. What will happen to the log messages if the log aggregation service is

down or unresponsive for some time?

To efficiently manage such scenarios, distributed systems depend upon a

messaging system.

What is a messaging system? #

A messaging system is responsible for transferring data among services,

applications, processes, or servers. Such a system helps decouple different

parts of a distributed system by providing an asynchronous way of

transferring messaging between the sender and the receiver. Hence, all

senders (or producers) and receivers (or consumers) focus on the

data/message without worrying about the mechanism used to share the data.

Messaging system

Sender Messaging
System Receiver

104

There are two common ways to handle messages: Queuing and Publish-

Subscribe.

Queue #

In the queuing model, messages are stored sequentially in a queue.

Producers push messages to the rear of the queue, and consumers extract

the messages from the front of the queue.

Message queue

Producer 1 Consumer 1
Message Queue

M0 M1 M2 M3 . . .

Producer 2 Consumer 2

A particular message can be consumed by a maximum of one consumer only.

Once a consumer grabs a message, it is removed from the queue such that

the next consumer will get the next message. This is a great model for

distributing message-processing among multiple consumers. But this also

limits the system as multiple consumers cannot read the same message from

the queue.

105

Message consumption in a message queue

Producer 1
Consumer 1

Message Queue

M3 M4 M5 M6 . . .

Producer 2

Consumer 2

Consumer 3

M0

M1

M2

M7

M8

Publish-subscribe messaging system #

In the pub-sub (short for publish-subscribe) model, messages are divided

into topics. A publisher (or a producer) sends a message to a topic that gets

stored in the messaging system under that topic. Subscribers (or the

consumer) subscribe to a topic to receive every message published to that

topic. Unlike the Queuing model, the pub-sub model allows multiple

consumers to get the same message; if two consumers subscribe to the same

topic, they will receive all messages published to that topic.

Pub-sub messaging system

Producer 1
Consumer 1

Pub-sub

M1 M2 M3 M4 . . .

Producer 2

Consumer 2

Consumer 3

M0

M0

M0

M5

M6
Topic: Sales

106

The messaging system that stores and maintains the messages is commonly

known as the message broker. It provides a loose coupling between

publishers and subscribers, or producers and consumers of data.

Message broker

Publisher 1
Subscriber 1

M2 M3 M4 M5 . . .

Publisher 2

Subscriber 2

Subscriber 3

M1

M1

M1

M6

M7

Producers Message broker Consumers

Topic: Sales

The message broker stores published messages in a queue, and subscribers

read them from the queue. Hence, subscribers and publishers do not have to

be synchronized. This loose coupling enables subscribers and publishers to

read and write messages at different rates.

The messaging system’s ability to store messages provides fault-tolerance,

so messages do not get lost between the time they are produced and the time

they are consumed.

To summarize, a message system is deployed in an application stack for the

following reasons:

1. Messaging buffering. To provide a buffering mechanism in front of

processing (i.e., to deal with temporary incoming message spikes that

are greater than what the processing app can deal with). This enables

the system to safely deal with spikes in workloads by temporarily

storing data until it is ready for processing.

107

Back

Mock Interview: Cassandra

Next

Kafka: Introduction

2. Guarantee of message delivery. Allows producers to publish messages

with assurance that the message will eventually be delivered if the

consuming application is unable to receive the message when it is

published.

3. Providing abstraction. A messaging system provides an architectural

separation between the consumers of messages and the applications

producing the messages.

4. Enabling scale. Provides a flexible and highly configurable architecture

that enables many producers to deliver messages to multiple

consumers.

108

Kafka: Introduction

This lesson presents a brief introduction and common use cases
of Kafka.

We'll cover the following

• What is Kafka?

• Background

• Kafka use cases

What is Kafka? #

Apache Kafka is an open-source publish-subscribe-based messaging system

(Kafka can work as a message queue too, more on this later). It is distributed,

durable, fault-tolerant, and highly scalable by design. Fundamentally, it is

a system that takes streams of messages from applications known as

producers, stores them reliably on a central cluster (containing a set of

brokers), and allows those messages to be received by applications (known

as consumers) that process the messages.

109

A high-level view of Kafka

Producer 1 Producer 2 Producer 3

Kafka Cluster

Consumer 1 Consumer 2 Consumer 2

Background #

Kafka was created at LinkedIn around 2010 to track various events, such as

page views, messages from the messaging system, and logs from various

services. Later, it was made open-source and developed into a

comprehensive system which is used for:

1. Reliably storing a huge amount of data.

2. Enabling high throughput of message transfer between different

entities.

3. Streaming real-time data.

At a high level, we can call Kafka a distributed Commit Log. A Commit Log

(also known as a Write-Ahead log or a Transactions log) is an append-only

data structure that can persistently store a sequence of records. Records are

110

always appended to the end of the log, and once added, records cannot be

deleted or modified. Reading from a commit log always happens from left to

right (or old to new).

Kafka as a write-ahead log

12 11 10 9 8 7 6 5 4 3 2 1 0

1st Record Next Record
Written

Kafka stores all of its messages on disk. Since all reads and writes happen in

sequence, Kafka takes advantage of sequential disk reads (more on this

later).

Kafka use cases #

Kafka can be used for collecting big data and real-time analysis. Here are

some of its top use cases:

1. Metrics: Kafka can be used to collect and aggregate monitoring data.

Distributed services can push different operational metrics to Kafka

servers. These metrics can then be pulled from Kafka to produce

aggregated statistics.

2. Log Aggregation: Kafka can be used to collect logs from multiple

sources and make them available in a standard format to multiple

consumers.

3. Stream processing: Kafka is quite useful for use cases where the

collected data undergoes processing at multiple stages. For example, the
111

Back

Messaging Systems: Introduction

Next

High-level Architecture

raw data consumed from a topic is transformed, enriched, or aggregated

and pushed to a new topic for further consumption. This way of data

processing is known as stream processing.

4. Commit Log: Kafka can be used as an external commit log for any

distributed system. Distributed services can log their transactions to

Kafka to keep track of what is happening. This transaction data can be

used for replication between nodes and also becomes very useful for

disaster recovery, for example, to help failed nodes to recover their

states.

5. Website activity tracking: One of Kafka’s original use cases was to

build a user activity tracking pipeline. User activities like page clicks,

searches, etc., are published to Kafka into separate topics. These topics

are available for subscription for a range of use cases, including real-

time processing, real-time monitoring, or loading into Hadoop

(https://hadoop.apache.org/) or data warehousing systems for offline

processing and reporting.

6. Product suggestions: Imagine an online shopping site like amazon.com

(http://amazon.com/), which offers a feature of ‘similar products’ to

suggest lookalike products that a customer could be interested in

buying. To make this work, we can track every consumer action, like

search queries, product clicks, time spent on any product, etc., and

record these activities in Kafka. Then, a consumer application can read

these messages to find correlated products that can be shown to the

customer in real-time. Alternatively, since all data is persistent in Kafka,

a batch job can run overnight on the ‘similar product’ information

gathered by the system, generating an email for the customer with

product suggestions.

112

https://hadoop.apache.org/
http://amazon.com/

High-level Architecture

This lesson gives a brief overview of Kafka’s architecture.

We'll cover the following

• Kafka common terms
• Brokers

• Records

• Topics

• Producers

• Consumers

• High-level architecture
• Kafka cluster

• ZooKeeper

Kafka common terms #

Before digging deep into Kafka’s architecture, let’s first go through some of

its common terms.

Brokers #

A Kafka server is also called a broker. Brokers are responsible for reliably

storing data provided by the producers and making it available to the

consumers.

Records #
113

A record is a message or an event that gets stored in Kafka. Essentially, it is

the data that travels from producer to consumer through Kafka. A record

contains a key, a value, a timestamp, and optional metadata headers.

Kafka message

Timestamp

Key

H
ea

de
rs Header 1

Header 2

Value

Topics #

Kafka divides its messages into categories called Topics. In simple terms, a

topic is like a table in a database, and the messages are the rows in that table.

Each message that Kafka receives from a producer is associated with a

topic.

Consumers can subscribe to a topic to get notified when new messages

are added to that topic.

A topic can have multiple subscribers that read messages from it.

In a Kafka cluster, a topic is identified by its name and must be unique.

Messages in a topic can be read as often as needed — unlike traditional

messaging systems, messages are not deleted after consumption. Instead,

Kafka retains messages for a configurable amount of time or until a storage

114

size is exceeded. Kafka’s performance is effectively constant with respect to

data size, so storing data for a long time is perfectly fine.

Kafka topics

Publisher 1 Subscriber 1

M1 M2 M3 M4

Publisher 2
Subscriber 2

Subscriber 3

M5

M6

Producers Message broker Consumers

Topic: Sales

Topic: Inventory

Topic: Campaigns

M1 M2 M3

M2

Publisher 3

Publisher 4

Subscriber 4

Subscriber 5

M0

M0 M0

M0 M0 M1

M0 M1

M0 M0

M4

M3

M4 M7

Subscribed to 'Sales'
and 'Campaigns'

Subscribed to 'Campaigns'

Subscribed to 'Sales'

M0

M0

M0 M1

Producers #

Producers are applications that publish (or write) records to Kafka.

Consumers #

Consumers are the applications that subscribe to (read and process) data

from Kafka topics. Consumers subscribe to one or more topics and consume

published messages by pulling data from the brokers.

In Kafka, producers and consumers are fully decoupled and agnostic of each

other, which is a key design element to achieve the high scalability that

Kafka is known for. For example, producers never need to wait for

consumers.

High-level architecture #

115

At a high level, applications (producers) send messages to a Kafka broker,

and these messages are read by other applications called consumers.

Messages get stored in a topic, and consumers subscribe to the topic to

receive new messages.

Kafka cluster #

Kafka is run as a cluster of one or more servers, where each server is

responsible for running one Kafka broker.

ZooKeeper #

ZooKeeper is a distributed key-value store and is used for coordination and

storing configurations. It is highly optimized for reads. Kafka uses ZooKeeper

to coordinate between Kafka brokers; ZooKeeper maintains metadata

information about the Kafka cluster. We will be looking into this in detail

later.

High level architecture of Kafka

Producer 1 Consumer 1

Producer 2
Consumer 2

Consumer 3

Producer 3

Producer 4

Consumer 4

Consumer 5

Broker 1

Broker 2

Broker 3

Zookeeper

Push messages Pull messages

Kafka Cluster

Get Kafka broker Update offset

116

Kafka: Deep Dive

As of now, we have discussed the core concepts of Kafka. Let
us now throw some light on the work�ow of Kafka.

We'll cover the following

• Topic partitions

• Leader

• Follower

• In-sync replicas

• High-water mark

Kafka is simply a collection of topics. As topics can get quite big, they are

split into partitions of a smaller size for better performance and scalability.

Topic partitions #

Kafka topics are partitioned, meaning a topic is spread over a number of

‘fragments’. Each partition can be placed on a separate Kafka broker. When

a new message is published on a topic, it gets appended to one of the topic’s

partitions. The producer controls which partition it publishes messages to

based on the data. For example, a producer can decide that all messages

related to a particular ‘city’ go to the same partition.

Essentially, a partition is an ordered sequence of messages. Producers

continually append new messages to partitions. Kafka guarantees that all

messages inside a partition are stored in the sequence they came in.

117

Ordering of messages is maintained at the partition level, not across the

topic.

A topic having three partitions residing on three brokers

12 11 10 9 8 7 6 5 4 3 2 1 0

Next Record
Written

7 6 5 4 3 2 1 0 8

10 9 8 7 6 5 4 3 2 1 0

Old New

Partition 0

Partition 1

Partition 2

Br
ok

er
 1

Br
ok

er
 2

Br
ok

er
 3

A unique sequence ID called an offset gets assigned to every message

that enters a partition. These numerical offsets are used to identify

every message’s sequential position within a topic’s partition.

Offset sequences are unique only to each partition. This means, to locate

a specific message, we need to know the Topic, Partition, and Offset

number.

Producers can choose to publish a message to any partition. If ordering

within a partition is not needed, a round-robin partition strategy can be

used, so records get distributed evenly across partitions.

Placing each partition on separate Kafka brokers enables multiple

consumers to read from a topic in parallel. That means, different

consumers can concurrently read different partitions present on

separate brokers.

Placing each partition of a topic on a separate broker also enables a

topic to hold more data than the capacity of one server.
118

Messages once written to partitions are immutable and cannot be

updated.

A producer can add a ‘key’ to any message it publishes. Kafka

guarantees that messages with the same key are written to the same

partition.

Each broker manages a set of partitions belonging to different topics.

Kafka follows the principle of a dumb broker and smart consumer. This

means that Kafka does not keep track of what records are read by the

consumer. Instead, consumers, themselves, poll Kafka for new messages and

say what records they want to read. This allows them to

increment/decrement the offset they are at as they wish, thus being able to

replay and reprocess messages. Consumers can read messages starting from

a specific offset and are allowed to read from any offset they choose. This

also enables consumers to join the cluster at any point in time.

Every topic can be replicated to multiple Kafka brokers to make the data

fault-tolerant and highly available. Each topic partition has one leader

broker and multiple replica (follower) brokers.

Leader #

A leader is the node responsible for all reads and writes for the given

partition. Every partition has one Kafka broker acting as a leader.

Follower #

To handle single point of failure, Kafka can replicate partitions and

distribute them across multiple broker servers called followers. Each

follower’s responsibility is to replicate the leader’s data to serve as a ‘backup’

partition. This also means that any follower can take over the leadership if

the leader goes down.

119

In the following diagram, we have two partitions and four brokers. Broker

1 is the leader of Partition 1 and follower of Partition 2 . Consumers

work together in groups to process messages efficiently. More details on

consumer groups later.

Leader and followers of partitions

4 3 2 1 0

Kafka Broker 1

Leader: Partition 1

Follower: Partition 2

1 0

Kafka Broker 4

Leader: Partition 2

Kafka Broker 3

Follower: Partition 1

Follower: Partition 2

Kafka Broker 2

Follower: Partition 1

Consumer 1

Consumer 2

Consumer 3

Consumer Group 1

Consumer 1

Consumer 2

Consumer Group 2
Read from leader

Read from leader

Read

Read from leader

Replicate

Replicate

Replicate Replicate

Producer 1

Write to leader

Write to leader

4 3 2 1 0 4 3 2 1 0

1 0

1 0

Kafka stores the location of the leader of each partition in ZooKeeper. As all

writes/reads happen at/from the leader, producers and consumers directly

talk to ZooKeeper to find a partition leader.

In-sync replicas #

120

An in-sync replica (ISR) is a broker that has the latest data for a given

partition. A leader is always an in-sync replica. A follower is an in-sync

replica only if it has fully caught up to the partition it is following. In other

words, ISRs cannot be behind on the latest records for a given partition.

Only ISRs are eligible to become partition leaders. Kafka can choose the

minimum number of ISRs required before the data becomes available for

consumers to read.

High-water mark #

To ensure data consistency, the leader broker never returns (or exposes)

messages which have not been replicated to a minimum set of ISRs. For this,

brokers keep track of the high-water mark, which is the highest offset that all

ISRs of a particular partition share. The leader exposes data only up to the

high-water mark offset and propagates the high-water mark offset to all

followers. Let’s understand this with an example.

In the figure below, the leader does not return messages greater than offset

‘4’, as it is the highest offset message that has been replicated to all follower

brokers.

121

Back

High-level Architecture

Next

Consumer Groups

High-water mark offset

4 3 2 1 0

Kafka Broker 1

Leader: Partition 1

Kafka Broker 3

Follower: Partition 1

Kafka Broker 2

Follower: Partition 1

Consumer 1

Consumer 2

Consumer 3

Consumer Group 1

Replicate Replicate

4 3 2 1 0 4 3 2 1 0

5 6 7

5 6

High-water mark offset is 4

If a consumer reads the record with offset ‘7’ from the leader (Broker 1), and

later, if the current leader fails, and one of the followers becomes the leader

before the record is replicated to the followers, the consumer will not be able

to find that message on the new leader. The client, in this case, will

experience a non-repeatable read. Because of this possibility, Kafka brokers

only return records up to the high-water mark.

122

Consumer Groups

Let's explore the role of consumer groups in Kafka.

We'll cover the following

• What is a consumer group?
• Distributing partitions to consumers within a consumer group

What is a consumer group? #

A consumer group is basically a set of one or more consumers working

together in parallel to consume messages from topic partitions. Messages are

equally divided among all the consumers of a group, with no two consumers

receiving the same message.

Distributing partitions to consumers within a
consumer group #

Kafka ensures that only a single consumer reads messages from any

partition within a consumer group. In other words, topic partitions are a

unit of parallelism – only one consumer can work on a partition in a

consumer group at a time. If a consumer stops, Kafka spreads partitions

across the remaining consumers in the same consumer group. Similarly,

every time a consumer is added to or removed from a group, the

consumption is rebalanced within the group.

123

How Kafka distributes partitions to consumers within a consumer group

4 3 2 1 0

Kafka Broker 1

Leader: Partition 1

Leader: Partition 2

Consumer 1

Consumer 2

Consumer Group 1

Consumer 1

Consumer Group 2

Read

Read

Read

Read

Producer 1

Write

1 0 Write

Consumers pull messages from topic partitions. Different consumers can be

responsible for different partitions. Kafka can support a large number of

consumers and retain large amounts of data with very little overhead. By

using consumer groups, consumers can be parallelized so that multiple

consumers can read from multiple partitions on a topic, allowing a very high

message processing throughput. The number of partitions impacts

consumers’ maximum parallelism, as there cannot be more consumers than

partitions.

Kafka stores the current offset per consumer group per topic per partition,

as it would for a single consumer. This means that unique messages are only

sent to a single consumer in a consumer group, and the load is balanced

across consumers as equally as possible.

When the number of consumers exceeds the number of partitions in a topic,

all new consumers wait in idle mode until an existing consumer

unsubscribes from that partition. Similarly, as new consumers join a

consumer group, Kafka initiates a rebalancing if there are more consumers

than partitions. Kafka uses any unused consumers as failovers.

124

Back

Kafka: Deep Dive

Next

Kafka Work�ow

Here is a summary of how Kafka manages the distribution of partitions to

consumers within a consumer group:

Number of consumers in a group = number of partitions: each

consumer consumes one partition.

Number of consumers in a group > number of partitions: some

consumers will be idle.

Number of consumers in a group < number of partitions: some

consumers will consume more partitions than others.

125

Kafka Work�ow

Let's explore different messaging work�ows that Kafka offers.

We'll cover the following

• Kafka work�ow as pub-sub messaging

• Kafka work�ow for consumer group

Kafka provides both pub-sub and queue-based messaging systems in a fast,

reliable, persisted, fault-tolerance, and zero downtime manner. In both

cases, producers simply send the message to a topic, and consumers can

choose any one type of messaging system depending on their need. Let us

follow the steps in the next section, to understand how the consumer can

choose the messaging system of their choice.

Kafka workflow as pub-sub
messaging #

Following is the stepwise workflow of the Pub-Sub Messaging:

Producers publish messages on a topic.

Kafka broker stores messages in the partitions configured for that

particular topic. If the producer did not specify the partition in which

the message should be stored, the broker ensures that the messages are

equally shared between partitions. If the producer sends two messages

and there are two partitions, Kafka will store one message in the first

partition and the second message in the second partition.

126

Consumer subscribes to a specific topic.

Once the consumer subscribes to a topic, Kafka will provide the current

offset of the topic to the consumer and also saves that offset in the

ZooKeeper.

Consumer will request Kafka at regular intervals for new messages.

Once Kafka receives the messages from producers, it forwards these

messages to the consumer.

Consumer will receive the message and process it.

Once the messages are processed, the consumer will send an

acknowledgment to the Kafka broker.

Upon receiving the acknowledgment, Kafka increments the offset and

updates it in the ZooKeeper. Since offsets are maintained in the

ZooKeeper, the consumer can read the next message correctly, even

during broker outages.

The above flow will repeat until the consumer stops sending the

request.

Consumers can rewind/skip to the desired offset of a topic at any time

and read all the subsequent messages.

Kafka workflow for consumer group #

Instead of a single consumer, a group of consumers from one consumer

group subscribes to a topic, and the messages are shared among them. Let us

check the workflow of this system:

Producers publish messages on a topic.

Kafka stores all messages in the partitions configured for that particular

topic, similar to the earlier scenario.

A single consumer subscribes to a specific topic, assume Topic-01 with

Group ID as Group-1 .

127

Back

Consumer Groups

Next

Role of ZooKeeper

Kafka interacts with the consumer in the same way as pub-sub

messaging until a new consumer subscribes to the same topic, Topic-

01 , with the same Group ID as Group-1 .

Once the new consumer arrives, Kafka switches its operation to share

mode, such that each message is passed to only one of the subscribers of

the consumer group Group-1 . This message transfer is similar to queue-

based messaging, as only one consumer of the group consumes a

message. Contrary to queue-based messaging, messages are not

removed after consumption.

This message transfer can go on until the number of consumers reaches

the number of partitions configured for that particular topic.

Once the number of consumers exceeds the number of partitions, the

new consumer will not receive any message until an existing consumer

unsubscribes. This scenario arises because each consumer in Kafka will

be assigned a minimum of one partition. Once all the partitions are

assigned to the existing consumers, the new consumers will have to

wait.

128

Role of ZooKeeper

Let's delve into how Kafka interacts with ZooKeeper.

We'll cover the following

• What is ZooKeeper?

• ZooKeeper as the central coordinator
• How do producers or consumers �nd out who the leader of a

partition is?

What is ZooKeeper? #

A critical dependency of Apache Kafka is Apache ZooKeeper, which is a

distributed configuration and synchronization service. ZooKeeper serves as

the coordination interface between the Kafka brokers, producers, and

consumers. Kafka stores basic metadata in ZooKeeper, such as information

about brokers, topics, partitions, partition leader/followers, consumer

offsets, etc.

129

Producer 1 Consumer 1

Producer 2
Consumer 2

Consumer 3

Producer 3

Producer 4

Consumer 4

Consumer 5

Broker 1

Broker 2

Broker 3

Zookeeper

Push messages Pull messages

Kafka Cluster

Get Kafka broker Update offset

ZooKeeper as the central coordinator
#

As we know, Kafka brokers are stateless; they rely on ZooKeeper to maintain

and coordinate brokers, such as notifying consumers and producers of the

arrival of a new broker or failure of an existing broker, as well as routing all

requests to partition leaders.

ZooKeeper is used for storing all sorts of metadata about the Kafka cluster:

It maintains the last offset position of each consumer group per

partition, so that consumers can quickly recover from the last position

in case of a failure (although modern clients store offsets in a separate

Kafka topic).

It tracks the topics, number of partitions assigned to those topics, and

leaders’/followers’ location in each partition.

It also manages the access control lists (ACLs) to different topics in the

cluster. ACLs are used to enforce access or authorization.

130

How do producers or consumers find out who
the leader of a partition is? #

In the older versions of Kafka, all clients (i.e., producers and consumers)

used to directly talk to ZooKeeper to find the partition leader. Kafka has

moved away from this coupling, and in Kafka’s latest releases, clients fetch

metadata information from Kafka brokers directly; brokers talk to

ZooKeeper to get the latest metadata. In the diagram below, the producer

goes through the following steps before publishing a message:

1. The producer connects to any broker and asks for the leader of

‘Partition 1’.

2. The broker responds with the identification of the leader broker

responsible for ‘Partition 1’.

3. The producer connects to the leader broker to publish the message.

131

Role of ZooKeeper in Kafka

4 3 2 1 0

Kafka Broker 1

Leader: Partition 1

Follower: Partition 2

1 0

Kafka Broker 4

Leader: Partition 2

Kafka Broker 3

Follower: Partition 1

Follower: Partition 2

Kafka Broker 2

Follower: Partition 1
Replicate

Replicate

Replicate
Replicate

Producer 1

3. Write

4 3 2 1 0 4 3 2 1 0

1 0

1 0

Zookeeper Zookeeper
(leader) Zookeeper

Zookeeper Zookeeper

Zookeeper Ensemble

Metadata syncMetadata sync Metadata sync Metadata sync

1. Metadata request

2. Metadata response

If 'Producer 1' wants to publish
a message to 'Partition 1', first,
it needs to find out which
broker is the partition leader

Holds basic metadata

All the critical information is stored in the ZooKeeper and ZooKeeper

replicates this data across its cluster, therefore, failure of Kafka broker (or

ZooKeeper itself) does not affect the state of the Kafka cluster. Upon

ZooKeeper failure, Kafka will always be able to restore the state once the

132

Back

Kafka Work�ow

Next

Controller Broker

ZooKeeper restarts after failure. Zookeeper is also responsible for

coordinating the partition leader election between the Kafka brokers in case

of leader failure.

133

Controller Broker

This lesson will explain the role of the controller broker in
Kafka.

We'll cover the following

• What is the controller broker?

• Split brain

• Generation clock

What is the controller broker? #

Within the Kafka cluster, one broker is elected as the Controller. This

Controller broker is responsible for admin operations, such as

creating/deleting a topic, adding partitions, assigning leaders to partitions,

monitoring broker failures, etc. Furthermore, the Controller periodically

checks the health of other brokers in the system. In case it does not receive a

response from a particular broker, it performs a failover to another broker.

It also communicates the result of the partition leader election to other

brokers in the system.

Split brain #

When a controller broker dies, Kafka elects a new controller. One of the

problems is that we cannot truly know if the leader has stopped for good and

has experienced an intermittent failure like a stop-the-world GC pause or a

134

Back

Role of ZooKeeper

Next

Kafka Delivery Semantics

temporary network disruption. Nevertheless, the cluster has to move on and

pick a new controller. If the original Controller had an intermittent failure,

the cluster would end up having a so-called zombie controller. A zombie

controller can be defined as a controller node that had been previously

deemed dead by the cluster and has come back online. Another broker has

taken its place, but the zombie controller might not know that yet. This

common scenario in distributed systems with two or more active controllers

(or central servers) is called split-brain.

We will have two controllers under split-brain, which will be giving out

potentially conflicting commands in parallel. If something like this happens

in a cluster, it can result in major inconsistencies. How do we handle this

situation?

Generation clock #

Split-brain is commonly solved with a generation clock, which is simply a

monotonically increasing number to indicate a server’s generation. In Kafka,

the generation clock is implemented through an epoch number. If the old

leader had an epoch number of ‘1’, the new one would have ‘2’. This epoch is

included in every request that is sent from the Controller to other brokers.

This way, brokers can now easily differentiate the real Controller by simply

trusting the Controller with the highest number. The Controller with the

highest number is undoubtedly the latest one, since the epoch number is

always increasing. This epoch number is stored in ZooKeeper.

135

Kafka Delivery Semantics

Let's explore what message delivery guarantees Kafka provides
to its clients.

We'll cover the following

• Producer delivery semantics

• Consumer delivery semantics

Producer delivery semantics #

As we know, a producer writes only to the leader broker, and the followers

asynchronously replicate the data. How can a producer know that the data is

successfully stored at the leader or that the followers are keeping up with the

leader? Kafka offers three options to denote the number of brokers that must

receive the record before the producer considers the write as successful:

Async: Producer sends a message to Kafka and does not wait for

acknowledgment from the server. This means that the write is

considered successful the moment the request is sent out. This fire-and-

forget approach gives the best performance as we can write data to

Kafka at network speed, but no guarantee can be made that the server

has received the record in this case.

Committed to Leader: Producer waits for an acknowledgment from the

leader. This ensures that the data is committed at the leader; it will be

slower than the ‘Async’ option, as the data has to be written on disk on

the leader. Under this scenario, the leader will respond without waiting

for acknowledgments from the followers. In this case, the record will be
136

lost if the leader crashes immediately after acknowledging the producer

but before the followers have replicated it.

Committed to Leader and Quorum: Producer waits for an

acknowledgment from the leader and the quorum. This means the

leader will wait for the full set of in-sync replicas to acknowledge the

record. This will be the slowest write but guarantees that the record will

not be lost as long as at least one in-sync replica remains alive. This is

the strongest available guarantee.

As we can see, the above options enable us to configure our preferred trade-

off between durability and performance.

If we would like to be sure that our records are safely stored in Kafka,

we have to go with the last option – Committed to Leader and Quorum.

If we value latency and throughput more than durability, we can choose

one of the first two options. These options will have a greater chance of

losing messages but will have better speed and throughput.

Consumer delivery semantics #

A consumer can read only those messages that have been written to a set of

in-sync replicas. There are three ways of providing consistency to the

consumer:

At-most-once (Messages may be lost but are never redelivered): In this

option, a message is delivered a maximum of one time only. Under this

option, the consumer upon receiving a message, commit (or increment)

the offset to the broker. Now, if the consumer crashes before fully

consuming the message, that message will be lost, as when the

consumer restarts, it will receive the next message from the last

committed offset.

137

Back

Controller Broker

Next

Kafka Characteristics

At-least-once (Messages are never lost but maybe redelivered): Under

this option, a message might be delivered more than once, but no

message should be lost. This scenario occurs when the consumer

receives a message from Kafka, and it does not immediately commit the

offset. Instead, it waits till it completes the processing. So, if the

consumer crashes after processing the message but before committing

the offset, it has to reread the message upon restart. Since, in this case,

the consumer never committed the offset to the broker, the broker will

redeliver the same message. Thus, duplicate message delivery could

happen in such a scenario.

Exactly-once (each message is delivered once and only once): It is very

hard to achieve this unless the consumer is working with a

transactional system. Under this option, the consumer puts the message

processing and the offset increment in one transaction. This will ensure

that the offset increment will happen only if the whole transaction is

complete. If the consumer crashes while processing, the transaction will

be rolled back, and the offset will not be incremented. When the

consumer restarts, it can reread the message as it failed to process it last

time. This option leads to no data duplication and no data loss but can

lead to decreased throughput.

138

Kafka Characteristics

Let's explore different characteristics of Kafka.

We'll cover the following

• Storing messages to disks

• Record retention in Kafka

• Client quota

• Kafka performance

Storing messages to disks #

Kafka writes its messages to the local disk and does not keep anything in

RAM. Disks storage is important for durability so that the messages will not

disappear if the system dies and restarts. Disks are generally considered to

be slow. However, there is a huge difference in disk performance between

random block access and sequential access. Random block access is slower

because of numerous disk seeks, whereas the sequential nature of writing or

reading, enables disk operations to be thousands of times faster than

random access. Because all writes and reads happen sequentially, Kafka has

a very high throughput.

Writing or reading sequentially from disks are heavily optimized by the OS,

via read-ahead (prefetch large block multiples) and write-behind (group

small logical writes into big physical writes) techniques.

139

Also, modern operating systems cache the disk in free RAM. This is called

Pagecache (https://en.wikipedia.org/wiki/Page_cache). Since Kafka stores

messages in a standardized binary format unmodified throughout the whole

flow (producer → broker → consumer), it can make use of the zero-copy

(https://en.wikipedia.org/wiki/Zero-copy) optimization. That is when the

operating system copies data from the Pagecache directly to a socket,

effectively bypassing the Kafka broker application entirely.

Kafka has a protocol that groups messages together. This allows network

requests to group messages together and reduces network overhead. The

server, in turn, persists chunks of messages in one go, and consumers fetch

large linear chunks at once.

All of these optimizations allow Kafka to deliver messages at near network-

speed.

Record retention in Kafka #

By default, Kafka retains records until it runs out of disk space. We can set

time-based limits (configurable retention period), size-based limits

(configurable based on size), or compaction (keeps the latest version of

record using the key). For example, we can set a retention policy of three

days, or two weeks, or a month, etc. The records in the topic are available for

consumption until discarded by time, size, or compaction.

Client quota #

It is possible for Kafka producers and consumers to produce/consume very

high volumes of data or generate requests at a very high rate and thus

monopolize broker resources, cause network saturation, and, in general,

deny service to other clients and the brokers themselves. Having quotas

140

https://en.wikipedia.org/wiki/Page_cache
https://en.wikipedia.org/wiki/Zero-copy

protects against these issues. Quotas become even more important in large

multi-tenant clusters where a small set of badly behaved clients can degrade

the user experience for the well-behaved ones.

In Kafka, quotas are byte-rate thresholds defined per client-ID . A client-

ID logically identifies an application making a request. A single client-ID

can span multiple producer and consumer instances. The quota is applied

for all instances as a single entity. For example, if a client-ID has a

producer quota of 10 MB/s, that quota is shared across all instances with that

same ID.

The broker does not return an error when a client exceeds its quota but

instead attempts to slow the client down. When the broker calculates that a

client has exceeded its quota, it slows the client down by holding the client’s

response for enough time to keep the client under the quota. This approach

keeps the quota violation transparent to clients. This also prevents clients

from having to implement special back-off and retry behavior.

Kafka performance #

Here are a few reasons behind Kafka’s performance and popularity:

Scalability: Two important features of Kafka contribute to its scalability.

A Kafka cluster can easily expand or shrink (brokers can be added or

removed) while in operation and without an outage.

A Kafka topic can be expanded to contain more partitions. Because a

partition cannot expand across multiple brokers, its capacity is bounded

by broker disk space. Being able to increase the number of partitions

and the number of brokers means there is no limit to how much data a

single topic can store.

141

Back

Kafka Delivery Semantics

Next

Summary: Kafka

Fault-tolerance and reliability: Kafka is designed in such a way that a

broker failure is detectable by ZooKeeper and other brokers in the cluster.

Because each topic can be replicated on multiple brokers, the cluster can

recover from broker failures and continue to work without any disruption of

service.

Throughput: By using consumer groups, consumers can be parallelized, so

that multiple consumers can read from multiple partitions on a topic,

allowing a very high message processing throughput.

Low Latency: 99.99% of the time, data is read from disk cache and RAM;

very rarely, it hits the disk.

142

Summary: Kafka

Here is a quick summary of Kafka for you!

We'll cover the following

• Summary

• System design patterns
• High-water mark

• Leader and follower

• Split-brain

• Segmented log

• References and further reading

Summary #

���,BGLB�QSPWJEFT�MPX�MBUFODZ�IJHI�UISPVHIQVU�GBVMU�UPMFSBOU�QVCMJTI�BOE

TVCTDSJCF�QJQFMJOFT�BOE�DBO�QSPDFTT�IVHF�DPOUJOVPVT�TUSFBNT�PG

FWFOUT�

���,BGLB�DBO�GVODUJPO�CPUI�BT�B�NFTTBHF�RVFVF�BOE�B�QVCMJTIFS�

TVCTDSJCFS�TZTUFN�

���"U�B�IJHI�MFWFM�,BGLB�XPSLT�BT�B�EJTUSJCVUFE�DPNNJU�MPH�

���,BGLB�TFSWFS�JT�BMTP�DBMMFE�B�CSPLFS��"�,BGLB�DMVTUFS�DBO�IBWF�POF�PS

NPSF�CSPLFST�

���"�,BGLB�UPQJD�JT�B�MPHJDBM�BHHSFHBUJPO�PG�NFTTBHFT�

���,BGLB�TPMWFT�UIF�TDBMJOH�QSPCMFN�PG�B�NFTTBHJOH�TZTUFN�CZ�TQMJUUJOH�B

UPQJD�JOUP�NVMUJQMF�QBSUJUJPOT�

143

���&WFSZ�UPQJD�QBSUJUJPO�JT�SFQMJDBUFE�GPS�GBVMU�UPMFSBODF�BOE�SFEVOEBODZ�

���"�QBSUJUJPO�IBT�POF�MFBEFS�SFQMJDB�BOE�[FSP�PS�NPSF�GPMMPXFS�SFQMJDBT�

���1BSUJUJPO�MFBEFS�JT�SFTQPOTJCMF�GPS�BMM�SFBET�BOE�XSJUFT��&BDI�GPMMPXFSÇT

SFTQPOTJCJMJUZ�JT�UP�SFQMJDBUF�UIF�MFBEFSÇT�EBUB�UP�TFSWF�BT�B�ÆCBDLVQÇ

QBSUJUJPO�

����.FTTBHF�PSEFSJOH�JT�QSFTFSWFE�POMZ�PO�B�QFS�QBSUJUJPO�CBTJT�	OPU�BDSPTT

QBSUJUJPOT�PG�B�UPQJD
�

����&WFSZ�QBSUJUJPO�SFQMJDB�OFFET�UP�GJU�PO�B�CSPLFS�BOE�B�QBSUJUJPO�DBOOPU

CF�EJWJEFE�PWFS�NVMUJQMF�CSPLFST�

����&WFSZ�CSPLFS�DBO�IBWF�POF�PS�NPSF�MFBEFST�DPWFSJOH�EJGGFSFOU

QBSUJUJPOT�BOE�UPQJDT�

����,BGLB�TVQQPSUT�B�TJOHMF�RVFVF�NPEFM�XJUI�NVMUJQMF�SFBEFST�CZ�FOBCMJOH

DPOTVNFS�HSPVQT�

����,BGLB�TVQQPSUT�B�QVCMJTI�TVCTDSJCF�NPEFM�CZ�BMMPXJOH�DPOTVNFST�UP

TVCTDSJCF�UP�UPQJDT�GPS�XIJDI�UIFZ�XBOU�UP�SFDFJWF�NFTTBHFT�

����;PP,FFQFS�GVODUJPOT�BT�B�DFOUSBMJ[FE�DPOGJHVSBUJPO�NBOBHFNFOU

TFSWJDF�

System design patterns #

)FSF�JT�B�TVNNBSZ�PG�TZTUFN�EFTJHO�QBUUFSOT�VTFE�JO�,BGLB�

High-water mark #

5P�EFBM�XJUI�OPO�SFQFBUBCMF�SFBET�BOE�FOTVSF�EBUB�DPOTJTUFODZ�CSPLFST�LFFQ

USBDL�PG�UIF�IJHI�XBUFS�NBSL�XIJDI�JT�UIF�MBSHFTU�PGGTFU�UIBU�BMM�*43T�PG�B

QBSUJDVMBS�QBSUJUJPO�TIBSF��$POTVNFST�DBO�TFF�NFTTBHFT�POMZ�VOUJM�UIF�IJHI

XBUFSNBSL�

Leader and follower #
144

&BDI�,BGLB�QBSUJUJPO�IBT�B�EFTJHOBUFE�MFBEFS�SFTQPOTJCMF�GPS�BMM�SFBET�BOE

XSJUFT�GPS�UIBU�QBSUJUJPO��&BDI�GPMMPXFSÇT�SFTQPOTJCJMJUZ�JT�UP�SFQMJDBUF�UIF

MFBEFSÇT�EBUB�UP�TFSWF�BT�B�ÆCBDLVQÇ�QBSUJUJPO�

Split-brain #

5P�IBOEMF�TQMJU�CSBJO�	XIFSF�XF�IBWF�NVMUJQMF�BDUJWF�DPOUSPMMFS�CSPLFST

,BGLB�VTFT�ÆFQPDI�OVNCFSÇ�XIJDI�JT�TJNQMZ�B�NPOPUPOJDBMMZ�JODSFBTJOH

OVNCFS�UP�JOEJDBUF�B�TFSWFSÇT�HFOFSBUJPO��5IJT�NFBOT�JG�UIF�PME�$POUSPMMFS

IBE�BO�FQPDI�OVNCFS�PG�Æ�Ç�UIF�OFX�POF�XPVME�IBWF�Æ�Ç��5IJT�FQPDI�JT

JODMVEFE�JO�FWFSZ�SFRVFTU�UIBU�JT�TFOU�GSPN�UIF�$POUSPMMFS�UP�PUIFS�CSPLFST�

5IJT�XBZ�CSPLFST�DBO�FBTJMZ�EJGGFSFOUJBUF�UIF�SFBM�$POUSPMMFS�CZ�TJNQMZ

USVTUJOH�UIF�$POUSPMMFS�XJUI�UIF�IJHIFTU�OVNCFS��5IJT�FQPDI�OVNCFS�JT

TUPSFE�JO�;PP,FFQFS�

Segmented log #

,BGLB�VTFT�MPH�TFHNFOUBUJPO�UP�JNQMFNFOU�TUPSBHF�GPS�JUT�QBSUJUJPOT��"T�,BGLB

SFHVMBSMZ�OFFET�UP�GJOE�NFTTBHFT�PO�EJTL�GPS�QVSHJOH�B�TJOHMF�MPOH�GJMF�DPVME

CF�B�QFSGPSNBODF�CPUUMFOFDL�BOE�FSSPS�QSPOF��'PS�FBTJFS�NBOBHFNFOU�BOE

CFUUFS�QFSGPSNBODF�UIF�QBSUJUJPO�JT�TQMJU�JOUP�TFHNFOUT�

References and further reading #

$POGMVFOU�%PDT�	IUUQT���EPDT�DPOGMVFOU�JP�DVSSFOU�LBGLB�EFTJHO�IUNM�BL�

EFTJHO

/FX�:PSL�5JNFT�VTF�DBTF�	IUUQT���XXX�DPOGMVFOU�JP�CMPH�QVCMJTIJOH�

BQBDIF�LBGLB�OFX�ZPSL�UJNFT�

,BGLB�4VNNJU�	IUUQT���XXX�DPOGMVFOU�JP�SFTPVSDFT�LBGLB�TVNNJU�TBO�

GSBODJTDP������

,BGLB�"DLT�&YQMBJOFE�	IUUQT���NFEJVN�DPN�CFUUFS�QSPHSBNNJOH�LBGLB�

BDLT�FYQMBJOFE�D����C�C���F

145

https://docs.confluent.io/current/kafka/design.html#ak-design
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/resources/kafka-summit-san-francisco-2019/
https://medium.com/better-programming/kafka-acks-explained-c0515b3b707e

Back

Kafka Characteristics

Next

Quiz: Kafka

,BGLB�BT�EJTUSJCVUFE�MPH�	IUUQT���XXX�ZPVUVCF�DPN�XBUDI

W�&MJM:Y60K02

.JOJNJ[JOH�,BGLB�-BUFODZ�	IUUQT���XXX�DPOGMVFOU�JP�CMPH�DPOGJHVSF�

LBGLB�UP�NJOJNJ[F�MBUFODZ�

,BGLB�JOUFSOBM�TUPSBHF�	IUUQT���UIFIPBSE�CMPH�IPX�LBGLBT�TUPSBHF�

JOUFSOBMT�XPSL��B��C��F���

&YBDUMZ�0ODF�TFNBOUJDT�	IUUQT���XXX�DPOGMVFOU�JP�CMPH�FYBDUMZ�PODF�

TFNBOUJDT�BSF�QPTTJCMF�IFSFT�IPX�BQBDIF�LBGLB�EPFT�JU�

4QMJU�CSBJO

	IUUQT���UFDIUIPVHIUT�UZQFQBE�DPN�NBOBHJOH@DPNQVUFST���������TQMJU�

CSBJO�RVP�IUNM

146

https://www.youtube.com/watch?v=ElilYxUOjOQ
https://www.confluent.io/blog/configure-kafka-to-minimize-latency/
https://thehoard.blog/how-kafkas-storage-internals-work-3a29b02e026
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it/
https://techthoughts.typepad.com/managing_computers/2007/10/split-brain-quo.html

147

Yoda
Chubby: How to Design a Distributed Locking Service?

Chubby: Introduction

This lesson will introduce Chubby and its use cases.

We'll cover the following

• Goal

• What is Chubby?

• Chubby use cases
• Leader/master election

• Naming service (like DNS)

• Storage (small objects that rarely change)

• Distributed locking mechanism

• When not to use Chubby

• Background
• Chubby and Paxos

Goal #

Design a highly available and consistent service that can store small objects

and provide a locking mechanism on those objects.

What is Chubby? #

148

Chubby is a service that provides a distributed locking mechanism and also

stores small files. Internally, it is implemented as a key/value store that also

provides a locking mechanism on each object stored in it. It is extensively

used in various systems inside Google to provide storage and coordination

services for systems like GFS and BigTable. Apache ZooKeeper is the open-

source alternative to Chubby.

In sum, Chubby is a centralized service offering developer-friendly

interfaces (to acquire/release locks and create/read/delete small files).

Moreover, it does all this with just a few extra lines of code to any existing

application without a lot of modification to application logic.

Chubby use cases #

Primarily Chubby was developed to provide a reliable locking service. Over

time, some interesting uses of Chubby have evolved. Following are the top

use cases where Chubby is practically being used:

Leader/master election

Naming service (like DNS)

Storage (small objects that rarely change)

Distributed locking mechanism

Let’s look into these use cases in detail.

Leader/master election #

Any lock service can be seen as a consensus service, as it converts the

problem of reaching consensus to handing out locks. Basically, a set of

distributed applications compete to acquire a lock, and whoever gets the lock

first gets the resource. Similarly, an application can have multiple replicas

149

running and wants one of them to be chosen as the leader. Chubby can be

used for leader election among a set of replicas, e.g., the leader/master for

GFS and BigTable.

Chubby being used for leader election

Instance 1

Instance 2

Instance 3

Instance 4

Instance 5

Chubby Lock
Service

IsMaster()

IsMaster()

IsMaster()

IsMaster()

IsMaster()

Elected as Master

Application

Naming service (like DNS) #

It is hard to make faster updates to DNS due to its time-based caching nature,

which means there is generally a potential delay before the latest DNS

mapping is effective. As a result, chubby has replaced DNS inside Google as

the main way to discover servers.

150

Chubby as DNS

Chubby Lock
Service foo: 1.1.1.1

 bar: 2.2.2.2

Client
Application

IP(foo)

1.1.1.1

Storage (small objects that rarely change) #

Chubby provides a Unix-style interface to reliably store small files that do

not change frequently (complementing the service offered by GFS).

Applications can then use these files for any usage like DNS, configs, etc. GFS

and Bigtable store their metadata in Chubby. Some services use Chubby to

store ACL files.

Chubby as a storage service for small objects

Chubby Lock
Service lc/cell/foo: "my data"

Client App1 Create file
ls/cell/foo

Save
ls/cell/foo: "my data"

my data

Get ls/cell/foo

"my data"
Client App2 Get file

ls/cell/foo

 my data

Distributed locking mechanism #
151

Chubby provides a developer-friendly interface for coarse-grained

distributed locks (as opposed to fine-grained locks) to synchronize

distributed activities in a distributed environment. All an application needs

is a few code lines, and Chubby service takes care of all the lock management

so that developers can focus on application business logic. In other words,

we can say that Chubby provides mechanisms like semaphores and mutexes

for a distributed environment.

Chubby as a distributed locking service

Chubby Lock
Service lc/cell/foo: "my data"

[exclusive lock: App1]

App1
acquire(ls/cell/foo) lock(ls/cell/foo)

App2

successLock acquired

acquire(ls/cell/foo)

Lock denied

lock(ls/cell/foo)

failed

1 2

34

5 6

78

All these use cases are discussed in detail later.

At a high level, Chubby provides a framework for distributed consensus. All

the above-mentioned use cases have emerged from this core service.

When not to use Chubby #

Because of its design choices and proposed usage, Chubby should not be used

when:

Bulk storage is needed.

Data update rate is high.

Locks are acquired/released frequently.

Usage is more like a publish/subscribe model.

152

Background #

Chubby is neither really a research effort, nor does it claim to introduce any

new algorithms. Instead, chubby describes a certain design and

implementation done at Google in order to provide a way for its clients to

synchronize their activities and agree on basic information about their

environment. More precisely, at Google, it has become primary to implement

the above-mentioned use cases.

Chubby and Paxos #

Paxos (https://en.wikipedia.org/wiki/Paxos_(computer_science)) plays a

major role inside Chubby. Readers familiar with Distributed Computing

recognize that getting all nodes in a distributed system to agree on anything

(e.g., election of primary among peers) is basically a kind of distributed

consensus problem. Distributed consensus using Asynchronous

Communication is already solved by Paxos protocol, and Chubby actually

uses Paxos underneath to manage the state of the Chubby system at any

point in time.

153

https://en.wikipedia.org/wiki/Paxos_(computer_science)

Back

Mock Interview: Kafka

Next

High-level Architecture

Chubby uses Paxos to manage its system

P
A
X
O
S

Server

Server
(master)

Server

Server

Server

Local Storage

Local Storage

Local Storage

Local Storage

Local Storage

Chubby

154

High-level Architecture

This lesson gives a brief overview of Chubby’s architecture.

We'll cover the following

• Chubby common terms
• Chubby cell

• Chubby servers

• Chubby client library

• Chubby APIs
• General

• File

• Locking

• Sequencer

Chubby common terms #

Before digging deep into Chubby’s architecture, let’s first go through some of

its common terms:

Chubby cell #

A Chubby Cell basically refers to a Chubby cluster. Most Chubby cells are

confined to a single data center or machine room, though there can be a

Chubby cell whose replicas are separated by thousands of kilometers. A

single Chubby cell has two main components, server and client, that

communicate via remote procedure call (RPC).
155

Chubby servers #
A chubby cell consists of a small set of servers (typically 5) known as

replicas.

Using Paxos, one of the servers is chosen as the master who handles all

client requests. If the master fails, another server from replicas becomes

the master.

Each replica maintains a small database to store files/directories/locks.

The master writes directly to its own local database, which gets synced

asynchronously to all the replicas. That’s how Chubby ensures data

reliability and a smooth experience for clients even if the master fails.

For fault tolerance, Chubby replicas are placed on different racks.

Chubby client library #

Client applications use a Chubby library to communicate with the replicas in

the chubby cell using RPC.

Server

Server
(master)

Server

Server

Server

Chubby

RPC

Chubby
Library

Client
Application

Chubby
Library

Client
Application

. . .

RPC

156

Chubby client library connects to Chubby master using RPC

Chubby APIs #

Chubby exports a file system interface similar to POSIX but simpler. It

consists of a strict tree of files and directories in the usual way, with name

components separated by slashes.

File format: /ls/chubby_cell/directory_name/.../file_name

Where /ls refers to the lock service, designating that this is part of the

Chubby system, and chubby_cell is the name of a particular instance of a

Chubby system (the term cell is used in Chubby to denote an instance of the

system). This is followed by a series of directory names culminating in a

file_name .

A special name, /ls/local , will be resolved to the most local cell relative to

the calling application or service.

Chubby was originally designed as a lock service, such that every entity in it

will be a lock. But later, its creators realized that it is useful to associate a

small amount of data with each entity. Hence, each entity in Chubby can be

used for locking or storing a small amount of data or both, i.e., storing small

files with locks.

We can divide Chubby APIs into following groups:

General

File

Locking

Sequencer

General #
157

1. Open() : Opens a given named file or directory and returns a handle.

2. Close() : Closes an open handle.

3. Poison() : Allows a client to cancel all Chubby calls made by other

threads without fear of deallocating the memory being accessed by

them.

4. Delete() : Deletes the file or directory.

File #
1. GetContentsAndStat() : Returns (atomically) the whole file contents

and metadata associated with the file. This approach of reading the

whole file is designed to discourage the creation of large files, as it is not

the intended use of Chubby.

2. GetStat() : Returns just the metadata.

3. ReadDir() : Returns the contents of a directory – that is, names and

metadata of all children.

4. SetContents() : Writes the whole contents of a file (atomically).

5. SetACL() : Writes new access control list information

Locking #
1. Acquire() : Acquires a lock on a file.

2. TryAquire() : Tries to acquire a lock on a file; it is a non-blocking

variant of Acquire.

3. Release() : Releases a lock.

Sequencer #
1. GetSequencer() : Get the sequencer of a lock. A sequencer is a string

representation of a lock.

2. SetSequencer() : Associate a sequencer with a handle.

3. CheckSequencer() : Check whether a sequencer is valid.
158

Back

Chubby: Introduction

Next

Design Rationale

Chubby does not support operations like append, seek, move files between

directories, or making symbolic or hard links. Files can only be completely

read or completely written/overwritten. This makes it practical only for

storing very small files.

159

Design Rationale

Let's explore the rationale behind Chubby's architecture.

We'll cover the following

• Why was Chubby built as a service?

• Why coarse-grained locks?

• Why advisory locks?

• Why Chubby needs storage?

• Why does Chubby export a Unix-like �le system interface?

• High availability and reliability

Before we jump into further details and working of Chubby, it is important to

know the logic behind certain design decisions. These learnings can be

applied to other problems of similar nature.

Why was Chubby built as a service? #

Let’s first understand the reason behind building a service instead of having

a client library that only provides Paxos distributed consensus. A lock

service has some clear advantages over a client library:

Development becomes easy: Sometimes high availability is not

planned in the early phases of development. Systems start as a

prototype with little load and lose availability guarantees. As a service

matures and gains more clients, availability becomes important;

replication and primary election are then added to design. While this

160

could be done with a library that provides distributed consensus, a lock

server makes it easier to maintain the existing program structure and

communication patterns. For example, electing a leader requires adding

just a few lines of code. This technique is easier than making existing

servers participate in a consensus protocol, especially if compatibility

must be maintained during a transition period.

Lock-based interface is developer-friendly: Programmers are

generally familiar with locks. It is much easier to simply use a lock

service in a distributed system than getting involved in managing Paxos

protocol state locally, e.g., Acquire() , TryAcquire() , Release() .

Provide quorum & replica management: Distributed consensus

algorithms need a quorum to make a decision, so several replicas are

used for high availability. One can view the lock service as a way of

providing a generic electorate that allows a client application to make

decisions correctly when less than a majority of its own members are

up. Without such support from a service, each application needs to have

and manage its own quorum of servers.

Broadcast functionality: Clients and replicas of a replicated service

may wish to know when the service’s master changes; this requires an

event notification mechanism. Such a mechanism is easy to build if

there is a central service in the system.

The arguments above clearly show that building and maintaining a central

locking service abstracts away and takes care of a lot of complex problems

from client applications.

Why coarse-grained locks? #

161

Chubby locks usage is not expected to be fine-grained in which they might be

held for only a short period (i.e., seconds or less). For example, electing a

leader is not a frequent event. Following are some main reasons why Chubby

decided to only support coarse-grained locks:

Less load on lock server: Coarse-grained locks impose far less load on

the server as the lock acquisition rate is a lot less than the client’s

transaction rate.

Survive server failures: As coarse-grained locks are acquired rarely,

clients are not significantly delayed by the temporary unavailability of

the lock server. With fine-grained locks, even a brief unavailability of a

lock server would cause many clients to stall.

Fewer lock servers are needed: Coarse-grained locks allow many

clients to be adequately served by a modest number of lock servers with

somewhat lower availability.

Why advisory locks? #

Chubby locks are advisory, which means it is up to the application to honor

the lock. Chubby doesn’t make locked objects inaccessible to clients not

holding their locks. It is more like record keeping and allows the lock

requester to discover that lock is held. Holding a specific lock is neither

necessary to access the file, nor prevents others from doing so.

Other types of locks are mandatory locks, which make objects inaccessible to

clients not holding the lock. Chubby gave following reasons for not having

mandatory locks:

To enforce mandatory locking on resources implemented by other

services would require more extensive modification of these services.

162

Mandatory locks prevent users from accessing a locked file for

debugging or administrative purposes. If a file must be accessed, an

entire application would need to be shut down or rebooted to break the

mandatory lock.

Generally, a good developer practice is to write assertions such as

assert("Lock X is held") , so mandatory locks bring only little benefit

anyway.

Why Chubby needs storage? #

Chubby’s storage is important as client applications may need to advertise

Chubby’s results with others. For example, an application needs to store

some info to:

Advertise its selected primary (leader election use case)

Resolve aliases to absolute addresses (naming service use case)

Announce the scheme after repartitioning of data.

Not having a separate service for sharing the results reduces the number of

servers that clients depend on. Chubby’s storage requirements are really

simple. i.e., store a small amount of data (KBs) and limited operation support

(i.e., create/delete).

Why does Chubby export a Unix-like
file system interface? #

Recall that Chubby exports a file system interface similar to Unix but

simpler. It consists of a strict tree of files and directories in the usual way,

with name components separated by slashes.

163

File format: /ls/cell/remainder-path

The main reason why Chubby’s naming structure resembles a file system to

make it available to applications both with its own specialized API, and via

interfaces used by our other file systems, such as the Google File System. This

significantly reduced the effort needed to write basic browsing and

namespace manipulation tools, and reduced the need to educate casual

Chubby users. However, only a very limited number of operations can be

performed on these files, e.g., Create, Delete, etc.

Breaking down Chubby paths

ls/foo/bar/myFile

Prefix
The 'ls' prefix is common to all
Chubby paths and stands for

'lock service'.

Cell
The second component (foo) is the

name of the Chubby cell; it's
resolved to one or more Chubby

servers via DNS lookup.

Remainder
The remainder path

(/bar/myFile) is interpreted
within the Chubby cell.

High availability and reliability #

As proved by CAP theorem

(https://www.educative.io/collection/page/5668639101419520/5559029852536

832/5998984290631680), no application can be highly available, strongly

consistent, and high-performing at the same time. Due to the nature of

Chubby’s expected use cases, Chubby compromises on performance in favor

of availability and consistency.

164

https://www.educative.io/collection/page/5668639101419520/5559029852536832/5998984290631680

Back

High-level Architecture

Next

How Chubby Works

165

How Chubby Works

Let’s learn how Chubby works.

We'll cover the following

• Service initialization

• Client initialization

• Leader election example using Chubby

• Sample pseudocode for leader election

Service initialization #

Upon initialization, Chubby performs the following steps:

A master is chosen among Chubby replicas using Paxos.

Current master information is persisted in storage, and all replicas

become aware of the master.

Client initialization #

Upon initialization, a Chubby client performs the following steps:

Client contacts the DNS to know the listed Chubby replicas.

Client calls any Chubby server directly via Remote Procedure Call (RPC).

If that replica is not the master, it will return the address of the current

master.

166

Once the master is located, the client maintains a session with it and

sends all requests to it until it indicates that it is not the master anymore

or stops responding.

Chubby high-level architecture

Server
(2.2.2.2)

Server
(master)
(3.3.3.3)

Server
(1.1.1.1)

Server
(4.4.4.4)

Server
(5.5.5.5)

Chubby

Chubby
Library

Client
Application master?

DNS

chubby.foo.com?
4.4.4.4

3.3.3.3

session

1

2

3

4

5

Leader election example using Chubby
#

Let’s take an example of an application that uses Chubby to elect a single

master from a bunch of instances of the same application.

Once the master election starts, all candidates attempt to acquire a Chubby

lock on a file associated with the election. Whoever acquires the lock first

becomes the master. The master writes its identity on the file, so that other

processes know who the current master is.

167

Chubby
Library

App
Instance 1

isMaster()

false

Chubby leader ls/cell/foo
[locked by App Instance 3]

acquire(ls/cell/foo)

deny

Chubby
Library

App
Instance 2

isMaster()

false

acquire(ls/cell/foo)

deny

Chubby
Library

App
Instance 3

isMaster()

true

acquire(ls/cell/foo)

success

Sample pseudocode for leader election #

The pseudocode below shows how easy it is to add leader election logic to

existing applications with just a few additional code lines.

168

Back

Design Rationale

Next

File, Directories, and Handles

/* Create these files in Chubby manually once.
Usually there are at least 3-5 required for minimum quorum require
ment. */
lock_file_paths = {
 "ls/cell1/foo",
 "ls/cell2/foo",
 "ls/cell3/foo",
 }

Main() {
 // Initialize Chubby client library.
 chubbyLeader = newChubbyLeader(lock_file_paths)

 // Establish client's connection with Chubby service.
 chubbyLeader.Start()

 // Waiting to become the leader.
 chubbyLeader.Wait()

 // Becomes Leader
 Log("Is Leader: " + chubbyLeader.isLeader ())

 While(chubbyLeader.renewLeader ()) {
 // Do work
 }
 // Not leader anymore.
}

169

File, Directories, and Handles

Let's explore how Chubby works with �les, directories, and
handles.

We'll cover the following

• Nodes

• Metadata

• Handles

Chubby file system interface is basically a tree of files and directories, where

each directory contains a list of child files and directories. Each file or

directory is called a node.

ls

us eu asia

foo.txt bar.txt wa info.txt

config.xml

Chubby �le system

Nodes #
170

Any node can act as an advisory reader/writer lock.

Nodes may either be ephemeral or permanent.

Ephemeral files are used as temporary files, and act as an indicator to

others that a client is alive.

Ephemeral files are also deleted if no client has them open.

Ephemeral directories are also deleted if they are empty.

Any node can be explicitly deleted.

Metadata #

Metadata for each node includes Access Control Lists (ACLs), four

monotonically increasing 64-bit numbers, and a checksum.

ACLs are used to control reading, writing, and changing the ACL names for

the node.

Node inherits the ACL names of its parent directory on creation.

ACLs themselves are files located in an ACL directory, which is a well-

known part of the cell’s local namespace.

Users are authenticated by a mechanism built into the RPC system.

Monotonically increasing 64-bit numbers: These numbers allow clients to

detect changes easily.

An instance number: This is greater than the instance number of any

previous node with the same name.

A content generation number (files only): This is incremented every

time a file’s contents are written.

A lock generation number: This is incremented when the node’s lock

transitions from free to held.

171

Back

How Chubby Works

Next

Locks, Sequencers, and Lock-delays

An ACL generation number: This is incremented when the node’s ACL

names are written.

Checksum: Chubby exposes a 64-bit file-content checksum so clients may tell

whether files differ.

Handles #

Clients open nodes to obtain handles (that are analogous to UNIX file

descriptors). Handles include:

Check digits: Prevent clients from creating or guessing handles, so full

access control checks are performed only when handles are created.

A sequence number: Enables a master to tell whether a handle was

generated by it or by a previous master.

Mode information (provided at open time): Enables the master to

recreate its state if an old handle is presented to a newly restarted

leader.

172

Locks, Sequencers, and Lock-delays

Let's explore how Chubby implements Locks and Sequencers.

We'll cover the following

• Locks

• Sequencer

• Lock-delay

Locks #

Each chubby node can act as a reader-writer lock in one of the following two

ways:

Exclusive: One client may hold the lock in exclusive (write) mode.

Shared: Any number of clients may hold the lock in shared (reader)

mode.

Sequencer #

With distributed systems, receiving messages out of order is a problem;

Chubby uses sequence numbers to solve this problem. After acquiring a lock

on a file, a client can immediately request a ‘Sequencer,’ which is an opaque

byte string describing the state of the lock:

173

Sequencer = Name of the lock + Lock mode (exclusive or shared) +

Lock generation number

An application’s master server can generate a sequencer and send it with

any internal order to other servers. Application servers that receive orders

from a primary can check with Chubby if the sequencer is still good and does

not belong to a stale primary (to handle the ‘Brain split’ scenario).

Application master generating a sequencer and passing it to worker servers

Chubby leader

Application server
(master)

Application servers (workers)
S

S

S
S

GetSequencer()

S (se
quencer)

Lock-delay #

For file servers that do not support sequencers, Chubby provides a lock-delay

period to protect against message delays and server restarts.

174

Back

File, Directories, and Handles

Next

Sessions and Events

If a client releases a lock in the normal way, it is immediately available for

other clients to claim, as one would expect. However, if a lock becomes free

because the holder has failed or become inaccessible, the lock server will

prevent other clients from claiming the lock for a period called the lock-

delay.

Clients may specify any lock-delay up to some bound, defaults to one

minute. This limit prevents a faulty client from making a lock (and thus

some resource) unavailable for an arbitrarily long time.

While imperfect, the lock-delay protects unmodified servers and clients

from everyday problems caused by message delays and restarts.

175

Sessions and Events

This lesson will explain Chubby sessions and what different
Chubby events are.

We'll cover the following

• What is a Chubby session?

• Session protocol

• What is KeepAlive?

• Session optimization

• Failovers

What is a Chubby session? #

A Chubby session is a relationship between a Chubby cell and a Chubby

client.

It exists for some interval of time and is maintained by periodic

handshakes called KeepAlives.

Client’s handles, locks, and cached data only remain valid provided its

session remains valid.

Session protocol #

Client requests a new session on first contacting the master of Chubby

cell.

176

A session ends if the client ends it explicitly or it has been idle. A session

is considered idle if there are no open handles and calls for a minute.

Each session has an associate lease, which is a time interval during

which the master guarantees to not terminate the session unilaterally.

The end of this interval is called ‘session lease timeout.’

The master advances the ‘session lease timeout’ in the following three

circumstances:

On session creation

When a master failover occurs

When the master responds to a KeepAlive RPC from the client

What is KeepAlive? #

KeepAlive is basically a way for a client to maintain a constant session with

Chubby cell. Following are basic steps of responding to a KeepAlive:

On receiving a KeepAlive (step “1” in the diagram below), the master

typically blocks the RPC (does not allow it to return) until the client’s

previous lease interval is close to expiring.

The master later allows the RPC to return to the client (step “2”) and

thus informs the client of the new lease timeout (lease M2).

The master may extend the timeout by any amount. The default

extension is 12s, but an overloaded master may use higher values to

reduce the number of KeepAlive calls it must process. Note the

difference between the lease timeout of the client and the master (M1

vs. C1 and M2 vs. C2).

The client initiates a new KeepAlive immediately after receiving the

previous reply. Thus, the client ensures that there is almost always a

KeepAlive call blocked at the master.

177

In the diagram below, thick arrows represent lease sessions, upward arrows

are KeepAlive requests, and downward arrows are KeepAlive responses. We

will discuss this diagram in detail in the next two sections.

Client maintaining a session with Chubby cell through KeepAlive

6

72

4 8

5

old master lease M1

lease M2

lease C1

lease C2

block RPC

lease M3

lease C3

new master

jeopardy

grace period

KeepAlives

cilent

old master dies new master elected

1 3

safe

no master

Session optimization #

Piggybacking events: KeepAlive reply is used to transmit events and cache

invalidations back to the client.

Local lease: The client maintains a local lease timeout that is a conservative

approximation of the master’s lease timeout.

Jeopardy: If a client’s local lease timeout expires, it becomes unsure whether

the master has terminated its session. The client empties and disables its

cache, and we say that its session is in jeopardy.

Grace period: When a session is in jeopardy, the client waits for an extra

time called the grace period - 45s by default. If the client and master manage

to exchange a successful KeepAlive before the end of client’s grace period,

178

the client enables its cache once more. Otherwise, the client assumes that the

session has expired.

Failovers #

The failover scenario happens when a master fails or otherwise loses

membership. Following is the summary of things that happen in case of a

master failover:

The failing master discards its in-memory state about sessions, handles,

and locks.

Session lease timer is stopped. This means no lease is expired during the

time when the master failover is happening. This is equivalent to lease

extension.

If master election occurs quickly, the clients contact and continue with

the new master before the client’s local lease expires.

If the election is delayed, the clients flush their caches (= jeopardy) and

wait for the “grace period” (45s) while trying to find the new master.

Let’s look at an example of failover in detail.

6

72

4 8

5

old master lease M1

lease M2

lease C1

lease C2

block RPC

lease M3

lease C3

new master

jeopardy

grace period

KeepAlives

cilent

old master dies new master elected

1 3

safe

no master

179

Back Next

Chubby master failover

1. Client has lease M1 (& local lease C1) with master and pending

KeepAlive request.

2. Master starts lease M2 and replies to the KeepAlive request.

3. Client extends the local lease to C2 and makes a new KeepAlive call.

Master dies before replying to the next KeepAlive. So, no new leases can

be assigned. Client’s C2 lease expires, and the client library flushes its

cache and informs the application that it has entered jeopardy. The

grace period starts on the client.

4. Eventually, a new master is elected and initially uses a conservative

approximation M3 of the session lease that its predecessor may have

had for the client. Client sends KeepAlive to new master (4).

5. The first KeepAlive request from the client to the new master is rejected

(5) because it has the wrong master epoch number (described in the

next section).

6. Client retries with another KeepAlive request.

7. Retried KeepAlive succeeds. Client extends its lease to C3 and optionally

informs the application that its session is no longer in jeopardy (session

is in the safe mode now).

8. Client makes a new KeepAlive call, and the normal protocol works from

this point onwards.

9. Because the grace period was long enough to cover the interval between

the end of lease C2 and the beginning of lease C3, the client saw nothing

but a delay. If the grace period was less than that interval, the client

would have abandoned the session and reported the failure to the

application.

180

Master Election and Chubby Events

This lesson will explain what actions a newly elected master
performs. Additionally, we will look into different Chubby events.

We'll cover the following

• Initializing a newly elected master

• Chubby events

Initializing a newly elected master #

A newly elected master proceeds as follows:

1. Picks epoch number: It first picks up a new client epoch number to

differentiate itself from the previous master. Clients are required to

present the epoch number on every call. The master rejects calls from

clients using older epoch numbers. This ensures that the new master

will not respond to a very old packet that was sent to the previous

master.

2. Responds to master-location requests but does not respond to session-

related operations yet.

3. Build in-memory data structures:

It builds in-memory data structures for sessions and locks that are

recorded in the database.

Session leases are extended to the maximum that the previous

master may have been using.

181

4. Let clients perform KeepAlives but no other session-related

operations at this point.

5. Emits a failover event to each session: This causes clients to flush

their caches (because they may have missed invalidations) and warn

applications that other events may have been lost.

6. Wait: The master waits until each session acknowledges the failover

event or lets its session expire.

7. Allow all operations to proceed.

8. Honor older handles by clients: If a client uses a handle created prior

to the failover, the master recreates the in-memory representation of

the handle and honors the call.

9. Deletes ephemeral files: After some interval (a minute), the master

deletes ephemeral files that have no open file handles. Clients should

refresh handles on ephemeral files during this interval after a failover.

Chubby events #

Chubby supports a simple event mechanism to let its clients subscribe to a

variety of events. Events are delivered to the client asynchronously via

callbacks from the Chubby library. Clients subscribe to a range of events

while creating a handle. Here are examples of such events:

File contents modified

Child node added, removed, or modified

Chubby master failed over

A handle (and its lock) has become invalid.

Lock acquired

Conflicting lock request from another client

Additionally, the client sends the following session events to the application:

182

Back

Sessions and Events

Next

Caching

Jeopardy: When session lease timeout and grace period begins.

Safe: When a session is known to have survived a communication

problem

Expired: If the session times out

183

Caching

Let's learn how Chubby implements its cache.

We'll cover the following

• Chubby cache

• Cache invalidation

Chubby cache #

In Chubby, caching plays an important role, as read requests greatly

outnumber write requests. To reduce read traffic, Chubby clients cache file

contents, node metadata, and information on open handles in a consistent,

write-through cache in the client’s memory. Because of this caching, Chubby

must maintain consistency between a file and a cache as well as between the

different replicas of the file. Chubby clients maintain their cache by a lease

mechanism and flush the cache when the lease expires.

Cache invalidation #

Below is the protocol for invalidating the cache when file data or metadata is

changed:

Master receives a request to change file contents or node metadata.

Master blocks modification and sends cache invalidations to all clients

who have cached it. For this, the master must maintain a list of each

client’s cache contents.
184

For efficiency, the invalidation requests are piggybacked onto KeepAlive

replies from the master.

Clients receive the invalidation signal, flushes the cache, and sends an

acknowledgment to the master with its next KeepAlive call.

Once acknowledgments are received from each active client, the master

proceeds with the modification. The master updates its local database

and sends an update request to the replicas.

After receiving acknowledgments from the majority of replicas in the

cell, the master sends an acknowledgment to the client who initiated the

write.

Cache invalidation

App Instance
1

Chubby leader

Cache
ls/us/cfg

ack

invalidate ls/us/cfg

App Instance
2

update ls/us/cfg

success

App Instance
3

invalidate ls/us/cfg

ack

Cache
ls/us/cfg

1

2

2

3

3

4

4

5

Question: While the master is waiting for acknowledgments, are other

clients allowed to read the file?

185

Back

Master Election and Chubby Events

Next

Database

Answer: During the time the master is waiting for the acknowledgments

from clients, the file is treated as ‘uncachable.’ This means that the clients

can still read the file but will not cache it. This approach ensures that reads

always get processed without any delay. This is useful because reads

outnumber writes.

Question: Are clients allowed to cache locks? If yes, how is it used?

Answer: Chubby allows its clients to cache locks, which means the client can

hold locks longer than necessary, hoping that they can be used again by the

same client.

Question: Are clients allowed to cache open handles?

Answer: Chubby allows its clients to cache open handles. This way, if a client

tries to open a file it has opened previously, only the first open() call goes to

the master.

186

Database

Let's learn how Chubby uses a database for storage.

We'll cover the following

• Backup

• Mirroring

Initially, Chubby used a replicated version of Berkeley DB

(https://www.usenix.org/legacy/event/usenix99/full_papers/olson/olson.pdf)

to store its data. Later, the Chubby team felt that using Berkeley DB exposes

Chubby to more risks, so they decided to write a simplified custom database

with the following characteristics:

Simple key/value database using write-ahead logging and snapshotting.

Atomic operations only and no general transaction support.

Database log is distributed among replicas using Paxos.

Backup #

For recovery in case of failure, all database transactions are stored in a

transaction log (a write-ahead log). As this transaction log can become very

large over time, every few hours, the master of each Chubby cell writes a

snapshot of its database to a GFS server in a different building. The use of a

separate building ensures both that the backup will survive building

damage, and that the backups introduce no cyclic dependencies in the

system; a GFS cell in the same building potentially might rely on the Chubby

cell for electing its master.
187

https://www.usenix.org/legacy/event/usenix99/full_papers/olson/olson.pdf

Once a snapshot is taken, the previous transaction log is deleted.

Therefore, at any time, the complete state of the system is determined

by the last snapshot together with the set of transactions from the

transaction log.

Backup databases are used for disaster recovery and to initialize the

database of a newly replaced replica without placing a load on other

replicas.

Mirroring #

Mirroring is a technique that allows a system to automatically maintain

multiple copies.

Chubby allows a collection of files to be mirrored from one cell to

another.

Mirroring is commonly used to copy configuration files to various

computing clusters distributed around the world.

Mirroring is fast because the files are small.

Event mechanism informs immediately if a file is added, deleted, or

modified.

Usually, changes are reflected in dozens of mirrors worldwide under a

second.

Unreachable mirror remains unchanged until connectivity is restored.

Updated files are then identified by comparing their checksums.

A special “global” cell subtree /ls/global/master that is mirrored to

the subtree /ls/cell/replica in every other Chubby cell.

Global cell is special because its replicas are located in widely separated

parts of the world. Global cell is used for:

Chubby’s own access control lists (ACLs).

188

Back

Caching

Next

Scaling Chubby

Various files in which Chubby cells and other systems advertise

their presence to monitoring services.

Pointers to allow clients to locate large data sets such as Bigtable

cells, and many configuration files for other systems.

189

Scaling Chubby

This lesson will explain different techniques that Chubby uses
for scaling.

We'll cover the following

• Proxies

• Partitioning

• Learnings

Chubby’s clients are individual processes, so Chubby handles more clients

than expected. At Google, 90,000+ clients communicating with a single

Chubby server is one such example. The following techniques have been

used to reduce the communication with the master:

Minimize Request Rate: Create more chubby cells so that clients almost

always use a nearby cell (found with DNS) to avoid reliance on remote

machines.

Minimize KeepAlives load: KeepAlives are by far the dominant type of

request; increasing the client lease time (from 12s to 60s) results in less

load on KeepAlive.

Caching: Chubby clients cache file data, metadata, handles, and any

absences of files.

Simplified protocol-conversions: Add servers that translate the

Chubby protocol into a less complicated protocol. Proxies and

partitioning are two such examples that help Chubby scale further and

are discussed below.

190

Proxies #

A proxy is an additional server that can act on behalf of the actual server.

Chubby proxies

Server

Server
(master)

Server

Server
(4.4.4.4)

Server
(5.5.5.5)

Chubby

Client

Client

Client

Client

Clients

Proxy

Proxy

Proxy

External
Proxies

All reads and keep-
alives are served from

proxy.

All writes and first-time
reads go to the master.

Replicas can be
used as internal

proxies.

A Chubby proxy can handle KeepAlives and read requests. If a proxy handles

‘N ’ clients, KeepAlive traffic is reduced by a factor of ‘N .’ All writes and

first-time reads pass through the cache to reach the master. This means that

proxy adds an additional RPC for writes and first-time reads. This is

acceptable as Chubby is a read-heavy service.

Partitioning #

191

Chubby’s interface (files & directories) was designed such that namespaces

can easily be partitioned between multiple Chubby cells if needed. This

would result in reduced read/write traffic for any partition, for example:

ls/cell/foo and everything in it, can be served by one Chubby cell,

and

ls/cell/bar and everything in it, can be served by another Chubby cell

There are some scenarios in which partitioning does not improve:

When a directory is deleted, a cross partition call might be required.

Partition does not necessarily reduce the KeepAlive traffic.

Since ACLs can be stored in one partition only, so a cross partition call

might be required to check for ACLs.

Learnings #

Lack of aggressive caching: Initially, clients were not caching the absence

of files or open file handles. An abusive client could write loops that retry

indefinitely when a file is not present or poll a file by opening it and closing

it repeatedly when one might expect they would open the file just once.

Chubby educated its users to make use of aggressive caching for such

scenarios.

Lack of quotas: Chubby was never intended to be used as a storage system

for large amounts of data, so it has no storage quotas. In hindsight, this was

naive. To handle this, Chubby later introduced a limit on file size

(256kBytes).

Publish/subscribe: There have been several attempts to use Chubby’s event

mechanism as a publish/subscribe system. Chubby is a strongly consistent

system, and the way it maintains a consistent cache makes it a slow and

192

Back

Database

Next

Summary: Chubby

inefficient choice for publish/subscribe. Chubby developers caught and

stopped such uses early on.

Developers rarely consider availability: Developers generally fail to think

about failure probabilities and wrongly assume that Chubby will always be

available. Chubby educated its clients to plan for short Chubby outages so

that it has little or no effect on their applications.

193

Summary: Chubby

Here is a quick summary of Chubby for you!

We'll cover the following

• Summary

• System design patterns

• References and further reading

Summary #

���$IVCCZ�JT�B�EJTUSJCVUFE�MPDL�TFSWJDF�VTFE�JOTJEF�(PPHMF�TZTUFNT�

���*U�QSPWJEFT�DPBSTF�HSBJOFE�MPDLJOH�	GPS�IPVST�PS�EBZT
�BOE�JT�OPU

SFDPNNFOEFE�GPS�GJOF�HSBJOFE�MPDLJOH�	GPS�TFDPOET
�TDFOBSJPT��%VF�UP

UIJT�OBUVSF�JU�JT�NPSF�TVJUFE�GPS�IJHI�SFBE�BOE�SBSF�XSJUF�TDFOBSJPT�

���$IVCCZÇT�QSJNBSZ�VTF�DBTFT�JODMVEF�OBNJOH�TFSWJDF�MFBEFS�FMFDUJPO

TNBMM�GJMFT�TUPSBHF�BOE�EJTUSJCVUFE�MPDLT�

���"�$IVCCZ�$FMM�CBTJDBMMZ�SFGFST�UP�B�$IVCCZ�DMVTUFS��"�DIVCCZ�DFMM�IBT

NPSF�UIBO�POF�TFSWFS�	UZQJDBMMZ�����BU�MFBTU
�LOPXO�BT�SFQMJDBT�

���6TJOH�1BYPT�POF�TFSWFS�JT�DIPTFO�BT�UIF�NBTUFS�BU�BOZ�QPJOU�BOE

IBOEMFT�BMM�UIF�SFRVFTUT��*G�UIF�NBTUFS�GBJMT�BOPUIFS�TFSWFS�GSPN�SFQMJDBT

CFDPNFT�UIF�NBTUFS�

���&BDI�SFQMJDB�NBJOUBJOT�B�TNBMM�EBUBCBTF�UP�TUPSF�GJMFT�EJSFDUPSJFT�MPDLT�

.BTUFS�EJSFDUMZ�XSJUFT�UP�JUT�PXO�MPDBM�EBUBCBTF�XIJDI�HFUT�TZODFE

BTZODISPOPVTMZ�UP�BMM�UIF�SFQMJDBT�GPS�GBVMU�UPMFSBODF�

194

���$MJFOU�BQQMJDBUJPOT�VTF�B�$IVCCZ�MJCSBSZ�UP�DPNNVOJDBUF�XJUI�UIF

SFQMJDBT�JO�UIF�DIVCCZ�DFMM�VTJOH�31$�

���-JLF�6OJY�$IVCCZ�GJMF�TZTUFN�JOUFSGBDF�JT�CBTJDBMMZ�B�USFF�PG�GJMFT��

EJSFDUPSJFT�	DPMMFDUJWFMZ�DBMMFE�OPEFT
�XIFSF�FBDI�EJSFDUPSZ�DPOUBJOT�B

MJTU�PG�DIJME�GJMFT�BOE�EJSFDUPSJFT�

���-PDLT��&BDI�OPEF�DBO�BDU�BT�BO�BEWJTPSZ�SFBEFS�XSJUFS�MPDL�JO�POF�PG�UIF

GPMMPXJOH�UXP�XBZT�

&YDMVTJWF��0OF�DMJFOU�NBZ�IPME�UIF�MPDL�JO�FYDMVTJWF�	XSJUF
�NPEF�

4IBSFE��"OZ�OVNCFS�PG�DMJFOUT�NBZ�IPME�UIF�MPDL�JO�TIBSFE�	SFBEFS

NPEF�

����&QIFNFSBM�OPEFT�BSF�VTFE�BT�UFNQPSBSZ�GJMFT�BOE�BDU�BT�BO�JOEJDBUPS�UP

PUIFST�UIBU�B�DMJFOU�JT�BMJWF��&QIFNFSBM�OPEFT�BSF�BMTP�EFMFUFE�JG�OP�DMJFOU

IBT�UIFN�PQFO��&QIFNFSBM�EJSFDUPSJFT�BSF�BMTP�EFMFUFE�JG�UIFZ�BSF�FNQUZ�

����.FUBEBUB��.FUBEBUB�GPS�FBDI�OPEF�JODMVEFT�"DDFTT�$POUSPM�-JTUT�	"$-T

NPOPUPOJDBMMZ�JODSFBTJOH����CJU�OVNCFST�BOE�DIFDLTVN�

����&WFOUT��$IVCCZ�TVQQPSUT�B�TJNQMF�FWFOU�NFDIBOJTN�UP�MFU�JUT�DMJFOUT

TVCTDSJCF�GPS�B�WBSJFUZ�PG�FWFOUT�GPS�GJMFT�TVDI�BT�B�MPDL�CFJOH�BDRVJSFE

PS�B�GJMF�CFJOH�FEJUFE�

����$BDIJOH��5P�SFEVDF�SFBE�USBGGJD�$IVCCZ�DMJFOUT�DBDIF�GJMF�DPOUFOUT�OPEF

NFUBEBUB�BOE�JOGPSNBUJPO�PO�PQFO�IBOEMFT�JO�B�DPOTJTUFOU�XSJUF�

UISPVHI�DBDIF�JO�UIF�DMJFOUÇT�NFNPSZ�

����4FTTJPOT��$MJFOUT�NBJOUBJO�TFTTJPOT�CZ�TFOEJOH�,FFQ"MJWF�31$T�UP

$IVCCZ��5IJT�DPOTUJUVUFT�BCPVU�����PG�UIF�FYBNQMF�$IVCCZ�DMVTUFSÇT

SFRVFTUT�

����#BDLVQ��&WFSZ�GFX�IPVST�UIF�NBTUFS�PG�FBDI�$IVCCZ�DFMM�XSJUFT�B

TOBQTIPU�PG�JUT�EBUBCBTF�UP�B�('4�GJMF�TFSWFS�JO�B�EJGGFSFOU�CVJMEJOH�

����.JSSPSJOH��$IVCCZ�BMMPXT�B�DPMMFDUJPO�PG�GJMFT�UP�CF�NJSSPSFE�GSPN�POF

DFMM�UP�BOPUIFS��.JSSPSJOH�JT�VTFE�NPTU�DPNNPOMZ�UP�DPQZ�DPOGJHVSBUJPO

GJMFT�UP�WBSJPVT�DPNQVUJOH�DMVTUFST�EJTUSJCVUFE�BSPVOE�UIF�XPSME�

195

System design patterns #

)FSF�JT�B�TVNNBSZ�PG�TZTUFN�EFTJHO�QBUUFSOT�VTFE�JO�$IVCCZ�

8SJUF�"IFBE�-PH��'PS�GBVMU�UPMFSBODF�BOE�UP�IBOEMF�B�NBTUFS�DSBTI�BMM

EBUBCBTF�USBOTBDUJPOT�BSF�TUPSFE�JO�B�USBOTBDUJPO�MPH�

2VPSVN��5P�FOTVSF�TUSPOH�DPOTJTUFODZ�$IVCCZ�NBTUFS�TFOET�BMM�XSJUF

SFRVFTUT�UP�UIF�SFQMJDBT��"GUFS�SFDFJWJOH�BDLOPXMFEHNFOUT�GSPN�UIF

NBKPSJUZ�PG�SFQMJDBT�JO�UIF�DFMM�UIF�NBTUFS�TFOET�BO�BDLOPXMFEHNFOU�UP

UIF�DMJFOU�XIP�JOJUJBUFE�UIF�XSJUF�

(FOFSBUJPO�DMPDL��5P�EJTSFHBSE�SFRVFTUT�GSPN�UIF�QSFWJPVT�NBTUFS

FWFSZ�OFXMZ�FMFDUFE�NBTUFS�JO�$IVCCZ�VTFT�Æ&QPDI�OVNCFSÇ�XIJDI�JT

TJNQMZ�B�NPOPUPOJDBMMZ�JODSFBTJOH�OVNCFS�UP�JOEJDBUF�B�TFSWFSÇT

HFOFSBUJPO��5IJT�NFBOT�JG�UIF�PME�NBTUFS�IBE�BO�FQPDI�OVNCFS�PG�Æ�Ç�UIF

OFX�POF�XPVME�IBWF�Æ�Ç��5IJT�FOTVSFT�UIBU�UIF�OFX�NBTUFS�XJMM�OPU

SFTQPOE�UP�BOZ�PME�SFRVFTU�XIJDI�XBT�TFOU�UP�UIF�QSFWJPVT�NBTUFS�

-FBTF��$IVCCZ�DMJFOUT�NBJOUBJO�B�UJNF�CPVOE�TFTTJPO�MFBTF�XJUI�UIF

NBTUFS��%VSJOH�UIJT�UJNF�JOUFSWBM�UIF�NBTUFS�HVBSBOUFFT�UP�OPU

UFSNJOBUF�UIF�TFTTJPO�VOJMBUFSBMMZ�

References and further reading #

$IVCCZ�QBQFS�	IUUQT���SFTFBSDI�HPPHMF�QVCT�QVC������

$IVCCZ�BSDIJUFDUVSF�WJEFP�	IUUQT���XXX�ZPVUVCF�DPN�XBUDI

W�1R*UVF#BJ3H

$IVCCZ�WT��;PP,FFQFS�	IUUQT���XXX�ZPVUVCF�DPN�XBUDI

W�[PLX+FVL%S*

196

https://research.google/pubs/pub27897/
https://www.youtube.com/watch?v=PqItueBaiRg
https://www.youtube.com/watch?v=zokwJeukDrI

Back

Scaling Chubby

Next

Quiz: Chubby

)JFSBSDIJDBM�$IVCCZ�	IUUQT���XXX�TDT�TUBOGPSE�FEV���BV�

DT���C�MBCT�QSPKFDUT�CPIO@EBVUFSNBO�QEG

#JHUBCMF�	IUUQT���SFTFBSDI�HPPHMF�QVCT�QVC������

(PPHMF�'JMF�4ZTUFN�	IUUQT���SFTFBSDI�HPPHMF�QVCT�QVC���

197

https://www.scs.stanford.edu/17au-cs244b/labs/projects/bohn_dauterman.pdf
https://research.google/pubs/pub27898/
https://research.google/pubs/pub51/

198

Yoda
GFS: How to Design a Distributed File Storage System?

Google File System: Introduction

Let’s explore Google File System and its use cases.

We'll cover the following

• Goal

• What is Google File System (GFS)?

• Background

• GFS use cases

• APIs

Goal #

Design a distributed file system to store huge files (terabyte and larger). The

system should be scalable, reliable, and highly available.

What is Google File System (GFS)? #

GFS is a scalable distributed file system developed by Google for its large

data-intensive applications.

Background #

GFS was built for handling batch processing on large data sets and is

designed for system-to-system interaction, not user-to-system interaction.

199

Google built GFS keeping the following goals in mind:

Scalable: GFS should run reliably on a very large system built from

commodity hardware.

Fault-tolerant: The design must be sufficiently tolerant of hardware

and software failures to enable application-level services to continue

their operation in the face of any likely combination of failure

conditions.

Large files: Files stored in GFS will be huge. Multi-GB files are common.

Large sequential and small random reads: The workloads primarily

consist of two kinds of reads: large, streaming reads and small, random

reads.

Sequential writes: The workloads also have many large, sequential

writes that append data to files. Typical operation sizes are similar to

those for reads. Once written, files are seldom modified again.

Not optimized for small data: Small, random reads and writes do

occur and are supported, but the system is not optimized for such cases.

Concurrent access: The level of concurrent access will also be high,

with large numbers of concurrent appends being particularly prevalent,

often accompanied by concurrent reads.

High throughput: GFS should be optimized for high and sustained

throughput in reading the data, and this is prioritized over latency. This

is not to say that latency is unimportant; rather, GFS needs to be

optimized for high-performance reading and appending large volumes

of data for the correct operation of the system.

GFS use cases #

GFS is a distributed file system built for large, distributed data-intensive

applications like Gmail or YouTube.

200

Back

Mock Interview: Chubby

Next

High-level Architecture

Originally, it was built to store data generated by Google’s large

crawling and indexing system.

Google’s BigTable uses the distributed Google File System to store log

and data files.

APIs #

GFS does not provide standard POSIX-like APIs; instead, user-level APIs are

provided. In GFS, files are organized hierarchically in directories and

identified by their pathnames. GFS supports the usual file system operations:

create – To create a new instance of a file.

delete – To delete an instance of a file.

open – To open a named file and return a handle.

close – To close a given file specified by a handle.

read – To read data from a specified file and offset.

write – To write data to a specified file and offset.

In addition, GFS supports two special operations:

Snapshot: A snapshot is an efficient way of creating a copy of the

current instance of a file or directory tree.

Append: An append operation allows multiple clients to append data to

the same file concurrently while guaranteeing atomicity. It is useful for

implementing multi-way merge results and producer-consumer queues

that many clients can simultaneously append to without additional

locking.

201

High-level Architecture

This lesson gives a brief overview of GFS’s architecture.

We'll cover the following

• Chunks

• Chunk handle

• Cluster

• ChunkServer

• Master

• Client

A GFS cluster consists of a single master and multiple ChunkServers and is

accessed by multiple clients.

Chunks #

As files stored in GFS tend to be very large, GFS breaks files into multiple

fixed-size chunks where each chunk is 64 megabytes in size.

Chunk handle #

Each chunk is identified by an immutable and globally unique 64-bit ID

number called chunk handle. This allows for 2 unique chunks. If each

chunk is 64 MB, total storage space would be more than 10 exa-bytes.

64

9

202

As files are split into chunks, therefore, the job of GFS is to provide a

mapping from files to chunks, and then to support standard operations on

files, mapping down to operations on individual chunks.

Cluster #

GFS is organized into a simple network of computers called a cluster. All GFS

clusters contain three kinds of entities:

1. A single master server

2. Multiple ChunkServers

3. Many clients

The master stores all metadata about the system, while the ChunkServers

store the real file data.

GFS high-level architecture

Metadata

GFS Master server
Client

GFS Client
Library

Metadata request

Metadata response

Read/Write request

Read/Write response

. . .

Instructions to ChunkServers

ChunkServer

Chunk ChunkChunk

Linux File System

...

ChunkServer

Chunk ChunkChunk

Linux File System

...

ChunkServer

Chunk ChunkChunk

Linux File System

...

ChunkServer #
203

ChunkServers store chunks on local disks as regular Linux files and read or

write chunk data specified by a chunk handle and byte-range.

For reliability, each chunk is replicated to multiple ChunkServers. By default,

GFS stores three replicas, though different replication factors can be

specified on a per-file basis.

Chunk replication

GFS Master server

1

c1, c3, c4
2

c2, c3, c4
3

c1, c2, c4
4

c1, c2, c4
5

c1, c3, c4

 /user/foo/f1

 /user/bar/f1

File metadata:

c1

Linux File System

1 3 54

c2

Linux File System

2 3 4

c3

Linux File System

1 2 5

c4

Linux File System

1 2 3 4 5

File with three chunks

File with two chunks

replication factor = 3

Chunk Handle

Replica ChunkServers

ChunkServers

Master #

Master server is the coordinator of a GFS cluster and is responsible for

keeping track of filesystem metadata:

204

1. The metadata stored at the master includes:

Name and directory of each file

Mapping of each file to its chunks

Current locations of chunks

Access control information

2. The master also controls system-wide activities such as chunk lease

management (locks on chunks with expiration), garbage collection of

orphaned chunks, and chunk migration between ChunkServers. Master

assigns chunk handle to chunks at time of chunk creation.

3. The master periodically communicates with each ChunkServer in

HeartBeat messages to give it instructions and collect its state.

4. For performance and fast random access, all metadata is stored in the

master’s main memory. This includes the entire filesystem namespace

as well as all the name-to-chunk mappings.

5. For fault tolerance and to handle a master crash, all metadata changes

are written to the disk onto an operation log. This operation log is also

replicated onto remote machines. The operation log is similar to a

journal. Every operation to the file system is logged into this file.

6. The master is a single point of failure, hence, it replicates its data onto

several remote machines so that the master can be readily restored on

failure.

7. The benefit of having a single, centralized master is that it has a global

view of the file system, and hence, it can make optimum management

decisions, for example, related to chunk placement.

Client #

Client is an entity that makes a read or write request to GSF. GFS client

library is linked into each application that uses GFS. This library

communicates with the master for all metadata-related operations like
205

Back

Google File System: Introduction

Next

Single Master and Large Chunk Size

creating or deleting files, looking up files, etc. To read or write data, the

client interacts directly with the ChunkServers that hold the data.

Neither the client nor the ChunkServer caches file data. Client caches offer

little benefit because most applications stream through huge files or have

working sets too large to be cached. ChunkServers rely on the buffer cache

in Linux to maintain frequently accessed data in memory.

206

Single Master and Large Chunk Size

This lesson will explain why Chubby has a single master and a
large chunk size.

We'll cover the following

• Single master

• Chunk size
• Lazy space allocation

Single master #

Having a single master vastly simplifies GFS design and enables the master

to make sophisticated chunk placement and replication decisions using

global knowledge. However, GFS minimizes the master’s involvement in

reads and writes, so that it does not become a bottleneck. Clients never read

or write file data through the master. Instead, a client asks the master which

ChunkServers it should contact. The client caches this information for a

limited time and interacts with the ChunkServers directly for many

subsequent operations.

207

GFS's high-level architecture

 In-memory FS Metadata

GFS Master server

Client

GFS Client
Library

(file name, chunk index)

(chunk handle, chunk location)

(chunk handle, byte range)
(chunk data)

Chunk lease management

Garbage collection
Chunk migration

ChunkServer Heartbeat

Control flow

Data flow

Checkpointing
Image

Operation
log

Single master

Data transfer happens directly
between client and chinkservers

Several data servers

ChunkServer

Chunk ChunkChunk

Linux File System

...

ChunkServer

Chunk ChunkChunk

Linux File System

...

Chunk size #

Chunk size is one of the key design parameters. GFS has chosen 64 MB,

which is much larger than typical filesystem block sizes (which are often

around 4KB). Here are the advantages of using a large chunk size:

1. Since GFS was designed to handle huge files, small chunk sizes would

not make a lot of sense, as each file would then have a map of a huge

number of chunks.

208

2. As the master holds the metadata and manages file distribution, it is

involved whenever chunks are read, modified, or deleted. A small

chunk size would significantly increase the amount of data a master

would need to manage, and also, increase the amount of data that

would need to be communicated to a client, resulting in extra network

traffic.

3. A large chunk size reduces the size of the metadata stored on the

master, which enables the master to keep all the metadata in memory,

thus significantly decreasing the latency for control operations.

4. By using a large chunk size, GFS reduces the need for frequent

communication with the master to get chunk location information. It

becomes feasible for a client to cache all information related to chunk

locations of a large file. Client metadata caches have timeouts to reduce

the risk of caching stale data.

5. A large chunk size also makes it possible to keep a TCP connection open

to a ChunkServer for an extended time, amortizing the time of setting

up a TCP connection.

6. A large chunk size simplifies ChunkServer management, i.e., to check

which ChunkServers are near capacity or which are overloaded.

7. Large chunk size provides highly efficient sequential reads and appends

of large amounts of data.

Lazy space allocation #

Each chunk replica is stored as a plain Linux file on a ChunkServer. GFS does

not allocate the whole 64MB of disk space when creating a chunk. Instead, as

the client appends data, the ChunkServer, lazily extends the chunk. This lazy

space allocation avoids wasting space due to internal fragmentation. Internal

fragmentation refers to having unused portions of the 64 MB chunk. For

example, if we allocate a 64 MB chunk and only fill up 20MB, the remaining

space is unused.

209

Back

High-level Architecture

Next

Metadata

One disadvantage of having a large chunk size is the handling of small files.

Since a small file will have one or a few chunks, the ChunkServers storing

those chunks can become hotspots if a lot of clients access the same file. To

handle this scenario, GFS stores such files with a higher replication factor

and also adds a random delay in the start times of the applications accessing

these files.

210

Metadata

Let's explore how GFS manages the �lesystem metadata.

We'll cover the following

• Storing metadata in memory

• Chunk location

• Operation log
• Checkpointing

The master stores three types of metadata:

1. The file and chunk namespaces (i.e., directory hierarchy).

2. The mapping from files to chunks.

3. The locations of each chunk’s replicas.

There are three aspects of how master manages the metadata:

1. Master keeps all this metadata in memory.

2. The first two types (i.e., namespaces and file-to-chunk mapping) are also

persisted on the master’s local disk.

3. The third (i.e., chunk replicas’ locations) is not persisted.

Let’s discuss these aspects one by one.

Storing metadata in memory #

211

Since metadata is stored in memory, the master operates very quickly.

Additionally, it is easy and efficient for the master to periodically scan

through its entire state in the background. This periodic scanning is used to

implement three functions:

1. Chunk garbage collection

2. Re-replication in the case of ChunkServer failures

3. Chunk migration to balance load and disk-space usage across

ChunkServers

As discussed above, one potential concern for this memory-only approach is

that the number of chunks, and hence the capacity of the whole system, is

limited by how much memory the master has. This is not a serious problem

in practice. The master maintains less than 64 bytes of metadata for each 64

MB chunk. Most chunks are full because most files contain many chunks,

only the last of which may be partially filled. Similarly, the file namespace

data typically requires less than 64 bytes per file because the master stores

file names compactly using prefix compression.

If the need for supporting an even larger file system arises, the cost of adding

extra memory to the master is a small price to pay for the simplicity,

reliability, performance, and flexibility gained by storing the metadata in

memory.

Chunk location #

The master does not keep a persistent record of which ChunkServers have a

replica of a given chunk; instead, the master asks each chunk server about

its chunks at master startup, and whenever a ChunkServer joins the cluster.

The master can keep itself up-to-date after that because it controls all chunk

placements and monitors ChunkServer status with regular HeartBeat

messages.

212

By having the ChunkServer as the ultimate source of truth of each chunk’s

location, GFS eliminates the problem of keeping the master and

ChunkServers in sync. It is not beneficial to maintain a consistent view of

chunk locations on the master, because errors on a ChunkServer may cause

chunks to vanish spontaneously (e.g., a disk may go bad and be disabled, or

ChunkServer is renamed or failed, etc.) In a cluster with hundreds of servers,

these events happen all too often.

Operation log #

The master maintains an operation log that contains the namespace and file-

to-chunk mappings and stores it on the local disk. Specifically, this log stores

a historical record of all the metadata changes. Operation log is very

important to GFS. It contains the persistent record of metadata and serves as

a logical timeline that defines the order of concurrent operations.

For fault tolerance and reliability, this operation log is replicated on multiple

remote machines, and changes to the metadata are not made visible to

clients until they have been persisted on all replicas. The master batches

several log records together before flushing, thereby reducing the impact of

flushing and replicating on overall system throughput.

Upon restart, the master can restore its file-system state by replaying the

operation log. This log must be kept small to minimize the startup time, and

that is achieved by periodically checkpointing it.

Checkpointing #

Master’s state is periodically serialized to disk and then replicated, so that on

recovery, a master may load the checkpoint into memory, replay any

subsequent operations from the operation log, and be available again very

213

Back

Single Master and Large Chunk Size

Next

Master Operations

quickly. To further speed up the recovery and improve availability, GFS

stores the checkpoint in a compact B-tree like format that can be directly

mapped into memory and used for namespace lookup without extra parsing.

The checkpoint process can take time, therefore, to avoid delaying incoming

mutations, the master switches to a new log file and creates the new

checkpoint in a separate thread. The new checkpoint includes all mutations

before the switch.

214

Master Operations

Let's learn the different operations performed by the master.

We'll cover the following

• Namespace management and locking

• Replica placement
• Replica creation and re-replication

• Replica rebalancing

• Stale replica detection

The master executes all namespace operations. Furthermore, it manages

chunk replicas throughout the system. It is responsible for:

Making replica placement decisions

Creating new chunks and hence replicas

Making sure that chunks are fully replicated according to the replication

factor

Balancing the load across all the ChunkServers

Reclaim unused storage

Namespace management and locking
#

215

The master acquires locks over a namespace region to ensure proper

serialization and to allow multiple operations at the master. GFS does not

have an i-node like tree structure for directories and files. Instead, it has a

hash-map that maps a filename to its metadata, and reader-writer locks are

applied on each node of the hash table for synchronization.

Each absolute file name or absolute directory name has an associated

read-write lock.

Each master operation acquires a set of locks before it runs.

To make operation on /dir1/dir2/leaf , it first needs the following

locks:

Reader lock on /dir1

Reader lock on /dir1/dir2

Reader or Writer lock on /dir1/dir2/leaf

Following this scheme, concurrent writes on the same leaf are

prevented right away. However, at the same time, concurrent

modifications in the same directory are allowed.

File creation does not require write-lock on the parent directory; a read-

lock on its name is sufficient to protect the parent directory from

deletion, rename, or snapshot.

Write-lock on a file name stops attempts to create multiple files with the

same name.

Locks are acquired in a consistent order to prevent deadlock:

First ordered by level in the namespace tree

Lexicographically ordered within the same level

Replica placement #

216

To ensure maximum data availability and integrity, the master distributes

replicas on different racks, so that clients can still read or write in case of a

rack failure. As the in and out bandwidth of a rack may be less than the sum

of the bandwidths of individual machines, placing the data in various racks

can help clients exploit reads from multiple racks. For ‘write’ operations,

multiple racks are actually disadvantageous as data has to travel longer

distances. It is an intentional tradeoff that GFS made.

Replica creation and re-replication #

The goals of a master are to place replicas on servers with less-than-average

disk utilization, spread replicas across racks, and reduce the number of

‘recent’ creations on each ChunkServer (even though writes are cheap, they

are followed by heavy write traffic) which might create additional load.

Chunks need to be re-replicated as soon as the number of available replicas

falls (due to data corruption on a server or a replica being unavailable)

below the user-specified replication factor. Instead of re-replicating all of

such chunks at once, the master prioritizes re-replication to prevent these

cloning operations from becoming bottlenecks. Restrictions are placed on the

bandwidth of each server for re-replication so that client requests are not

compromised.

How are chunks prioritized for re-replication?

A chunk is prioritized based on how far it is from its replication goal.

For example, a chunk that has lost two replicas will be given priority on

a chuck that has lost only one replica.

GFS prioritizes chunks of live files as opposed to chunks that belong to

recently deleted files (more on this when we discuss Garbage Collection

(https://www.educative.io/collection/page/5668639101419520/555902985

2536832/5335676130689024)). Deleted files are not removed

immediately; instead, they are renamed temporarily and garbage-

217

https://www.educative.io/collection/page/5668639101419520/5559029852536832/5335676130689024

collected after a few days. Replicas of deleted files can exist for a few

days as well.

Replica rebalancing #

Master rebalances replicas regularly to achieve load balancing and better

disk space usage. It may move replicas from one ChunkServer to another to

bring disk usage in a server closer to the average. Any new ChunkServer

added to the cluster is filled up gradually by the master rather than flooding

it with a heavy traffic of write operations.

Stale replica detection #

Chunk replicas may become stale if a ChunkServer fails and misses

mutations to the chunk while it is down. For each chunk, the master

maintains a chunk Version Number to distinguish between up-to-date and

stale replicas. The master increments the chunk version every time it grants

a lease (more on this later) and informs all up-to-date replicas. The master

and these replicas all record the new version number in their persistent

state. If the ChunkServer hosting a chunk replica is down during a mutation,

the chunk replica will become stale and will have an older version number.

The master will detect this when the ChunkServer restarts and reports its set

of chunks and their associated version numbers. Master removes stale

replicas during regular garbage collection.

Stale replicas are not given to clients when they ask the master for a chunk

location, and they are not involved in mutations either. However, because a

client caches a chunk’s location, it may read from a stale replica before the

data is resynced. The impact of this is low due to the fact that most

operations to a chunk are append-only. This means that a stale replica

usually returns a premature end of a chunk rather than outdated data for a

value.

218

https://www.educative.io/collection/page/5668639101419520/5559029852536832/5335676130689024

Back

Metadata

Next

Anatomy of a Read Operation

219

Anatomy of a Read Operation

Let’s learn how GFS handles a read operation.

A typical read interaction with a GFS cluster by a client application goes like

this:

1. First, the client translates the file name and byte offset specified by the

application into a chunk index within the file. Given the fixed chunk

size, this can be computed easily.

2. The client then sends the master an RPC request containing the file

name and chunk index.

3. The master replies with the chunk handle and the location of replicas

holding the chunk. The client caches this metadata using the file name

and chunk-index as the key. This information is subsequently used to

access the data.

4. The client then sends a request to one of the replicas (the closest one).

The request specifies the chunk handle and a byte range within that

chunk.

Further reads of the same chunk require no more client-master

interaction until the cached information expires or the file is

reopened.

In fact, the client typically asks for multiple chunks in the same

request, and the master can also include the information for

chunks immediately following those requested.

5. The replica ChunkServer replies with the requested data.

6. As evident from the above workflow, the master is involved at the start

and is then completely out of the loop, implementing a separation of

control and data flows – a separation that is crucial for maintaining high

performance of file accesses.

220

Back

Master Operations

Next

Anatomy of a Write Operation

The anatomy of a read operation

GFS Client

Application

(file name, byte range)
1

Metadata

(file name, chunk index)

(chunk handle, replica locations)

ChunkServer ChunkServer ChunkServer

(chunk handle, byte range)

(chunk handle, byte range)

2

3

4

5

file data
6

GFS Master server

221

Anatomy of a Write Operation

Let’s learn how GFS handles a write operation.

We'll cover the following

• What is a chunk lease?

• Data writing

What is a chunk lease? #

To safeguard against concurrent writes at two different replicas of a chunk,

GFS makes use of chunk lease. When a mutation (i.e., a write, append or

delete operation) is requested for a chunk, the master finds the

ChunkServers which hold that chunk and grants a chunk lease (for 60

seconds) to one of them. The server with the lease is called the primary and

is responsible for providing a serial order for all the currently pending

concurrent mutations to that chunk. There is only one lease per chunk at any

time, so that if two write requests go to the master, both see the same lease

denoting the same primary.

Thus, a global ordering is provided by the ordering of the chunk leases

combined with the order determined by that primary. The primary can

request lease extensions if needed. When the master grants the lease, it

increments the chunk version number and informs all replicas containing

that chunk of the new version number.

Data writing #
222

The actual writing of data is split into two phases:

Sending: First, the client is given a list of replicas that identifies the

primary ChunkServer and secondaries. The client sends the data to the

closest replica. Then replicas send the data in chain to all other replicas

to maximize bandwidth and throughput. Eventually, all the replicas get

the data, which is not yet written to a file but sits in a cache.

Writing: When the client gets an acknowledgment from all replicas that

the data has been received, it then sends a write request to the primary,

identifying the data that was sent in the previous phase. The primary is

responsible for the serialization of writes. It assigns consecutive serial

numbers to all write requests that it has received, applies the writes to

the file in serial-number order, and forwards the write requests in that

order to the secondaries. Once the primary gets acknowledgments from

all the secondaries, the primary responds back to the client, and the

write operation is complete. Any errors at any stage in this process are

met with retries and eventual failure. On failure, an error is returned to

the client.

Following is the stepwise breakdown of the data transfer:

1. Client asks master which chunk server holds the current lease of chunk

and locations of other replicas.

2. Master replies with the identity of primary and locations of the

secondary replicas.

3. Client pushes data to the closest replica. Then replicas send the data in

chain to all other replicas.

4. Once all replicas have acknowledged receiving the data, the client sends

the write request to the primary. The primary assigns consecutive serial

numbers to all the mutations it receives, providing serialization. It

applies mutations in serial number order.

223

5. Primary forwards the write request to all secondary replicas. They

apply mutations in the same serial number order.

6. Secondary replicas reply to primary indicating they have completed

operation.

7. Primary replies to the client with success or error message

The anatomy of a write operation

Secondary Replica A

Primary Replica

Secondary Replica B

Client 1

3

GFS Client
Library 2

4

5

6

6

7

Data flow

Control flow

Legends:

Metadata

GFS Master server

The key point to note is that the data flow is different from the control flow.

The data flows from the client to a ChunkServer and then from that

ChunkServer to another ChunkServer, until all ChunkServers that store

replicas for that chunk have received the data. The control (the write

request) flow goes from the client to the primary ChunkServer for that

224

Back

Anatomy of a Read Operation

Next

Anatomy of an Append Operation

chunk. The primary then forwards the request to all the secondaries. This

ensures that the primary controls the order of writes even if it receives

multiple concurrent write requests. All replicas will have data written in the

same sequence. Chunk version numbers are used to detect if any replica has

stale data which has not been updated because that ChunkServer was down

during some update.

225

Anatomy of an Append Operation

Let’s learn how GFS handles an append operation.

Record append operation is optimized in a unique way that distinguishes

GFS from other distributed file systems. In a normal write, the client

specifies the offset at which data is to be written. Concurrent writes to the

same region can experience race conditions, and the region may end up

containing data fragments from multiple clients. In a record append,

however, the client specifies only the data. GFS appends it to the file at least

once atomically (i.e., as one continuous sequence of bytes) at an offset of

GFS’s choosing and returns that offset to the client. This process is similar to

the append operation on a file opened with O_APPEND

(https://man7.org/linux/man-pages/man2/open.2.html) mode on a POSIX-

compliant file system but without the race conditions when multiple writers

do so concurrently.

Record Append is a kind of mutation that changes the contents of the

metadata of a chunk. When an application tries to append data on a chunk

by sending a request to the client, the client pushes the data to all replicas of

the last chunk of the file just like the write operation. When the client

forwards the request to the master, the primary checks whether appending

the record to the existing chunk will increase the chunk’s size more than its

limit (maximum size of a chunk is 64MB). If this happens, it pads the chunk

to the maximum limit, commands the secondary to do the same, and

requests the clients to try to append to the next chunk. If the record fits

within the maximum size, the primary appends the data to its replica, tells

the secondary to write the data at the exact offset where it has, and finally

replies success to the client.

226

https://man7.org/linux/man-pages/man2/open.2.html

Back

Anatomy of a Write Operation

Next

GFS Consistency Model and Snapshot…

If an append operation fails at any replica, the client retries the operation.

Due to this reason, replicas of the same chunk may contain different data,

possibly including duplicates of the same record in whole or in part. GFS

does not guarantee that all replicas are byte-wise identical; instead, it only

ensures that the data is written at-least-once as an atomic unit.

227

GFS Consistency Model and Snapshotting

This lesson will explain how GFS handles the consistency of
its operations and data. Additionally, we will look into how GFS implements a
snapshotting operation.

We'll cover the following

• GFS consistency model

• Snapshotting

GFS consistency model #

To keep things simple and efficient, GFS has a relaxed consistency model.

Metadata operations (e.g., file creation) are atomic. They are handled

exclusively by the master. Namespace locking guarantees atomicity and

correctness, whereas the master’s operation log defines a global total order

of these operations.

In data mutations, there is an important distinction between write and

append operations. Write operations specify an offset at which mutations

should occur, whereas appends are always applied at the end of the file. This

means that for the write operation, the offset in the chunk is

predetermined, whereas for append , the system decides. Concurrent writes

to the same location are not serializable and may result in corrupted regions

of the file. With append operations, GFS guarantees the append will happen

at-least-once and atomically (that is, as a contiguous sequence of bytes). The

system does not guarantee that all copies of the chunk will be identical (some

may have duplicate data).
228

Back

Anatomy of an Append Operation

Next

Fault Tolerance, High Availability, and …

Snapshotting #

A snapshot is a copy of some subtree of the global namespace as it exists at a

given point in time. GFS clients use snapshotting to efficiently branch two

versions of the same data. Snapshots in GFS are initially zero-copy. This

means that data copies are made only when clients make a request to modify

the chunks. This scheme is known as copy-on-write.

When the master receives a snapshot request, it first revokes any

outstanding leases on the chunks in the files to snapshot. It waits for leases

to be revoked or expired and logs the snapshot operation to the operation

log. The snapshot is then made by duplicating the metadata for the source

directory tree. Newly created snapshot files still point to the original chunks.

When a client makes a request to write to one of these chunks, the master

detects that it is a copy-on-write chunk by examining its reference count

(which will be more than one). At this point, the master asks each

ChunkServer holding the replica to make a copy of the chunk and store it

locally. These local copies are made to avoid copying the chunk over the

network. Once the copy is complete, the master issues a lease for the new

copy, and the write proceeds.

229

Fault Tolerance, High Availability, and Data
Integrity

Let's learn how GFS implements fault tolerance, high
availability, and data integrity.

We'll cover the following

• Fault tolerance

• High availability through Chunk replication

• Data integrity through checksum

Fault tolerance #

To make the system fault-tolerant and available, GFS makes use of two

simple strategies:

1. Fast recovery in case of component failures.

2. Replication for high availability.

Let’s first see how GFS recovers from master or replica failure:

On master failure: The Master being a single point of failure, can make

the entire system unavailable in a short time. To handle this, all

operations applied on master are saved in an operation log. This log is

checkpointed and replicated on multiple remote machines, so that on

recovery, a master may load the checkpoint into memory, replay any

subsequent operations from the operation log, and be available again in

a short amount of time. GFS relies on an external monitoring

230

infrastructure to detect the master failure and switch the traffic to the

backup master server.

Shadow masters are replicas of master and provide read-only

access to the file system even when the primary is down. All

shadow masters keep themselves updated by applying the same

sequence of updates exactly as the primary master does by reading

its operation log. Shadow masters may lag the primary slightly, but

they enhance read availability for files that are not being actively

changed or applications that do not mind getting slightly stale

metadata. Since file contents are read from the ChunkServers,

applications do not observe stale file contents.

On primary replica failure: If an active primary replica fails (or there

is a network partition), the master detects this failure (as there will be

no heartbeat), and waits for the current lease to expire (in case the

primary replica is still serving traffic from clients directly), and then

assigns the lease to a new node. When the old primary replica recovers,

the master will detect it as ‘stale’ by checking the version number of the

chunks. The master node will pick new nodes to replace the stale node

and garbage-collect it before it can join the group again.

On secondary replica failure: If there is a replica failure, all client

operations will start failing on it. When this happens, the client retries a

few times; if all of the retries fail, it reports failure to the master. This

can leave the secondary replica inconsistent because it misses some

mutations. As described above, stale nodes will be replaced by new

nodes picked by the master, and eventually garbage-collected.

 Note: Stale replicas might be exposed to clients. It depends on the

application programmer to deal with these stale reads. GFS does not

guarantee strong consistency on chunk reads.

231

High availability through Chunk
replication #

As discussed earlier, each chunk is replicated on multiple ChunkServers on

different racks. Users can specify different replication levels for different

parts of the file namespace. The default is three. The master clones the

existing replicas to keep each chunk fully replicated as ChunkServers go

offline or when the master detects corrupted replicas through checksum

verification.

A chunk is lost irreversibly only if all its replicas are lost before GFS can

react. Even in this case, the data becomes unavailable, not corrupted, which

means applications receive clear errors rather than corrupt data.

Data integrity through checksum #

Checksumming is used by each ChunkServer to detect the corruption of

stored data. The chunk is broken down into 64 KB blocks. Each has a

corresponding 32-bit checksum. Like other metadata, checksums are kept in

memory and stored persistently with logging, separate from user data.

1. For reads, the ChunkServer verifies the checksum of data blocks that

overlap the read range before returning any data to the requester,

whether a client or another ChunkServer. Therefore, ChunkServers will

not propagate corruptions to other machines. If a block does not match

the recorded checksum, the ChunkServer returns an error to the

requestor and reports the mismatch to the master. In response, the

requestor will read from other replicas, and the master will clone the

chunk from another replica. After a valid new replica is in place, the

232

Back Next

master instructs the ChunkServer that reported the mismatch to delete

its replica.

2. For writes, ChunkServer verifies the checksum of first and last data

blocks that overlap the write range before performing the write. Then, it

computes and records the new checksums. For a corrupted block, the

ChunkServer returns an error to the requestor and reports the

mismatch to the master.

3. For appends, checksum computation is optimized as there is no

checksum verification on the last block; instead, just incrementally

update the checksum for the last partial block and compute new

checksums for any brand-new blocks filed by the append. This way, if

the last partial block is already corrupted (and GFS fails to detect it

now), the new checksum value will not match the stored data, and the

corruption will be detected as usual when the block is next read.

During idle periods, ChunkServers can scan and verify the contents of

inactive chunks (prevents an inactive but corrupted chunk replica from

fooling the master into thinking that it has enough valid replicas of a chunk).

Checksumming has little effect on read performance for the following

reasons:

Since most of the reads span at least a few blocks, GFS needs to read and

checksum only a relatively small amount of extra data for verification.

GFS client code further reduces this overhead by trying to align reads at

checksum block boundaries.

Checksum lookups and comparisons on the ChunkServer are done

without any I/O.

Checksum calculation can often be overlapped with I/Os.

233

GFS Consistency Model and Snapshot Garbage Collection

234

Garbage Collection

Let's learn how GFS implements garbage collection.

We'll cover the following

• Garbage collection through lazy deletion

• Advantages of lazy deletion

• Disadvantages of lazy deletion

Garbage collection through lazy
deletion #

When a file is deleted, GFS does not immediately reclaim the physical space

used by that file. Instead, it follows a lazy garbage collection strategy.

When the client issues a delete file operation, GFS does two things:

1. The master logs the deletion operation just like other changes.

2. The deleted file is renamed to a hidden name that also includes a

deletion timestamp.

The file can still be read under the new, special name and can also be

undeleted by renaming it back to normal. To reclaim the physical storage,

the master, while performing regular scans of the file system, removes any

such hidden files if they have existed for more than three days (this interval

is configurable) and also deletes its in-memory metadata. This lazy deletion

scheme provides a window of opportunity to a user who deleted a file by

mistake to recover the file.

235

The master, while performing regular scans of chunk namespace, deletes the

metadata of all chunks that are not part of any file. Also, during the

exchange of regular HeartBeat messages with the master, each ChunkServer

reports a subset of the chunks it has, and the master replies with a list of

chunks from that subset that are no longer present in the master’s database;

such chunks are then deleted from the ChunkServer.

Advantages of lazy deletion #

Here are the advantages of lazy deletion.

Simple and reliable. If the chunk deletion message is lost, the master

does not have to retry. The ChunkServer can perform the garbage

collection with the subsequent heartbeat messages.

GFS merges storage reclamation into regular background activities of

the master, such as the regular scans of the filesystem or the exchange

of HeartBeat messages. Thus, it is done in batches, and the cost is

amortized.

Garbage collection takes place when the master is relatively free.

Lazy deletion provides safety against accidental, irreversible deletions.

Disadvantages of lazy deletion #

As we know, after deletion, storage space does not become available

immediately. Applications that frequently create and delete files may not be

able to reuse the storage right away. To overcome this, GFS provides

following options:

If a client deletes a deleted file again, GFS expedites the storage

reclamation.

Users can specify directories that are to be stored without replication.
236

Back

Fault Tolerance, High Availability, and …

Next

Criticism on GFS

Users can also specify directories where deletion takes place

immediately.

237

Criticism on GFS

Here is the summary of criticism on GFS's architecture.

We'll cover the following

• Problems associated with single master

• Problems associated with large chunk size

Problems associated with single
master #

As GFS has grown in usage, Google has started to see the following problems

with the centralized master scheme:

Despite the separation of control flow (i.e., metadata operations) and

data flow, the master is emerging as a bottleneck in the design. As the

number of clients grows, a single master could not serve them because

it does not have enough CPU power.

Despite the reduced amount of metadata (because of the large chunk

size), the amount of metadata stored by the master is increasing to a

level where it is getting difficult to keep all the metadata in the main

memory.

Problems associated with large chunk
size #

238

Back

Garbage Collection

Next

Summary: GFS

Large chunk size (64MB) in GFS has its disadvantages while reading. Since a

small file will have one or a few chunks, the ChunkServers storing those

chunks can become hotspots if a lot of clients are accessing the same file. As

a workaround for this problem, GFS stores extra copies of small files for

distributing the load to multiple ChunkServers. Furthermore, GFS adds a

random delay in the start times of the applications accessing such files.

239

Summary: GFS

Here is a quick summary of Google File System for you!

We'll cover the following

• Summary

• System design patterns

• References and further reading

Summary #

('4�JT�B�TDBMBCMF�EJTUSJCVUFE�GJMF�TUPSBHF�TZTUFN�GPS�MBSHF�EBUB�JOUFOTJWF

BQQMJDBUJPOT�

('4�VTFT�DPNNPEJUZ�IBSEXBSF�UP�SFEVDF�JOGSBTUSVDUVSF�DPTUT�

('4�XBT�EFTJHOFE�XJUI�UIF�VOEFSTUBOEJOH�UIBU�TZTUFN�IBSEXBSF

GBJMVSFT�DBO�BOE�EP�PDDVS�

3FBEJOH�XPSLMPBE�DPOTJTUT�PG�MBSHF�TUSFBNJOH�SFBET�BOE�TNBMM�SBOEPN

SFBET��8SJUJOH�XPSLMPBET�DPOTJTUT�PG�NBOZ�MBSHF�TFRVFOUJBM�XSJUFT�UIBU

BQQFOE�EBUB�UP�GJMFT�

('4�QSPWJEFT�"1*T�GPS�VTVBM�GJMF�PQFSBUJPOT�MJLF� FUHDWH � GHOHWH � RSHQ

FORVH � UHDG �BOE� ZULWH ��"EEJUJPOBMMZ�('4�TVQQPSUT� VQDSVKRW �BOE

SFDPSE� DSSHQG �PQFSBUJPOT��4OBQTIPU�DSFBUFT�B�DPQZ�PG�UIF�GJMF�PS

EJSFDUPSZ�USFF��3FDPSE�BQQFOE�BMMPXT�NVMUJQMF�DMJFOUT�UP�BQQFOE�EBUB�UP

UIF�TBNF�GJMF�DPODVSSFOUMZ�XIJMF�HVBSBOUFFJOH�BUPNJDJUZ�

"�('4�DMVTUFS�DPOTJTUT�PG�B�TJOHMF�NBTUFS�BOE�NVMUJQMF�$IVOL4FSWFST

BOE�JT�BDDFTTFE�CZ�NVMUJQMF�DMJFOUT�

240

$IVOL��'JMFT�BSF�CSPLFO�JOUP�GJYFE�TJ[F�DIVOLT�XIFSF�FBDI�DIVOL�JT���

NFHBCZUFT�JO�TJ[F��&BDI�DIVOL�JT�JEFOUJGJFE�CZ�BO�JNNVUBCMF�BOE

HMPCBMMZ�VOJRVF����CJU�DIVOL�IBOEMF�BTTJHOFE�CZ�UIF�NBTUFS�BU�UIF�UJNF

PG�DIVOL�DSFBUJPO�

$IVOL4FSWFST�TUPSF�DIVOLT�PO�UIF�MPDBM�EJTL�BT�-JOVY�GJMFT�

'PS�SFMJBCJMJUZ�FBDI�DIVOL�JT�SFQMJDBUFE�PO�NVMUJQMF�$IVOL4FSWFST�

.BTUFS�TFSWFS�JT�UIF�DPPSEJOBUPS�PG�B�('4�DMVTUFS�BOE�JT�SFTQPOTJCMF�GPS

LFFQJOH�USBDL�PG�BMM�UIF�GJMFTZTUFN�NFUBEBUB��5IJT�JODMVEFT�OBNFTQBDF

BVUIPSJ[BUJPO�NBQQJOH�PG�GJMFT�UP�DIVOLT�BOE�UIF�DVSSFOU�MPDBUJPO�PG

DIVOLT�

.BTUFS�LFFQT�BMM�NFUBEBUB�JO�NFNPSZ�GPS�GBTUFS�PQFSBUJPOT��'PS�GBVMU

UPMFSBODF�BOE�UP�IBOEMF�B�NBTUFS�DSBTI�BMM�NFUBEBUB�DIBOHFT�BSF

XSJUUFO�UP�UIF�EJTL�POUP�BO�PQFSBUJPO�MPH��5IJT�PQFSBUJPO�MPH�JT�BMTP

SFQMJDBUFE�POUP�SFNPUF�NBDIJOFT�

5IF�NBTUFS�EPFT�OPU�LFFQ�B�QFSTJTUFOU�SFDPSE�PG�XIJDI�$IVOL4FSWFST

IBWF�B�SFQMJDB�PG�B�HJWFO�DIVOL��*OTUFBE�UIF�NBTUFS�BTLT�FBDI

$IVOL4FSWFS�BCPVU�XIBU�DIVOLT�JU�IPMET�BU�NBTUFS�TUBSUVQ�PS�XIFOFWFS

B�$IVOL4FSWFS�KPJOT�UIF�DMVTUFS�

$IFDLQPJOUJOH��5IF�NBTUFSÇT�TUBUF�JT�QFSJPEJDBMMZ�TFSJBMJ[FE�UP�EJTL�BOE

UIFO�SFQMJDBUFE�TP�UIBU�PO�SFDPWFSZ�B�NBTUFS�NBZ�MPBE�UIF�DIFDLQPJOU

JOUP�NFNPSZ�SFQMBZ�BOZ�TVCTFRVFOU�PQFSBUJPOT�GSPN�UIF�PQFSBUJPO�MPH

BOE�CF�BWBJMBCMF�BHBJO�WFSZ�RVJDLMZ�

)FBSU#FBU��5IF�NBTUFS�DPNNVOJDBUFT�XJUI�FBDI�$IVOL4FSWFS�UISPVHI

)FBSUCFBU�NFTTBHFT�UP�QBTT�JOTUSVDUJPOT�UP�JU�BOE�DPMMFDUT�JUT�TUBUF�

$MJFOU��('4�DMJFOU�DPEF�XIJDI�JT�MJOLFE�JOUP�FBDI�BQQMJDBUJPO

JNQMFNFOUT�GJMFTZTUFN�"1*T�BOE�DPNNVOJDBUFT�XJUI�UIF�DMVTUFS��$MJFOUT

JOUFSBDU�XJUI�UIF�NBTUFS�GPS�NFUBEBUB�CVU�BMM�EBUB�USBOTGFST�IBQQFO

EJSFDUMZ�CFUXFFO�UIF�DMJFOU�BOE�$IVOL4FSWFST�

%BUB�*OUFHSJUZ��&BDI�$IVOL4FSWFS�VTFT�DIFDLTVNNJOH�UP�EFUFDU�UIF

DPSSVQUJPO�PG�TUPSFE�EBUB�

241

(BSCBHF�$PMMFDUJPO��"GUFS�B�GJMF�JT�EFMFUFE�('4�EPFT�OPU�JNNFEJBUFMZ

SFDMBJN�UIF�BWBJMBCMF�QIZTJDBM�TUPSBHF��*U�EPFT�TP�POMZ�MB[JMZ�EVSJOH

SFHVMBS�HBSCBHF�DPMMFDUJPO�BU�CPUI�UIF�GJMF�BOE�DIVOL�MFWFMT�

$POTJTUFODZ��.BTUFS�HVBSBOUFFT�EBUB�DPOTJTUFODZ�CZ�FOTVSJOH�UIF�PSEFS

PG�NVUBUJPOT�PO�BMM�SFQMJDBT�BOE�VTJOH�DIVOL�WFSTJPO�OVNCFST��*G�B

SFQMJDB�IBT�BO�JODPSSFDU�WFSTJPO�JU�JT�HBSCBHF�DPMMFDUFE�

('4�HVBSBOUFFT�BU�MFBTU�PODF�XSJUFT�GPS�XSJUFST��5IJT�NFBOT�UIBU

SFDPSET�DPVME�CF�XSJUUFO�NPSF�UIBO�PODF�BT�XFMM�	BMUIPVHI�SBSFMZ
��*U�JT

UIF�SFTQPOTJCJMJUZ�PG�UIF�SFBEFST�UP�EFBM�XJUI�UIFTF�EVQMJDBUF�DIVOLT�

5IJT�JT�BDIJFWFE�CZ�IBWJOH�DIFDLTVNT�BOE�TFSJBM�OVNCFST�JO�UIF�DIVOLT

XIJDI�IFMQ�SFBEFST�UP�GJMUFS�BOE�EJTDBSE�EVQMJDBUF�EBUB�

$BDIF��/FJUIFS�UIF�DMJFOU�OPS�UIF�$IVOL4FSWFS�DBDIFT�GJMF�EBUB��$MJFOU

DBDIFT�PGGFS�MJUUMF�CFOFGJU�CFDBVTF�NPTU�BQQMJDBUJPOT�TUSFBN�UISPVHI

IVHF�GJMFT�PS�IBWF�XPSLJOH�TFUT�UPP�MBSHF�UP�CF�DBDIFE��)PXFWFS�DMJFOUT

EP�DBDIF�NFUBEBUB�

System design patterns #

)FSF�JT�B�TVNNBSZ�PG�TZTUFN�EFTJHO�QBUUFSOT�VTFE�JO�('4�

8SJUF�"IFBE�-PH��'PS�GBVMU�UPMFSBODF�BOE�JO�UIF�FWFOU�PG�B�NBTUFS

DSBTI�BMM�NFUBEBUB�DIBOHFT�BSF�XSJUUFO�UP�UIF�EJTL�POUP�BO�PQFSBUJPO�MPH

XIJDI�JT�B�XSJUF�BIFBE�MPH�

)FBSU#FBU��5IF�('4�NBTUFS�QFSJPEJDBMMZ�DPNNVOJDBUFT�XJUI�FBDI

$IVOL4FSWFS�JO�)FBSU#FBU�NFTTBHFT�UP�HJWF�JU�JOTUSVDUJPOT�BOE�DPMMFDU�JUT

TUBUF�

$IFDLTVN��&BDI�$IVOL4FSWFS�VTFT�DIFDLTVNNJOH�UP�EFUFDU�UIF

DPSSVQUJPO�PG�TUPSFE�EBUB�

References and further reading #
242

Back

Criticism on GFS

Next

Quiz: GFS

('4�QBQFS�	IUUQT���SFTFBSDI�HPPHMF�QVCT�QVC���

#JHUBCMF�	IUUQT���SFTFBSDI�HPPHMF�QVCT�QVC������

('4��&WPMVUJPO�PO�'BTU�GPSXBSE�	IUUQT���RVFVF�BDN�PSH�EFUBJM�DGN

JE��������

243

https://research.google/pubs/pub51/
https://research.google/pubs/pub27898/
https://queue.acm.org/detail.cfm?id=1594206

244

Yoda
HDFS: How to Design a Distributed File Storage System?

Hadoop Distributed File System: Introduction

This lesson gives a brief introduction to the Hadoop
Distributed File System.

We'll cover the following

• Goal

• What is Hadoop Distributed File System (HDFS)?

• Background

• APIs

Goal #

Design a distributed system that can store huge files (terabyte and larger).

The system should be scalable, reliable, and highly available.

What is Hadoop Distributed File
System (HDFS)? #

HDFS is a distributed file system and was built to store unstructured data. It

is designed to store huge files reliably and stream those files at high

bandwidth to user applications.

HDFS is a variant and a simplified version of the Google File System (GFS). A

lot of HDFS architectural decisions are inspired by GFS design. HDFS is built

around the idea that the most efficient data processing pattern is a write-
245

once, read-many-times pattern.

Background #

Apache Hadoop (https://hadoop.apache.org/) is a software framework that

provides a distributed file storage system and distributed computing for

analyzing and transforming very large data sets using the MapReduce

(https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html) programming

model. HDFS is the default file storage system in Hadoop. It is designed to be

a distributed, scalable, fault-tolerant file system that primarily caters to

the needs of the MapReduce paradigm.

Both HDFS and GFS were built to store very large files and scale to store

petabytes of storage. Both were built for handling batch processing on huge

data sets and were designed for data-intensive applications and not for end-

users. Like GFS, HDFS is also not POSIX-compliant and is not a mountable file

system on its own. It is typically accessed via HDFS clients or by using

application programming interface (API) calls from the Hadoop libraries.

Given the current HDFS design, the following types of applications are not a

good fit for HDFS:

1. Low-latency data access:

HDFS is optimized for high throughput (which may come at the expense

of latency). Therefore, applications that need low-latency data access

will not work well with HDFS.

2. Lots of small files:

HDFS has a central server called NameNode, which holds all the

filesystem metadata in memory. This limits the number of files in the

filesystem by the amount of memory on the NameNode. Although

storing millions of files is feasible, billions are beyond the capability of

the current hardware.

246

https://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Back

Mock Interview: GFS

Next

High-level Architecture

3. No concurrent writers and arbitrary file modifications:

Contrary to GFS, multiple writers cannot concurrently write to an HDFS

file. Furthermore, writes are always made at the end of the file, in an

append-only fashion; there is no support for modifications at

arbitrary offsets in a file.

APIs #

HDFS does not provide standard POSIX-like APIs. Instead, it exposes user-

level APIs. In HDFS, files are organized hierarchically in directories and

identified by their pathnames. HDFS supports the usual file system

operations, e.g., files and directories can be created, deleted, renamed,

moved, and symbolic links can be created. All read and write operations

are done in an append-only fashion.

247

High-level Architecture

This lesson gives a brief overview of HDFS’s architecture.

We'll cover the following

• HDFS architecture

• Comparison between GFS and HDFS

HDFS architecture #

All files stored in HDFS are broken into multiple fixed-size blocks, where

each block is 128 megabytes in size by default (configurable on a per-file

basis). Each file stored in HDFS consists of two parts: the actual file data and

the metadata, i.e., how many block parts the file has, their locations and the

total file size, etc. HDFS cluster primarily consists of a NameNode that

manages the file system metadata and DataNodes that store the actual data.

248

HDFS high-level architecture

 In-memory FS Metadata

NameNode

Client

metadata request

metadata

read/write requestsblock data

Block operations

DataNode Heartbeat
Garbage collection

Block migration

Control flow

Data flow

FsImage Edit Log

Data transfer happens directly
between client and DataNodes

Several DataNodes

DataNode

Block BlockBlock

Linux File System

...

DataNode

Block BlockBlock

Linux File System

...

All blocks of a file are of the same size except the last one.

HDFS uses large block sizes because it is designed to store extremely

large files to enable MapReduce jobs to process them efficiently.

Each block is identified by a unique 64-bit ID called BlockID.

All read/write operations in HDFS operate at the block level.

DataNodes store each block in a separate file on the local file system and

provide read/write access.

When a DataNode starts up, it scans through its local file system and

sends the list of hosted data blocks (called BlockReport) to the

NameNode.

249

The NameNode maintains two on-disk data structures to store the file

system’s state: an FsImage file and an EditLog. FsImage is a checkpoint

of the file system metadata at some point in time, while the EditLog is a

log of all of the file system metadata transactions since the image file

was last created. These two files help NameNode to recover from

failure.

User applications interact with HDFS through its client. HDFS Client

interacts with NameNode for metadata, but all data transfers happen

directly between the client and DataNodes.

To achieve high-availability, HDFS creates multiple copies of the data

and distributes them on nodes throughout the cluster.

HDFS block replication

NameNode

1

d1, d3, d4
2

d2, d3, d4
3

d1, d2, d4
4

d1, d2, d4
5

d1, d3, d4

 /user/foo/f1

 /user/bar/f1

File metadata:

d1

Linux File System

1 3 54

d2

Linux File System

2 3 4

d3

Linux File System

1 2 5

d4

Linux File System

1 2 3 4 5

File with three blocks

File with two blocks

replication factor = 3

BlockID

Replica DataNodes

DataNode

250

Comparison between GFS and HDFS
#

HDFS architecture is similar to GFS, although there are differences in the

terminology. Here is the comparison between the two file systems:

GFS HDFS

Storage node ChunkServer DataNode

File part Chunk Block

File part size Default chunk size is 64MB
(adjustable)

Default block size is 128MB
(adjustable)

Metadata
Checkpoint

Checkpoint image FsImage

Write ahead log Operation log EditLog

Platform Linux Cross-Platform

Language Developed in C++ Developed in Java

Available
Implementation

Only used internally by Google Opensource

Monitoring Master receives HeartBeat
from ChunkServers

NameNode receives HeartBeat
from DataNodes

Concurrency Follows multiple writers and
multiple readers model.

Does not support multiple writ-
ers. HDFS follows the write-
once and read-many model.

251

File operations Append and Random writes
are possible.

Only append is possible.

Garbage
Collection

Any deleted file is renamed
into a particular folder to be

garbage collected later.

Any deleted file is renamed to
a hidden name to be garbage

collected later.

Communication RPC over TCP is used for
communication with the

master.

To minimize latency, pipelining
and streaming are used over

TCP for data transfer.

RPC over TCP is used for
communication with the

NameNode.

For data transfer, pipelining
and streaming are used over

TCP.

Cache
Management

Clients cache metadata.

Client or ChunkServer does
not cache file data.

ChunkServers rely on the buf-
fer cache in Linux to maintain
frequently accessed data in

memory.

HDFS uses distributed cache.

User-specified paths are
cached explicitly in the DataN-
ode’s memory in an off-heap

block cache.

The cache could be private
(belonging to one user) or pub-
lic (belonging to all the users of

the same node).

252

Back

Hadoop Distributed File System: Intro…

Next

Deep Dive

Replication
Strategy

Chunk replicas are spread
across the racks. Master auto-
matically replicates the chunks.

By default, three copies of
each chunk are stored. User

can specify a different replica-
tion factor.

The master re-replicates a
chunk replica as soon as the
number of available replicas
falls below a user-specified

number.

The HDFS has an automatic
rack-ware replication system.

By default, two copies of each
block are stored at two different
DataNodes in the same rack,
and a third copy is stored on a
Data Node in a different rack

(for better reliability).

User can specify a different
replication factor.

File system
Namespace

Files are organized hierarchi-
cally in directories and identi-

fied by pathnames.

HDFS supports a traditional hi-
erarchical file organization.

Users or applications can cre-
ate directories to store files

inside.

HDFS also supports third-party
file systems such as Amazon
Simple Storage Service (S3)

and Cloud Store.

Database Bigtable uses GFS as its stor-
age engine.

HBase uses HDFS as its stor-
age engine.

253

Deep Dive

Let's explore some of HDFS's design components.

We'll cover the following

• Cluster topology

• Rack aware replication

• Synchronization semantics

• HDFS consistency model

Cluster topology #

A typical data center contains many racks of servers connected using

switches. A common configuration for Hadoop clusters is to have about 30 to

40 servers per rack. Each rack has a dedicated gigabit switch that connects

all of its servers and an uplink to a core switch or router, whose bandwidth

is shared by many racks in the data center, as shown in the following figure.

254

HDFS cluster topology

Switch

DataNode1

Linux File System

BlockBlockBlock

DataNode2

Linux File System

BlockBlockBlock

DataNode3

Linux File System

BlockBlockBlock

Switch

DataNode4

Linux File System

BlockBlockBlock

DataNode5

Linux File System

BlockBlockBlock

DataNode6

Linux File System

BlockBlockBlock

Switch
Rack Rack

When HDFS is deployed on a cluster, each of its servers is configured and

mapped to a particular rack. The network distance between servers is

measured in hops, where one hop corresponds to one link in the topology.

Hadoop assumes a tree-style topology, and the distance between two servers

is the sum of their distances to their closest common ancestor.

In the above figure, the distance between Node 1 and itself is zero hops (the

case when two processes are communicating on the same node). Node 1 and

Node 2 are two hops away, while the distance between Node 3 and Node 4 is

four hops.

Rack aware replication #

The placement of replicas is critical to HDFS reliability and performance.

HDFS employs a rack-aware replica placement policy to improve data

reliability, availability, and network bandwidth utilization. If the replication

factor is three, HDFS attempts to place the first replica on the same node as
255

the client writing the block. In case a client process is not running in the

HDFS cluster, a node is chosen at random. The second replica is written to a

node on a different rack from the first (i.e., off-rack replica). The third

replica of the block is then written to another random node on the same rack

as the second. Additional replicas are written to random nodes in the cluster,

but the system tries to avoid placing too many replicas on the same rack. The

figure below illustrates the replica placement for a triple-replicated block in

HDFS. The idea behind HDFS’s replica placement is to be able to tolerate

node and rack failures. For example, when an entire rack goes offline due to

power or networking problems, the requested block can still be located at a

different rack.

Rack-aware replication

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

DataNode

Data Center

256

The default HDFS replica placement policy can be summarized as follows:

1. No DataNode will contain more than one replica of any block.

2. If there are enough racks available, no rack will contain more than two

replicas of the same block.

Following this rack-aware replication scheme slows the write operation as

the data needs to be replicated onto different racks, but this is an intentional

tradeoff between reliability and performance that HDFS made.

Synchronization semantics #

Early versions of HDFS followed strict immutable semantics. Once a file

was written, it could never again be re-opened for writes; files could still be

deleted. However, current versions of HDFS support append. This is still

quite limited in the sense that existing binary data once written to HDFS

cannot be modified in place.

This design choice in HDFS was made because some of the most common

MapReduce workloads follow the write once, read many data-access

pattern. MapReduce is a restricted computational model with predefined

stages. The reducers in MapReduce write independent files to HDFS as

output. HDFS focuses on fast read access for multiple clients at a time.

HDFS consistency model #

HDFS follows a strong consistency model. As stated above, each data block

written to HDFS is replicated to multiple nodes. To ensure strong consistency,

a write is declared successful only when all replicas have been written

257

Back

High-level Architecture

Next

Anatomy of a Read Operation

successfully. This way, all clients see the same (and consistent) view of the

file. Since HDFS does not allow multiple concurrent writers to write to an

HDFS file, implementing strong consistency becomes a relatively easy task.

258

Anatomy of a Read Operation

We'll cover the following

• HDFS read process

• Short circuit read

HDFS read process #

HDFS read process can be outlined as follows:

1. When a file is opened for reading, HDFS client initiates a read request,

by calling the open() method of the Distributed FileSystem object.

The client specifies the file name, start offset, and the read range length.

2. The Distributed FileSystem object calculates what blocks need to be

read based on the given offset and range length, and requests the

locations of the blocks from the NameNode.

3. NameNode has metadata for all blocks’ locations. It provides the client a

list of blocks and the locations of each block replica. As the blocks are

replicated, NameNode finds the closest replica to the client when

providing a particular block’s location. The closest locality of each block

is determined as follows:

If a required block is within the same node as the client, it is

preferred.

Then, the block in the same rack as the client is preferred.

Finally, an off-rack block is read.

259

4. After getting the block locations, the client calls the read() method of

FSData InputStream , which takes care of all the interactions with the

DataNodes. In step 4 in the below diagram, once the client invokes the

read() method, the input stream object establishes a connection with

the closest DataNode with the first block of the file.

5. The data is read in the form of streams. As the data is streamed, it is

passed to the requesting application. Hence, the block does not have to

be transferred in its entirety before the client application starts

processing it.

6. Once the FSData InputStream receives all data of a block, it closes the

connection and moves on to connect the DataNode for the next block. It

repeats this process until it finishes reading all the required blocks of

the file.

7. Once the client finishes reading all the required blocks, it calls the

close() method of the input stream object.

The anatomy of a read operation

In-memory FS Metadata

NameNode
Distributed
FileSystem

FSData
InputStream

HDFS
Client

Open
Get block locations

Block locations
Read

DataNode DataNode DataNode

Close

Read Read

1

2

3
4

5 6

7

Data Flow

Short circuit read #
260

Back

Deep Dive

Next

Anatomy of a Write Operation

As we saw above, the client reads the data directly from DataNode. The

client uses TCP sockets for this. If the data and the client are on the same

machine, HDFS can directly read the file bypassing the DataNode. This

scheme is called short circuit read and is quite efficient as it reduces

overhead and other processing resources.

261

Anatomy of a Write Operation

This lesson explains how HDFS handles a write operation.

We'll cover the following

• HDFS write process

HDFS write process #

HDFS write process can be outlined as follows:

1. HDFS client initiates a write request by calling the create() method of

the Distributed FileSystem object.

2. The Distributed FileSystem object sends a file creation request to the

NameNode.

3. The NameNode verifies that the file does not already exist and that the

client has permission to create the file. If both these conditions are

verified, the NameNode creates a new file record and sends an

acknowledgment.

4. The client then proceeds to write the file using FSData OutputStream

5. The FSData OutputStream writes data to a local queue called ‘Data

Queue.’ The data is kept in the queue until a complete block of data is

accumulated.

6. Once the queue has a complete block, another component called

DataStreamer is notified to manage data transfer to the DataNode.

7. DataStreamer first asks the NameNode to allocate a new block on

DataNodes, thereby picking desirable DataNodes to be used for
262

replication.

8. The NameNode provides a list of blocks and the locations of each block

replica.

9. Upon receiving the block locations from the NameNode, the

DataStreamer starts transferring the blocks from the internal queue to

the nearest DataNode.

10. Each block is written to the first DataNode, which then pipelines the

block to other DataNodes in order to write replicas of the block. This

way, the blocks are replicated during the file write itself. It is important

to note that HDFS does not acknowledge a write to the client until all the

replicas for that block have been written by the DataNodes.

11. Once the DataStreamer finishes writing all blocks, it waits for

acknowledgments from all the DataNodes.

12. Once all acknowledgments are received, the client calls the close()

method of the OutputStream .

13. Finally, the Distributed FileSystem contacts the NameNode to notify

that the file write operation is complete. At this point, the NameNode

commits the file creation operation, which makes the file available to be

read. If the NameNode dies before this step, the file is lost.

263

Back

Anatomy of a Read Operation

Next

Data Integrity & Caching

In-memory FS Metadata

NameNode
Distributed
FileSystem

FSData
OutputStream

HDFS
Client

Create
Create

File creation ack
Write

DataNode1 DataNode2 DataNode3

Close

Write ack

1

2

34

9

1312

Data Queue DataStreamer

Write data Get block locations

Block locations

data data

ack ack

ack

Complete

5

6

7

8

10 10

1111

11

11

264

Data Integrity & Caching

Let's explore how HDFS ensures data integrity and implements
caching.

We'll cover the following

• Data integrity
• Block scanner

• Caching

Data integrity #

Data Integrity refers to ensuring the correctness of the data. When a client

retrieves a block from a DataNode, the data may arrive corrupted. This

corruption can occur because of faults in the storage device, network, or the

software itself. HDFS client uses checksum to verify the file contents. When a

client stores a file in HDFS, it computes a checksum of each block of the file

and stores these checksums in a separate hidden file in the same HDFS

namespace. When a client retrieves file contents, it verifies that the data it

received from each DataNode matches the checksum stored in the associated

checksum file. If not, then the client can opt to retrieve that block from

another replica.

Block scanner #

A block scanner process periodically runs on each DataNode to scan blocks

stored on that DataNode and verify that the stored checksums match the

block data. Additionally, when a client reads a complete block and checksum
265

verification succeeds, it informs the DataNode. The DataNode treats it as a

verification of the replica. Whenever a client or a block scanner detects a

corrupt block, it notifies the NameNode. The NameNode marks the replica as

corrupt and initiates the process to create a new good replica of the block.

Caching #

Normally, blocks are read from the disk, but for frequently accessed files,

blocks may be explicitly cached in the DataNode’s memory, in an off-heap

block cache. HDFS offers a Centralized Cache Management scheme to allow

its users to specify paths to be cached. Clients can tell the NameNode which

files to cache. NameNode communicates with the DataNodes that have the

desired blocks on disk and instructs them to cache the blocks in off-heap

caches.

Centralized cache management in HDFS has many significant advantages:

1. Explicitly specifying blocks for caching prevents the eviction of

frequently accessed data from memory. This is particularly important as

most of the HDFS workloads are bigger than the main memory of the

DataNode.

2. Because the NameNode manages DataNode caches, applications can

query the set of cached block locations when making MapReduce task

placement decisions. Co-locating a task with a cached block replica

improves read performance.

3. When a DataNode has cached a block, clients can use a new, more

efficient, zero-copy read API. As the block is already in memory and its

checksum verification has already been done by the DataNode, clients

can incur essentially zero overhead when using this new API.

4. Centralized caching can improve overall cluster memory utilization.

When relying on the OS buffer cache at each DataNode, repeated reads

of a block will result in all ‘n’ replicas of the block being pulled into the
266

Back

Anatomy of a Write Operation

Next

Fault Tolerance

buffer cache. With centralized cache management, a user can explicitly

specify only ‘m’ of the ‘n’ replicas, saving ‘n-m’ memory.

267

Fault Tolerance

Let's explore what techniques HDFS uses for fault tolerance.

We'll cover the following

• How does HDFS handle DataNode failures?
• Replication

• HeartBeat

• What happens when the NameNode fails?
• FsImage and EditLog

• Metadata backup

How does HDFS handle DataNode
failures? #

Replication #

When a DataNode dies, all of its data becomes unavailable. HDFS handles

this data unavailability through replication. As stated earlier, every block

written to HDFS is replicated to multiple (default three) DataNodes.

Therefore, if one DataNode becomes inaccessible, its data can be read from

other replicas.

HeartBeat #

268

The NameNode keeps track of DataNodes through a heartbeat mechanism.

Each DataNode sends periodic heartbeat messages (every few seconds) to the

NameNode. If a DataNode dies, the heartbeats will stop, and the NameNode

will detect that the DataNode has died. The NameNode will then mark the

DataNode as dead and will no longer forward any read/write request to that

DataNode. Because of replication, the blocks stored on that DataNode have

additional replicas on other DataNodes. The NameNode performs regular

status checks on the file system to discover under-replicated blocks and

performs a cluster rebalance process to replicate blocks that have less than

the desired number of replicas.

What happens when the NameNode
fails? #

FsImage and EditLog #

The NameNode is a single point of failure (SPOF). A NameNode failure will

bring the entire file system down. Internally, the NameNode maintains two

on-disk data structures that store the file system’s state: an FsImage file and

an EditLog. FsImage is a checkpoint (or the image) of the file system

metadata at some point in time, while the EditLog is a log of all of the file

system metadata transactions since the image file was last created. All

incoming changes to the file system metadata are written to the EditLog. At

periodic intervals, the EditLog and FsImage files are merged to create a new

image file snapshot, and the edit log is cleared out.

Metadata backup #

On a NameNode failure, the metadata would be unavailable, and a disk

failure on the NameNode would be catastrophic because the file metadata

would be lost since there would be no way of knowing how to reconstruct
269

the files from the blocks on the DataNodes. For this reason, it is crucial to

make the NameNode resilient to failure, and HDFS provides two mechanisms

for this:

1. The first way is to back up and store multiple copies of FsImage and

EditLog. The NameNode can be configured to maintain multiple copies

of the files. Any update to either the FsImage or EditLog causes each

copy of the FsImages and EditLogs to get updated synchronously and

atomically. A common configuration is to maintain one copy of these

files on a local disk and one on a remote Network File System (NFS)

mount. This synchronous updating of multiple copies of the FsImage

and EditLog may degrade the rate of namespace transactions per second

that a NameNode can support. However, this degradation is acceptable

because even though HDFS applications are very data-intensive, they

are not metadata-intensive.

2. Another option provided by HDFS is to run a Secondary NameNode,

which despite its name, is not a backup NameNode. Its main role is to

help primary NameNode in taking the checkpoint of the filesystem.

Secondary NameNode periodically merges the namespace image with

the EditLog to prevent the EditLog from becoming too large. The

secondary NameNode runs on a separate physical machine because it

requires plenty of CPU and as much memory as the NameNode to

perform the merge. It keeps a copy of the merged namespace image,

which can be used in the event of the NameNode failure. However, the

state of the secondary NameNode lags behind that of the primary, so in

the event of total failure of the primary, data loss is almost inevitable.

The usual course of action, in this case, is to copy the NameNode’s

metadata files that are on NFS to the secondary and run it as the new

primary.

270

Back

Data Integrity & Caching

Next

HDFS High Availability (HA)

Role of primary and secondary NameNode

 In-memory FS Metadata

NameNode

Client

metadata request

metadata

read/write requests

block data

Block operations

DataNode Heartbeat
Garbage collection

Block migration

DataNode

Block BlockBlock

Linux File System

DataNode

Block BlockBlock

Linux File System

FsImage Edit Log

EditLog & FsImage

Merged FsImage

FsImage

Edit Log

Secondary NameNode

Merged FsImage

271

HDFS High Availability (HA)

Let's learn how HDFS achieves high availability.

We'll cover the following

• HDFS high availability architecture
• QJM

• Zookeeper

• Failover and fencing
• Fencing

HDFS high availability architecture #

Although NameNode’s metadata is copied to multiple file systems to protect

against data loss, it still does not provide high availability of the filesystem. If

the NameNode fails, no clients will be able to read, write, or list files, because

the NameNode is the sole repository of the metadata and the file-to-block

mapping. In such an event, the whole Hadoop system would effectively be

out of service until a new NameNode is brought online.

To recover from a failed NameNode scenario, an administrator will start a

new primary NameNode with one of the filesystem metadata replicas and

configure DataNodes and clients to use this new NameNode. The new

NameNode is not able to serve requests until it has

1. loaded its namespace image into memory,

2. replayed its EditLog, and

3. received enough block reports from the DataNodes.
272

On large clusters with many files and blocks, it can take half an hour or more

to perform a cold start of a NameNode. Furthermore, this long recovery time

is a problem for routine maintenance. In fact, because an unexpected failure

of the NameNode is rare, the case for planned downtime is actually more

important in practice.

To solve this problem, Hadoop, in its 2.0 release, added support for HDFS

High Availability (HA). In this implementation, there are two (or more)

NameNodes in an active-standby configuration. At any point in time, exactly

one of the NameNodes is in an active state, and the others are in a Standby

state. The active NameNode is responsible for all client operations in the

cluster, while the Standby is simply acting as a follower of the active,

maintaining enough state to provide a fast failover when required.

For the Standby nodes to keep their state synchronized with the active node,

HDFS made a few architectural changes:

The NameNodes must use highly available shared storage to share the

EditLog (e.g., a Network File System (NFS) mount from a Network

Attached Storage (NAS)).

When a standby NameNode starts, it reads up to the end of the shared

EditLog to synchronize its state with the active NameNode, and then

continues to read new entries as the active NameNode writes them.

DataNodes must send block reports to all the NameNodes because the

block mappings are stored in a NameNode’s memory, and not on disk.

Clients must be configured to handle NameNode failover, using a

mechanism that is transparent to users. Client failover is handled

transparently by the client library. The simplest implementation uses

client-side configuration to control failover. The HDFS URI uses a logical

hostname which is mapped to multiple NameNode addresses, and the

client library tries each NameNode address until the operation succeeds.

273

There are two choices for the highly available shared storage: an NFS filer

(as described above), or a Quorum Journal Manager (QJM).

QJM #

The sole purpose of the QJM is to provide a highly available EditLog. The

QJM runs as a group of journal nodes, and each edit must be written to a

quorum (or majority) of the journal nodes. Typically, there are three journal

nodes, so that the system can tolerate the loss of one of them. This

arrangement is similar to the way ZooKeeper (https://zookeeper.apache.org/)

works, although it is important to realize that the QJM implementation does

not use ZooKeeper.

 Note: HDFS High Availability does use ZooKeeper for electing the

active NameNode. More details on this later. QJM process runs on all

NameNodes and communicates all EditLog changes to journal nodes

using RPC.

Since the Standby NameNodes have the latest state of the metadata available

in memory (both the latest EditLog and an up-to-date block mapping), any

standby can take over very quickly (in a few seconds) if the active

NameNode fails. However, the actual failover time will be longer in practice

(around a minute or so) because the system needs to be conservative in

deciding that the active NameNode has failed.

In the unlikely event of the Standbys being down when the active fails, the

administrator can still do a cold start of a Standby. This is no worse than the

non-HA case.

Zookeeper #

274

https://zookeeper.apache.org/

The ZKFailoverController (ZKFC) is a ZooKeeper client that runs on each

NameNode and is responsible for coordinating with the Zookeeper and also

monitoring and managing the state of the NameNode (more details below).

HDFS high availability architecture

DataNode DataNode DataNode DataNode

Standby NameNode1Active NameNode Standby NameNode2

ZKFC

JM JM JM

ZKFC ZKFC

Client

EditLog
EditLog

EditLog

QJM: Shared NN state through
quorum of Journal nodes

Send block report to and take
commands from the active NN

Block report to standby NNs

ZooKeeper Failover Controller (ZKFC)
monitors the health of NN, OS, and HW

ZKFC also coordinates the NN
election process

Zookeeper Zookeeper
(leader) Zookeeper

Zookeeper Zookeeper

Zookeeper Ensemble

Failover and fencing #

275

A Failover Controller manages the transition from the active NameNode to

the Standby. The default implementation of the failover controller uses

ZooKeeper to ensure that only one NameNode is active. Failover Controller

runs as a lightweight process on each NameNode and monitors the

NameNode for failures (using Heartbeat), and triggers a failover when the

active NameNode fails.

Graceful failover: For routine maintenance, an administrator can manually

initiate a failover. This is known as a graceful failover, since the failover

controller arranges an orderly transition from the active NameNode to the

Standby.

Ungraceful failover: In the case of an ungraceful failover, however, it is

impossible to be sure that the failed NameNode has stopped running. For

example, a slow network or a network partition can trigger a failover

transition, even though the previously active NameNode is still running and

thinks it is still the active NameNode.

The HA implementation uses the mechanism of Fencing to prevent this

“split-brain” scenario and ensure that the previously active NameNode is

prevented from doing any damage and causing corruption.

Fencing #

Fencing is the idea of putting a fence around a previously active NameNode

so that it cannot access cluster resources and hence stop serving any

read/write request. To apply fencing, the following two techniques are used:

Resource fencing: Under this scheme, the previously active NameNode

is blocked from accessing resources needed to perform essential tasks.

For example, revoking its access to the shared storage directory

(typically by using a vendor-specific NFS command), or disabling its

network port via a remote management command.

276

Back

Fault Tolerance

Next

HDFS Characteristics

Node fencing: Under this scheme, the previously active NameNode is

blocked from accessing all resources. A common way of doing this is to

power off or reset the node. This is an effective method of keeping it

from accessing anything at all. This technique is also called STONIT or

“Shoot The Other Node In The Head.”

To learn more about automatic failover, take a look at Apache

documentation (https://hadoop.apache.org/docs/current/hadoop-project-

dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html#Automatic_Failover).

277

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html#Automatic_Failover

HDFS Characteristics

This lesson will explore some important aspects of HDFS
architecture.

We'll cover the following

• Security and permission

• HDFS federation

• Erasure coding

• HDFS in practice

Security and permission #

HDFS provides a permissions model for files and directories which is similar

to POSIX. Each file and directory is associated with an owner and a group.

Each file or directory has separate permissions for the owner, other users

who are members of a group, and all other users. There are three types of

permission:

1. Read permission (r): For files, r permission is required to read a file.

For directories, r permission is required to list the contents of a

directory.

2. Write permission (w): For files, w permission is required to write or

append to a file. For a directory, w permission is required to create or

delete files or directories in it.

3. Execute permission (x): For files, x permission is ignored as we

cannot execute a file on HDFS. For a directory, x permission is required

278

to access a child of the directory.

HDFS also provides optional support for POSIX ACLs (Access Control Lists) to

augment file permissions with finer-grained rules for specific named users

or named groups.

HDFS federation #

The NameNode keeps the metadata of the whole namespace in memory,

which means that on very large clusters with many files, the memory

becomes the limiting factor for scaling. A more serious problem is that a

single NameNode, serving all metadata requests, can become a performance

bottleneck. To help resolve these issues, HDFS Federation was introduced in

the 2.x release, which allows a cluster to scale by adding NameNodes, each of

which manages a portion of the filesystem namespace. For example, one

NameNode might manage all the files rooted under /user , and a second

NameNode might handle files under /share . Under federation:

All NameNodes work independently. No coordination is required

between NameNodes.

DataNodes are used as the common storage by all the NameNodes.

A NameNode failure does not affect the availability of the namespaces

managed by other NameNodes.

To access a federated HDFS cluster, clients use client-side mount tables

to map file paths to NameNodes.

Multiple NameNodes running independently can end up generating the

same 64-bit Block IDs for their blocks. To avoid this problem, a namespace

uses one or more Block Pools, where a unique ID identifies each block pool

in a cluster. A block pool belongs to a single namespace and does not cross

the namespace boundary. The extended block ID, which is a tuple of (Block

Pool ID, Block ID), is used for block identification in HDFS Federation.

279

Erasure coding #

By default, HDFS stores three copies of each block, resulting in a 200%

overhead (to store two extra copies) in storage space and other resources

(e.g., network bandwidth). Compared to this default replication scheme,

Erasure Coding (EC) is probably the biggest change in HDFS in recent years.

EC provides the same level of fault tolerance with much less storage space. In

a typical EC setup, the storage overhead is no more than 50%. This

fundamentally doubles the storage space capacity by bringing down the

replication factor from 3x to 1.5x.

Under EC, data is broken down into fragments, expanded, encoded with

redundant data pieces, and stored across different DataNodes. If, at some

point, data is lost on a DataNode due to corruption, etc., then it can be

reconstructed using the other fragments stored on other DataNodes.

Although EC is more CPU intensive, it greatly reduces the storage needed for

reliably storing a large data set.

For more details on how EC works, see blog

(https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-

hadoop/) or wiki (https://en.wikipedia.org/wiki/Erasure_code).

HDFS in practice #

Although HDFS was primarily designed to support Hadoop MapReduce jobs

by providing a DFS for the Map and Reduce operations, HDFS has found

many uses with big-data tools.

HDFS is used in several Apache projects that are built on top of the Hadoop

framework, including Pig, Hive, HBase, and Giraph. HDFS support is also

included in other projects, such as GraphLab.

280

https://blog.cloudera.com/introduction-to-hdfs-erasure-coding-in-apache-hadoop/
https://en.wikipedia.org/wiki/Erasure_code

The primary advantages of HDFS include the following:

High bandwidth for MapReduce workloads: Large Hadoop clusters

(thousands of machines) are known to continuously write up to one

terabyte per second using HDFS.

High reliability: Fault tolerance is a primary design goal in HDFS. HDFS

replication provides high reliability and availability, particularly in

large clusters, in which the probability of disk and server failures

increases significantly.

Low costs per byte: Compared to a dedicated, shared-disk solution such

as a SAN, HDFS costs less per gigabyte because storage is collocated with

compute servers. With SAN, we have to pay additional costs for

managed infrastructure, such as the disk array enclosure and higher-

grade enterprise disks, to manage hardware failures. HDFS is designed

to run with commodity hardware, and redundancy is managed in

software to tolerate failures.

Scalability: HDFS allows DataNodes to be added to a running cluster

and offers tools to manually rebalance the data blocks when cluster

nodes are added, which can be done without shutting the file system

down.

The primary disadvantages of HDFS include the following:

Small file inefficiencies: HDFS is designed to be used with large block

sizes (128MB and larger). It is meant to take large files (hundreds of

megabytes, gigabytes, or terabytes) and chunk them into blocks, which

can then be fed into MapReduce jobs for parallel processing. HDFS is

inefficient when the actual file sizes are small (in the kilobyte range).

Having a large number of small files places additional stress on the

NameNode, which has to maintain metadata for all the files in the file

system. Typically, HDFS users combine many small files into larger ones

using techniques such as sequence files. A sequence file can be

281

Back

HDFS High Availability (HA)

Next

Summary: HDFS

understood as a container of binary key-value pairs, where the file

name is the key, and the file contents are the value.

POSIX non-compliance: HDFS was not designed to be a POSIX-

compliant, mountable file system; applications will have to be either

written from scratch or modified to use an HDFS client. Workarounds

exist that enable HDFS to be mounted using a FUSE

(https://en.wikipedia.org/wiki/Filesystem_in_Userspace) driver, but the

file system semantics do not allow writes to files once they have been

closed.

Write-once model: The write-once model is a potential drawback for

applications that require concurrent write accesses to the same file.

However, the latest version of HDFS now supports file appends.

In short, HDFS is a good option as a storage backend for distributed

applications that follow the MapReduce model or have been specifically

written to use HDFS. HDFS can be used efficiently with a small number of

large files rather than a large number of small files.

282

https://en.wikipedia.org/wiki/Filesystem_in_Userspace

Summary: HDFS

Here is a quick summary of HDFS for you!

We'll cover the following

• Summary

• System design patterns

• References and further reading

Summary #

)%'4�JT�B�TDBMBCMF�EJTUSJCVUFE�GJMF�TZTUFN�GPS�MBSHF�EJTUSJCVUFE�EBUB�

JOUFOTJWF�BQQMJDBUJPOT�

)%'4�VTFT�DPNNPEJUZ�IBSEXBSF�UP�SFEVDF�JOGSBTUSVDUVSF�DPTUT�

)%'4�QSPWJEFT�"1*T�GPS�VTVBM�GJMF�PQFSBUJPOT�MJLF� FUHDWH � GHOHWH

RSHQ � FORVH � UHDG �BOE� ZULWH �

3BOEPN�XSJUFT�BSF�OPU�QPTTJCMF��XSJUFT�BSF�BMXBZT�NBEF�BU�UIF�FOE�PG

UIF�GJMF�JO�BO�BQQFOE�POMZ�GBTIJPO�

)%'4�EPFT�OPU�TVQQPSU�NVMUJQMF�DPODVSSFOU�XSJUFST�

"O�)%'4�DMVTUFS�DPOTJTUT�PG�B�TJOHMF�/BNF/PEF�BOE�NVMUJQMF

%BUB/PEFT�BOE�JT�BDDFTTFE�CZ�NVMUJQMF�DMJFOUT�

#MPDL��'JMFT�BSF�CSPLFO�JOUP�GJYFE�TJ[F�CMPDLT�	EFGBVMU����.#
�BOE

CMPDLT�BSF�SFQMJDBUFE�BDSPTT�B�OVNCFS�PG�%BUB/PEFT�UP�FOTVSF�GBVMU�

UPMFSBODF��5IF�CMPDL�TJ[F�BOE�UIF�SFQMJDBUJPO�GBDUPS�BSF�DPOGJHVSBCMF�

%BUB/PEFT�TUPSF�CMPDLT�PO�MPDBM�EJTL�BT�-JOVY�GJMFT�

283

/BNF/PEF�TFSWFS�JT�UIF�DPPSEJOBUPS�PG�BO�)%'4�DMVTUFS�BOE�JT

SFTQPOTJCMF�GPS�LFFQJOH�USBDL�PG�BMM�GJMFTZTUFN�NFUBEBUB�

/BNF/PEF�LFFQT�BMM�NFUBEBUB�JO�NFNPSZ�GPS�GBTUFS�PQFSBUJPOT��'PS

GBVMU�UPMFSBODF�BOE�JO�UIF�FWFOU�PG�/BNF/PEF�DSBTI�BMM�NFUBEBUB

DIBOHFT�BSF�XSJUUFO�UP�UIF�EJTL�POUP�BO�&EJU-PH��5IJT�&EJU-PH�DBO�BMTP

CF�SFQMJDBUFE�PO�B�SFNPUF�GJMFTZTUFN�	F�H��/'4
�PS�B�TFDPOEBSZ

/BNF/PEF�

5IF�/BNF/PEF�EPFT�OPU�LFFQ�B�QFSTJTUFOU�SFDPSE�PG�XIJDI�%BUB/PEFT

IBWF�B�SFQMJDB�PG�B�HJWFO�CMPDL��*OTUFBE�UIF�/BNF/PEF�BTLT�FBDI

%BUB/PEF�BCPVU�XIBU�CMPDLT�JU�IPMET�BU�/BNF/PEF�TUBSUVQ�BOE

XIFOFWFS�B�%BUB/PEF�KPJOT�UIF�DMVTUFS�

'T*NBHF��5IF�/BNF/PEF�TUBUF�JT�QFSJPEJDBMMZ�TFSJBMJ[FE�UP�EJTL�BOE�UIFO

SFQMJDBUFE�TP�UIBU�PO�SFDPWFSZ�B�/BNF/PEF�NBZ�MPBE�UIF�DIFDLQPJOU

JOUP�NFNPSZ�SFQMBZ�BOZ�TVCTFRVFOU�PQFSBUJPOT�GSPN�UIF�FEJU�MPH�BOE

CF�BWBJMBCMF�BHBJO�WFSZ�RVJDLMZ�

)FBSU#FBU��5IF�/BNF/PEF�DPNNVOJDBUFT�XJUI�FBDI�%BUB/PEF�UISPVHI

)FBSUCFBU�NFTTBHFT�UP�QBTT�JOTUSVDUJPOT�BOE�DPMMFDU�JUT�TUBUF�

$MJFOU��6TFS�BQQMJDBUJPOT�JOUFSBDU�XJUI�)%'4�UISPVHI�JUT�DMJFOU��)%'4

$MJFOU�JOUFSBDUT�XJUI�/BNF/PEF�GPS�NFUBEBUB�CVU�BMM�EBUB�USBOTGFST

IBQQFO�EJSFDUMZ�CFUXFFO�UIF�DMJFOU�BOE�%BUB/PEFT�

%BUB�*OUFHSJUZ��&BDI�%BUB/PEF�VTFT�DIFDLTVNNJOH�UP�EFUFDU�UIF

DPSSVQUJPO�PG�TUPSFE�EBUB�

(BSCBHF�$PMMFDUJPO��"OZ�EFMFUFE�GJMF�JT�SFOBNFE�UP�B�IJEEFO�OBNF�UP�CF

HBSCBHF�DPMMFDUFE�MBUFS�

$POTJTUFODZ��)%'4�JT�B�TUSPOHMZ�DPOTJTUFOU�GJMF�TZTUFN��&BDI�EBUB�CMPDL

JT�SFQMJDBUFE�UP�NVMUJQMF�OPEFT�BOE�B�XSJUF�JT�EFDMBSFE�UP�CF�TVDDFTTGVM

POMZ�BGUFS�BMM�UIF�SFQMJDBT�IBWF�CFFO�XSJUUFO�TVDDFTTGVMMZ�

$BDIF��'PS�GSFRVFOUMZ�BDDFTTFE�GJMFT�UIF�CMPDLT�NBZ�CF�FYQMJDJUMZ�DBDIFE

JO�UIF�%BUB/PEFÇT�NFNPSZ�JO�BO�PGG�IFBQ�CMPDL�DBDIF�

&SBTVSF�DPEJOH��)%'4�VTFT�FSBTVSF�DPEJOH�UP�SFEVDF�SFQMJDBUJPO

PWFSIFBE�
284

System design patterns #

)FSF�JT�B�TVNNBSZ�PG�TZTUFN�EFTJHO�QBUUFSOT�VTFE�JO�)%'4�

8SJUF�"IFBE�-PH��'PS�GBVMU�UPMFSBODF�BOE�JO�UIF�FWFOU�PG�/BNF/PEF

DSBTI�BMM�NFUBEBUB�DIBOHFT�BSF�XSJUUFO�UP�UIF�EJTL�POUP�BO�&EJU-PH

XIJDI�JT�B�XSJUF�BIFBE�MPH�

)FBSU#FBU��5IF�)%'4�/BNF/PEF�QFSJPEJDBMMZ�DPNNVOJDBUFT�XJUI�FBDI

%BUB/PEF�JO�)FBSU#FBU�NFTTBHFT�UP�HJWF�JU�JOTUSVDUJPOT�BOE�DPMMFDU�JUT

TUBUF�

4QMJU�#SBJO��;PP,FFQFS�JT�VTFE�UP�FOTVSF�UIBU�POMZ�POF�/BNF/PEF�JT

BDUJWF�BU�BOZ�UJNF��'FODJOH�JT�VTFE�UP�QVU�B�GFODF�BSPVOE�B�QSFWJPVTMZ

BDUJWF�/BNF/PEF�TP�UIBU�JU�DBOOPU�BDDFTT�DMVTUFS�SFTPVSDFT�BOE�IFODF

TUPQ�TFSWJOH�BOZ�SFBE�XSJUF�SFRVFTU�

$IFDLTVN��&BDI�%BUB/PEF�VTFT�DIFDLTVNNJOH�UP�EFUFDU�UIF�DPSSVQUJPO

PG�TUPSFE�EBUB�

References and further reading #

)%'4�QBQFS

	IUUQT���TUPSBHFDPOGFSFODF�VT������1BQFST�.445�4IWBDILP�QEG

)%'4�)JHI�"WBJMBCJMJUZ�)"
BSDIJUFDUVSF

	IUUQT���IBEPPQ�BQBDIF�PSH�EPDT�TUBCMF�IBEPPQ�QSPKFDU�EJTU�IBEPPQ�

IEGT�)%'4)JHI"WBJMBCJMJUZ8JUI/'4�IUNM

"QBDIF�)%'4�"SDIJUFDUVSF

	IUUQT���IBEPPQ�BQBDIF�PSH�EPDT�DVSSFOU�IBEPPQ�QSPKFDU�EJTU�IBEPPQ�

IEGT�)EGT%FTJHO�IUNM

285

https://storageconference.us/2010/Papers/MSST/Shvachko.pdf
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Back

HDFS Characteristics

Next

Quiz: HDFS

%JTUSJCVUFE�'JMF�4ZTUFNT��"�4VSWFZ

	IUUQ���JKDTJU�DPN�EPDT�7PMVNF�����WPM�JTTVF���JKDTJU������������QEG

286

http://ijcsit.com/docs/Volume%205/vol5issue03/ijcsit20140503234.pdf

287

Yoda
BigTable: How to Design a Wide-column Storage System?

BigTable: Introduction

Let’s explore Bigtable and its use cases.

We'll cover the following

• Goal

• What is BigTable?

• Background

• BigTable use cases

Goal #

Design a distributed and scalable system that can store a huge amount of

structured data. The data will be indexed by a row key where each row can

have an unbounded number of columns.

What is BigTable? #

BigTable is a distributed and massively scalable wide-column store. It is

designed to store huge sets of structured data. As its name suggests, BigTable

provides storage for very big tables (often in the terabyte range).

In terms of the CAP theorem, BigTable is a CP system, i.e., it has strictly

consistent reads and writes. BigTable can be used as an input source or

output destination for MapReduce

(https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html) jobs.

288

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Background #

BigTable was developed at Google and has been in use since 2005 in dozens

of Google services. Because of the large scale of its services, Google could not

use commercial databases. Also, the cost of using an external solution would

have been too high. That is why Google chose to build an in-house solution.

BigTable is a highly available and high-performing database that powers

multiple applications across Google — where each application has different

needs in terms of the size of data to be stored and latency with which results

are expected.

Though BigTable is not open-source itself, its paper was crucial in inspiring

powerful open-source databases like Cassandra

(https://cassandra.apache.org/) (which borrows BigTable’s data model),

HBase (https://hbase.apache.org/) (a distributed non-relational database) and

Hypertable (https://hypertable.org/).

BigTable use cases #

Google built BigTable to store large amounts of data and perform thousands

of queries per second on that data. Examples of BigTable data are billions of

URLs with many versions per page, petabytes of Google Earth data, and

billions of users’ search data.

BigTable is suitable to store large datasets that are greater than one TB

where each row is less than 10MB. Since BigTable does not provide ACID

(atomicity, consistency, isolation, durability) properties or transaction

support, Online Transaction Processing (OLTP

(https://en.wikipedia.org/wiki/Online_transaction_processing)) applications

289

https://cassandra.apache.org/
https://hbase.apache.org/
https://hypertable.org/
https://en.wikipedia.org/wiki/Online_transaction_processing

Back

Mock Interview: HDFS

Next

BigTable Data Model

with transaction processes should not use BigTable. For BigTable, data

should be structured in the form of key-value pairs or rows-columns. Non-

structured data like images or movies should not be stored in BigTable.

Here are the examples of data that Google stores in BigTable:

URL and its related data, e.g., PageRank, page contents, crawl metadata

(e.g., when a page was crawled, what was the response code, etc.), links,

anchors (links pointing to a page). There are billions of URLs with many

versions of a page.

Per-user data, e.g., preference settings, recent queries/search results.

Google has hundreds of millions of users.

BigTable can be used to store the following types of data:

1. Time series data: As the data is naturally ordered

2. Internet of Things (IoT) data: Constant streams of writes

3. Financial Data: Often represented as time-series data

290

https://en.wikipedia.org/wiki/Online_transaction_processing

BigTable Data Model

This lesson explains how BigTable models its data.

We'll cover the following

• Rows

• Column families

• Columns

• Timestamps

In simple terms, BigTable can be characterized as a sparse, distributed,

persistent, multidimensional, sorted map. Let’s dig deeper to understand

each of these characteristics of BigTable.

Traditional DBs have a two-dimensional layout of the data, where each cell

value is identified by the ‘Row ID’ and ‘Column Name’:

employee_id name phone email department manager_id

294 Sophia 46398645 sophia@email.com Software 231

321 Xi Peng null xipen@email.com Software 144

321 Adam 87533210 null HRD 57

326 Rahul 23746398 rahul@email.com HRD 57

400 Peter 65289398 peter@email.com Software 88

Row ID

Column
Name

291

Two-dimensional layout of a traditional database

BigTable has a four-dimensional data model. The four dimensions are:

1. Row Key: Uniquely identifies a row

2. Column Family: Represents a group of columns

3. Column Name: Uniquely identifies a column

4. Timestamp: Each column cell can have different versions of a value,

each identified by a timestamp

BigTable's four-dimensional data model

Column
Name

Column
Name

Column
Name

Column
NameBigTable row Column

Name

Column Family Column Family

Row Key

Column
ValueTimestamp

Timestamp

Timestamp

Column
Value

Column
Value

Each column cell can have multiple
versions of the content. Each version
is identified by a timestamp

employee_id personal_info:name personal_info:phone personal_info:email work_info:dept work_info:mngr_id

294 Sophia 46398645 Software 231soph1@gmail.com
sophia@gmail.com

t1

t2

Timestamp

Column Family

A column cell can contain multiple versions of the
column value, identified by different timestamps.

Row Key

A group of columns is called a column family

Here is an example of a BigTable row:

292

The data is indexed (or sorted) by row key, column key, and a timestamp.

Therefore, to access a cell’s contents, we need values for all of them. If no

timestamp is specified, BigTable retrieves the most recent version.

(row_key : string, column_name : string, timestamp : int64) → cell

contents (string)

Rows #

Each row in the table has an associated row key that is an arbitrary string of

up to 64 kilobytes in size (although most keys are significantly smaller):

Each row is uniquely identified by the ‘row key.’

Each ‘row key’ is internally represented as a string.

Every read or write of data under a single row is atomic. This also

means that atomicity across rows is not guaranteed, e.g., when updating

two rows, one might succeed, and the other might fail.

Each table’s data is only indexed by row key, column key, and

timestamp. There are no secondary indices.

A column is a key-value pair where the key is represented as ‘column key’

and the value as ‘column value.’

Column families #

Column keys are grouped into sets called column families. All data stored in

a column family is usually of the same type. The number of distinct column

families in a table should be small (in the hundreds at maximum), and

293

families should rarely change during operation. Access control as well as

both disk and memory accounting are performed at the column-family level.

The following figure shows a single row from a table. The row key is 294 ,

and there are two column families: personal_info and work_info , with

three columns under the personal_info column family.

Column families

employee_id personal_info:name personal_info:phone personal_info:email work_info:

294 Sophia 46398645 sophia@email.com Software

Column Family Row Key

Optional Qualifier

Column family format: family:optional qualifier

All rows have the same set of column families.

BigTable can retrieve data from the same column family efficiently.

Short Column family names are better as names are included in the data

transfer.

Columns #

Columns are units within a column family.

A BigTable may have an unbounded number of columns.

New columns can be added on the fly.

294

Back

BigTable: Introduction

Next

System APIs

Short column names are better as names are passed in each data

transfer, e.g., ColumnFamily:ColumnName => Work:Dept

As mentioned above, BigTable is quite suitable for sparse data. This is

because empty columns are not stored.

Timestamps #

Each column cell can contain multiple versions of the content. For example,

as we saw in the earlier example, we may have several timestamped

versions of an employee’s email. A 64-bit timestamp identifies each version

that either represents real time or a custom value assigned by the client.

While reading, if no timestamp is specified, BigTable returns the most recent

version. If the client specifies a timestamp, the latest version that is earlier

than the specified timestamp is returned.

BigTable supports two per-column-family settings to garbage-collect cell

versions automatically. The client can specify that only the last ‘n’ versions of

a cell be kept, or that only new-enough versions be kept (e.g., only keep

values that were written in the previous seven days).

295

System APIs

Let's explore BigTable APIs.

We'll cover the following

• Metadata operations

• Data operations

BigTable provides APIs for two types of operations:

Metadata operations

Data operations

Metadata operations #

BigTable provides APIs for creating and deleting tables and column families.

It also provides functions for changing cluster, table, and column family

metadata, such as access control rights.

Data operations #

Clients can insert, modify, or delete values in BigTable. Clients can also

lookup values from individual rows or iterate over a subset of the data in a

table.

BigTable supports single-row transactions, which can be used to

perform atomic read-modify-write sequences on data stored under a

296

Back

BigTable Data Model

Next

Partitioning and High-level Architecture

single row key.

Bigtable does not support transactions across row keys, but provides a

client interface for batch writing across row keys.

BigTable allows cells to be used as integer counters.

A set of wrappers allow a BigTable to be used both as an input source

and as an output target for MapReduce

(https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html) jobs.

Clients can also write scripts in Sawzall (a language developed at

Google) to instruct server-side data processing (transform, filter,

aggregate) prior to the network fetch.

Here are APIs for write operations:

Set() : write cells in a row

DeleteCells() : delete cells in a row

DeleteRow() : delete all cells in a row

A read or scan operation can read arbitrary cells in a BigTable:

Each row read operation is atomic.

Can ask for data from just one row, all rows, etc.

Can restrict returned rows to a particular range.

Can ask for all columns, just certain columns families, or specific

columns.

297

https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

Partitioning and High-level Architecture

This lesson gives a brief overview of BigTable's architecture
and its data partitioning scheme.

We'll cover the following

• Table partitioning

• High-level architecture

Table partitioning #

A single instance of a BigTable implementation is known as a cluster. Each

cluster can store a number of tables where each table is split into multiple

Tablets, each around 100–200 MB in size.

298

row_id

Tablet 1

2001

...

3000

Tablet 2

3001

...

4500

Tablets

Table

A Tablet holds a contiguous range of rows.

The table is broken into Tablets at row boundaries.

Initially, each table consists of only one Tablet. As the table grows,

multiple Tablets are created. By default, a table is split at around 100 to

200 MB.

Tablets are the unit of distribution and load balancing (more about this

later).

Since the table is sorted by row, reads of short ranges of rows are always

efficient, that is to say, communicating with a small number of Tablets.

This also means that selecting a row key with a high degree of locality is

very important.

Each Tablet is assigned to a Tablet server (discussed later), which

manages all read/write requests of that Tablet.

High-level architecture #

The architecture of a BigTable cluster consists of three major components:
299

1. Client Library: A library component that is linked into every client. The

client talks to BigTable through this library.

2. One master server: Responsible for performing metadata operations

and assigning Tablets to Tablet servers and managing them.

3. Many Tablet servers: Each Tablet server serves read and write of the

data to the Tablets it is assigned.

BigTable is built on top of several other pieces from Google infrastructure:

1. GFS: BigTable uses the Google File System to store its data and log files.

2. SSTable: Google’s SSTable (Sorted String Table) file format is used to

store BigTable data. SSTable provides a persistent, ordered, and

immutable map from keys to values (more on this later). SSTable is

designed in such a way that any data access requires, at most, a single

disk access.

3. Chubby: BigTable uses a highly available and persistent distributed lock

service called Chubby to handle synchronization issues and store

configuration information.

4. Cluster Scheduling System: Google has a cluster management system

that schedules, monitors, and manages the Bigtable’s cluster.

Let’s understand these components one by one.

300

Back

System APIs

Next

SSTable

High-level architecture of BigTable

Chubby

Logs

GFS

SSTables
(Tablet data) Tablet Logs

Cluster Scheduling
System

Bigtable's Master
server

Tablet server Tablet server Tablet server

Read/write
data and logs

Handles monitoring and failover.Coordination service. Holds
metadata & handles master election.

Read/write
requests

Metadata operationOpen()

Handles Tablet data and logs

BigTable
Client

Client Library

301

SSTable

Let's learn how Tablets are stored in SSTables.

We'll cover the following

• How are Tablets stored in GFS?

• Table vs. Tablet vs. SSTable

How are Tablets stored in GFS? #

BigTable uses Google File System (GFS), a persistent distributed file storage

system to store data as files. The file format used by BigTable to store its files

is called SSTable:

SSTables are persisted, ordered maps of keys to values, where both keys

and values are arbitrary byte strings.

Each Tablet is stored in GFS as a sequence of files called SSTables.

An SSTable consists of a sequence of data blocks (typically 64KB in size).

SSTable contains multiple blocks

64K
block

index

64K
block

64K
block

64K
block...

SSTable

302

A block index is used to locate blocks; the index is loaded into memory

when the SSTable is opened.

Reading data from SSTable

2 9 11 12 19 22

| | | | | |
0 1057 3034 3914 5450 8120

Key Offset

2 0

9 1057

11 3034

12 3914

19 5450

22 8120

SSTable Index

SSTable data block

A lookup can be performed with a single disk seek. We first find the

appropriate block by performing a binary search in the in-memory

index, and then reading the appropriate block from the disk.

To read data from an SSTable, it can either be copied from disk to

memory as a whole or just the index. The former approach avoids

subsequent disk seeks for lookups, while the latter requires a single disk

seek for each lookup.

SSTables provide two operations:

Get the value associated with a given key

Iterate over a set of values in a given key range

Each SSTable is immutable (read-only) once written to GFS. If new data

is added, a new SSTable is created. Once an old SSTable is no longer

needed, it is set out for garbage collection. SSTable immutability is at the

303

core of BigTable’s data checkpointing and recovery routines. SSTable’s

immutability provides following advantages:

No synchronization is needed during read operations.

This also makes it easier to split Tablets.

Garbage collector handles the permanent removal of deleted or

stale data.

Table vs. Tablet vs. SSTable #

Here is how we can define the relationship between Table, Tablet and

SStable:

Multiple Tablets make up a table.

SSTables can be shared by multiple Tablets.

Tablets do not overlap, SSTables can overlap.

Tablet vs SSTable

Tablet

Apple ... Boat

Tablet

Boats ... Cats
...

64K
block

index

64K
block

64K
block

64K
block...

SSTable 64K
block

index

64K
block

64K
block

64K
block...

SSTable 64K
block

index

64K
block

64K
block

64K
block...

SSTable

BigTable Cell

GFS

SSTable shared
between two Tablets

To improve write performance, BigTable uses an in-memory, mutable

sorted buffer called MemTable to store recent updates. As more writes

are performed, MemTable size increases, and when it reaches a

threshold, the MemTable is frozen, a new MemTable is created, and the

frozen MemTable is converted to an SSTable and written to GFS.

304

Back

Partitioning and High-level Architecture

Next

GFS and Chubby

Each data update is also written to a commit-log which is also stored in

GFS. This log contains redo records used for recovery if a Tablet server

fails before committing a MemTable to SSTable.

While reading, the data can be in MemTables or SSTables. Since both

these tables are sorted, it is easy to find the most recent data.

Read and write work�ow

Write

MemTable

CommitLog

Key Value

... ... Read

Flush

SSTables

Memory

GFS

305

GFS and Chubby

Let's explore how BigTable interacts with GFS and Chubby.

We'll cover the following

• GFS

• Chubby

GFS #

GFS is a scalable distributed file system developed by Google for its large

data-intensive applications such as BigTable.

GFS files are broken into fixed-size blocks, called Chunks.

Chunks are stored on data servers called ChunkServers.

GFS master manages the metadata.

SSTables are divided into fixed-size, blocks and these blocks are stored

on ChunkServers.

Each chunk in GFS is replicated across multiple ChunkServers for

reliability.

Clients interact with the GFS master for metadata, but all data transfers

happen directly between the client and ChunkServers.

306

High-level architecture of GFS

Metadata

GFS Master server

Client

GFS Client
Library

Metadata request

Metadata response

ChunkServer

Chunk ChunkChunk

Linux File System

ChunkServer

Chunk ChunkChunk

Linux File System

Read/Write request

Read/Write response

ChunkServer

Chunk Chunk

Linux File System. . .

Instructions to ChunkServers

Two replicas of each chunk

For a detailed discussion, please see GFS

(https://www.educative.io/collection/page/5668639101419520/5559029852536

832/6383131278442496).

Chubby #

Chubby is a highly available and persistent distributed locking service that

allows a multi-thousand node Bigtable cluster to stay coordinated.

Chubby usually runs with five active replicas, one of which is elected as

the master to serve requests. To remain alive, a majority of Chubby

replicas must be running.

BigTable depends on Chubby so much that if Chubby is unavailable for

an extended period of time, BigTable will also become unavailable.

Chubby uses the Paxos algorithm to keep its replicas consistent in the

face of failure.

307

https://www.educative.io/collection/page/5668639101419520/5559029852536832/6383131278442496

Chubby provides a namespace consisting of files and directories. Each

file or directory can be used as a lock.

Read and write access to a Chubby file is atomic.

Each Chubby client maintains a session with a Chubby service. A client’s

session expires if it is unable to renew its session lease within the lease

expiration time. When a client’s session expires, it loses any locks and

open handles. Chubby clients can also register callbacks on Chubby files

and directories for notification of changes or session expiration.

In BigTable, Chubby is used to:

Ensure there is only one active master. The master maintains a

session lease with Chubby and periodically renews it to retain the

status of the master.

Store the bootstrap location of BigTable data (discussed later)

Discover new Tablet servers as well as the failure of existing ones

Store BigTable schema information (the column family information

for each table)

Store Access Control Lists (ACLs)

308

Back

SSTable

Next

Bigtable Components

High-level architecture of Chubby

Server

Server
(master)

Server

Server

Server

Chubby

RPC

Chubby
Library

Client
Application

Chubby
Library

Client
Application

. . .

RPC

309

Bigtable Components

Let's explore the components that constitute BigTable.

We'll cover the following

• BigTable master server

• Tablet servers

As described previously, a BigTable cluster consists of three major

components:

1. A library component that is linked into every client

2. One master server

3. Many Tablet servers

310

BigTable architecture

Client

Chubby

Logs

GFS

SSTables
(Tablet data) Tablet Logs

Cluster Scheduling
System

Master server

Tablet server

Read/write data and logs

Handles monitoring and failover.
Coordination service. Holds

metadata. Handles master election.

Metadata operationGet Meta-0 tablet location

Open()

Handles tablet data and logs

BigTable

Client Library

Perform metadata operations and
load balancing of tablet servers

Tablet serverTablet server

Read/write rows

Monitoring,
Load balancing,

Garbage collection

Locks &
Heartbeats

BigTable master server #

There is only one master server in a BigTable cluster, and it is responsible

for:

Assigning Tablets to Tablet servers and ensuring effective load

balancing

Monitoring the status of Tablet servers and managing the joining or

failure of Tablet server

Garbage collection of the underlying files stored in GFS

Handling metadata operations such as table and column family

creations

311

Back

GFS and Chubby

Next

Working with Tablets

Bigtable master is not involved in the core task of mapping tablets onto the

underlying files in GFS (Tablet servers handle this). This means that Bigtable

clients do not have to communicate with the master at all. This design

decision significantly reduces the load on the master and the possibility of

the master becoming a bottleneck.

Tablet servers #

Each Tablet server is assigned ownership of a number of Tablets

(typically 10–1,000 Tablets per server) by the master.

Each Tablet server serves read and write requests of the data of the

Tablets it is assigned. The client communicates directly with the Tablet

servers for reads/writes.

Tablet servers can be added or removed dynamically from a cluster to

accommodate changes in the workloads.

Tablet creation, deletion, or merging is initiated by the master server,

while Tablet partition is handled by Tablet servers who notify the

master.

312

Working with Tablets

We'll cover the following

• Locating Tablets

• Assigning Tablets

• Monitoring Tablet servers

• Load-balancing Tablet servers

Locating Tablets #

Since Tablets move around from server to server (due to load balancing,

Tablet server failures, etc.), given a row, how do we find the correct Tablet

server? To answer this, we need to find the Tablet whose row range covers

the target row. BigTable maintains a 3-level hierarchy, analogous to that of a

B+ tree, to store Tablet location information.

BigTable creates a special table, called Metadata table, to store Tablet

locations. This Metadata table contains one row per Tablet that tells us which

Tablet server is serving this Tablet. Each row in the METADATA table stores a

Tablet’s location under a row key that is an encoding of the Tablet’s table

identifier and its end row.

METADATA: Key: table id + end row
 Data: tablet server location

BigTable stores the information about the Metadata table in two parts:

313

1. Meta-1 Tablet has one row for each data Tablet (or non-meta Tablet).

Since Meta-1 Tablet can be big, it is split into multiple metadata Tablets

and distributed to multiple Tablet servers.

2. Meta-0 Tablet has one row for each Meta-1 Tablet. Meta-0 table never

gets split. BigTable stores the location of the Meta-0 Tablet in a Chubby

file.

Metadata tablets

Chubby ...

...

...

...

.

.

.

...

...

...

.

.

.

Data Tablets

Metadata tablets
 (Meta-1 tablets)

Root Metadata tablet
 (Meta-0 tablet)

A BigTable client seeking the location of a Tablet starts the search by looking

up a particular file in Chubby that is known to hold the location of the Meta-

0 Tablet. This Meta-0 Tablet contains information about other metadata

Tablets, which in turn contain the location of the actual data Tablets. With

this scheme, the depth of the tree is limited to three. For efficiency, the client

library caches Tablet locations and also prefetch metadata associated with

other Tablets whenever it reads the METADATA table.

314

Control and data �ow in BigTable

Client

Client Library

Tablet server

Chubby File

Meta-0 tablet

Meta-1 tablet

Tablet server Tablet server

Master server

Control flow through Chubby

Data flow

Assigning Tablets #

A Tablet is assigned to only one Tablet server at any time. The master keeps

track of the set of live Tablet servers and the mapping of Tablets to Tablet

servers. The master also keeps track of any unassigned Tablets and assigns

them to Tablet servers with sufficient room.

When a Tablet server starts, it creates and acquires an exclusive lock on a

uniquely named file in Chubby’s “servers” directory. This mechanism is used

to tell the master that the Tablet server is alive. When the master is restarted

by the Cluster Management System, the following things happen:

315

1. The master grabs a unique master lock in Chubby to prevent multiple

master instantiations.

2. The master scans the Chubby’s “servers” directory to find the live Tablet

servers.

3. The master communicates with every live Tablet server to discover

what Tablets are assigned to each server.

4. The master scans the METADATA table to learn the full set of Tablets.

Whenever this scan encounters a Tablet that is not already assigned, the

master adds the Tablet to the set of unassigned Tablets. Similarly, the

master builds a set of unassigned Tablet servers, which are eligible for

Tablet assignment. The master uses this information to assign the

unassigned Tablets to appropriate Tablet servers.

Monitoring Tablet servers #

As stated above, BigTable maintains a ‘Servers’ directory in Chubby, which

contains one file for each live Tablet server. Whenever a new Tablet server

comes online, it creates a new file in this directory to signal its availability

and obtains an exclusive lock on this file. As long as a Tablet server retains

the lock on its Chubby file, it is considered alive.

BigTable’s master keeps monitoring the ‘Servers’ directory, and whenever it

sees a new file in this directory, it knows that a new Tablet server has

become available and is ready to be assigned Tablets. In addition to that, the

master regularly checks the status of the lock. If the lock is lost, the master

assumes that there is a problem either with the Tablet server or the Chubby.

In such a case, the master tries to acquire the lock, and if it succeeds, it

concludes that Chubby is working fine, and the Tablet server is having

problems. The master, in this case, deletes the file and reassigns the tablets

of the failing Tablet server. The deletion of the file works as a signal for the

failing Tablet server to terminate itself and stop serving the Tablets.

316

Back

Bigtable Components

Next

The Life of BigTable's Read & Write O…

Whenever a Table server loses its lock on the file it has created in the

“servers” directory, it stops serving its Tablets. It tries to acquire the lock

again, and if it succeeds, it considers it a temporary network problem and

starts serving the Tablets again. If the file gets deleted, then the Tablet server

terminates itself to start afresh.

Load-balancing Tablet servers #

As described above, the master is responsible for assigning Tablets to Tablet

servers. The master keeps track of all available Tablet servers and maintains

the list of Tablets that the cluster is supposed to serve. In addition to that, the

master periodically asks Tablet servers about their current load. All this

information gives the master a global view of the cluster and helps assign

and load-balance Tablets.

317

The Life of BigTable's Read & Write Operations

Let's explore how BigTable handles its read and write
operations.

We'll cover the following

• Write request

• Read request

Write request #

Upon receiving a write request, a Tablet server performs the following set of

steps:

1. Checks that the request is well-formed.

2. Checks that the sender is authorized to perform the mutation. This

authorization is performed based on the Access Control Lists (ACLs) that

are stored in a chubby file.

3. If the above two conditions are met, the mutation is written to the

commit-log in GFS that stores redo records.

4. Once the mutation is committed to the commit-log, its contents are

stored in memory in a sorted buffer called MemTable.

5. After inserting the data into the MemTable, acknowledgment is sent to

the client that the data has been successfully written.

6. Periodically, MemTables are flushed to SSTables, and SSTables are

merged during compaction (discussed later).

318

The anatomy of a write request

MemTable

CommitLog

Flush

Key Value

... ...

SSTables

Write request
Client

Memory

GFS

Read request #

Upon receiving a read request, a Tablet server performs the following set of

steps:

1. Checks that the request is well-formed and the sender is authorized

2. Returns the rows if they are available in the Cache (discussed later)

3. Reads MemTable first to find the required rows

4. Reads SSTable indexes that are loaded in memory to find SSTables that

will have the required data, then reads the rows from those SSTables

5. Merge rows read from MemTable and SSTables to find the required

version of the data. Since the SSTables and the MemTable are sorted, the

merged view can be formed efficiently.

319

Back

Working with Tablets

Next

Fault Tolerance and Compaction

The anatomy of a read request

Client

Key Value
... ...

MemTable

Memory

GFS

CommitLog

Cache
Read request

Key Offset
... ...

Key Offset
...

SSTables

Data

SSTable Index 1 SSTable Index n

1
Return data
from cache,
if present

2 Read data from MamTable, if
present. Merge data from
SSTable before returning.

3 Read SSTable index to find the correct
SSTable containing data in GFS

4 Return data from the
relevant SSTables

320

Fault Tolerance and Compaction

Let's learn how BigTable handles fault tolerance and data
compaction.

We'll cover the following

• Fault tolerance and replication
• Fault tolerance in Chubby and GFS

• Fault tolerance for Tablet server

• Fault tolerance for the Master

• Compaction

Fault tolerance and replication #

Fault tolerance in Chubby and GFS #

As discussed earlier

(https://www.educative.io/collection/page/5668639101419520/5559029852536

832/6338075595112448), BigTable uses two independent systems Chubby and

GFS. Both of these systems adopt a replication strategy for fault tolerance

and higher availability. For example, a Chubby cell usually consists of five

servers, where one server becomes the master and the remaining four work

as replicas. In case the master fails, one of the replicas is elected to become

the leader; thus, minimizing Chubby’s downtime. Similarly, GFS stores

multiple copies of data on different ChunkServers.

Fault tolerance for Tablet server #
321

https://www.educative.io/collection/page/5668639101419520/5559029852536832/6338075595112448

BigTable’s master is responsible for monitoring the Tablet servers. The

master does this by periodically checking the status of the Chubby lock

against each Tablet server. When the master finds out that a Tablet server

has gone dead, it reassigns the tablets of the failing Tablet server.

Fault tolerance for the Master #

The master acquires a lock in a Chubby file and maintains a lease. If, at any

time, the master’s lease expires, it kills itself. When Google’s Cluster

Management System finds out that there is no active master, it starts one up.

The new master has to acquire the lock on the Chubby file before acting as

the master.

Compaction #

Mutilations in BigTable take up extra space till compaction happens.

BigTable manages compaction behind the scenes. Here is the list of

compactions:

1. Minor Compaction: As write operations are performed, the MemTable

grows in size. When the MemTable reaches a certain threshold, it is

frozen, and a new MemTable is created. The frozen MemTable is

converted to an SSTable and written to GFS. This process is called minor

compaction. Each minor compaction creates a new SSTable and has the

following two benefits:

It reduces the memory usage of the Tablet server, as it flushes the

MemTable to GFS. Once a MemTable is written to GFS,

corresponding entries in the commit-log are also removed.

It reduces the amount of data that has to be read from the commit

log during recovery if this server dies.

322

2. Merging Compaction — Minor compaction keeps increasing the count

of SSTables. This means that read operations might need to merge

updates from an arbitrary number of SSTables. To reduce the number of

SSTables, a merging compaction is performed which reads the contents

of a few SSTables and the MemTable and writes out a new SSTable. The

input SSTables and MemTable can be discarded as soon as the

compaction has finished.

3. Major Compaction — In Major compaction, all the SSTables are written

into a single SSTable. SSTables created as a result of major compaction

do not contain any deletion information or deleted data, whereas

SSTables created from non-major compactions may contain deleted

entries. Major compaction allows BigTable to reclaim resources used by

deleted data and ensures that deleted data disappears from the system

quickly, which is important for services storing sensitive data.

Major, minor, and merging compaction in BigTable

Write

MemTable

CommitLog

Key Value

... ... Read

Minor
Compaction

SSTables

Major and Merging compaction

Memory

GFS

323

Back

The Life of BigTable's Read & Write O…

Next

BigTable Re�nements

324

BigTable Re�nements

This lesson will explore different re�nements that BigTable
implemented.

We'll cover the following

• Locality groups

• Compression

• Caching

• Bloom �lters

• Uni�ed commit Log

• Speeding up Tablet recovery

BigTable implemented certain refinements to achieve high performance,

availability, and reliability. Here are their details:

Locality groups #

Clients can club together multiple column families into a locality group.

BigTable generates separate SSTables for each locality group. This has two

benefits:

Grouping columns that are frequently accessed together in a locality

group enhances the read performance.

Clients can explicitly declare any locality group to be in memory for

faster access. This way, smaller locality groups that are frequently

accessed can be kept in memory.

325

Scans over one locality group are O(bytes_in_locality_group) and not

O(bytes_in_table).

Grouping together columns to form locality groups

id personal_info:name location_info:city

294 Sophia Seattle

Locality Groups

contact_info:phone contact_info:email

46398645 sophia@email.com

Compression #

Clients can choose to compress the SSTable for a locality group to save space.

BigTable allows its clients to choose compression techniques based on their

application requirements. The compression ratio gets even better when

multiple versions of the same data are stored. Compression is applied to each

SSTable block separately.

Caching #

To improve read performance, Tablet servers employ two levels of caching:

Scan Cache — It caches (key, value) pairs returned by the SSTable and is

useful for applications that read the same data multiple times.

326

Block Cache — It caches SSTable blocks read from GFS and is useful for

the applications that tend to read the data which is close to the data they

recently read (e.g., sequential or random reads of different columns in

the same locality group within a frequently accessed row).

Bloom filters #

Any read operation has to read from all SSTables that make up a Tablet. If

these SSTables are not in memory, the read operation may end up doing

many disk accesses. To reduce the number of disk accesses BigTable uses

Bloom Filters.

Bloom Filters are created for SSTables (particularly for the locality groups).

They help to reduce the number of disk accesses by predicting if an SSTable

may contain data corresponding to a particular (row, column) pair. Bloom

filters take a small amount of memory but can improve the read

performance drastically.

Unified commit Log #

Instead of maintaining separate commit log files for each Tablet, BigTable

maintains one log file for a Tablet server. This gives better write

performance. Since each write has to go to the commit log, writing to a large

number of log files would be slow as it could cause a large number of disk

seeks.

One disadvantage of having a single log file is that it complicates the Tablet

recovery process. When a Tablet server dies, the Tablets that it served will be

moved to other Tablet servers. To recover the state for a Tablet, the new

Tablet server needs to reapply the mutations for that Tablet from the commit

log written by the original Tablet server. However, the mutations for these

327

Tablets were co-mingled in the same physical log file. One approach would

be for each new Tablet server to read this full commit log file and apply just

the entries needed for the Tablets it needs to recover. However, under such a

scheme, if 100 machines were each assigned a single Tablet from a failed

Tablet server, then the log file would be read 100 times. BigTable avoids

duplicating log reads by first sorting the commit log entries in order of the

keys <table, row name, log sequence number> . In the sorted output, all

mutations for a particular Tablet are contiguous and can therefore be read

efficiently

To further improve the performance, each Tablet server maintains two log

writing threads — each writing to its own and separate log file. Only one of

the threads is active at a time. If one of the threads is performing poorly (say,

due to network congestion), the writing switches to the other thread. Log

entries have sequence numbers to allow the recovery process.

Speeding up Tablet recovery #

As we saw above, one of the complicated and time-consuming tasks while

loading Tablets is to ensure that the Tablet server loads all entries from the

commit log. When the master moves a Tablet from one Tablet server to

another, the source Tablet server performs compactions to ensure that the

destination Tablet server does not have to read the commit log. This is done

in three steps:

In the first step, the source server performs a minor compaction. This

compaction reduces the amount of data in the commit log.

After this, the source Tablet server stops serving the Tablet.

Finally, the source server performs another (usually very fast) minor

compaction to apply any new log entries that have arrived while the

first minor compaction was being performed. After this second minor

328

Back

Fault Tolerance and Compaction

Next

BigTable Characteristics

compaction is complete, the Tablet can be loaded on another Tablet

server without requiring any recovery of log entries.

329

BigTable Characteristics

This lesson will explore some miscellaneous characteristics of
BigTable.

We'll cover the following

• BigTable performance

• Dynamo vs. BigTable

• Datastores developed on the principles of BigTable

BigTable performance #

Here are a few reasons behind BigTable’s performance and popularity:

Distributed multi-level map: BigTable can run on a large number of

machines.

Scalable means that BigTable can be easily scaled horizontally by

adding more nodes to the cluster without any performance impact. No

manual intervention or rebalancing is required. BigTable achieves

linear scalability and proven fault tolerance on commodity hardware.

Fault-tolerant and reliable: Since data is replicated to multiple nodes,

fault tolerance is pretty high.

Durable: BigTable stores data permanently.

Centralized: BigTable adopts a single-master approach to maintain data

consistency and a centralized view of the state of the system.

Separation between control and data: BigTable maintains a strict

separation between control and data flow. Clients talk to the Master for

330

all metadata operations, whereas all data access happens directly

between the Clients and the Tablet servers.

Dynamo vs. BigTable #

Here is the comparison between Dynamo and BigTable:

Dynamo BigTable

Architecture Decentralized

Every node has same set of

responsibilities

Centralized

Master handles metadata,

tablet servers handle

read/write

Data Model Key-value Multidimensional sorted
map.

Security Access rights at column fami-

ly level

Partitioning Consistent Hashing

Each node is assigned to a

random position on the ring.

Tablets

Each table is broken into a

contiguous range of rows

called tablets.

Replication Sloppy Quorum

Each data item is replicated

to 'N' number of nodes.

GFS Chunk replication

Data is stored in GFS. Files

in GFS are broken into

chunks, and these chunks

are replicated to different

servers.

CAP AP CP

Operations By key By key range

331

Storage Plug-in SSTables in GFS

Memberships and failure
detection

Gossip based protocol Handshakes initiated by
the master

Datastores developed on the
principles of BigTable #

Google’s BigTable has inspired many NoSQL systems. Here is a list of a few

famous ones:

HBase: HBase is an open-source, distributed non-relational database

modeled after BigTable. It is built on top of the Hadoop Distributed File

System (HDFS).

Hypertable: Similar to HBase, Hypertable is an open-source implementation

of BigTable and is written in C++. Unlike BigTable, which uses only one

storage layer (i.e., GFS), Hypertable is capable of running on top of any file

system (e.g., HDFS (https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS),

GlusterFS (https://en.wikipedia.org/wiki/Gluster#GlusterFS), or the

CloudStore (https://en.wikipedia.org/wiki/CloudStore)). To achieve this, the

system has abstracted the interface to the file system by sending all data

requests through a Distributed File System broker process.

Cassandra: Cassandra is a distributed, decentralized, and highly available

NoSQL database. Its architecture is based on Dynamo and BigTable.

Cassandra can be described as a BigTable-like datastore running on a

Dynamo-like infrastructure. Cassandra is also a wide-column store and

utilizes the storage model of BigTable, i.e., SSTables and MemTables.

332

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://en.wikipedia.org/wiki/Gluster#GlusterFS
https://en.wikipedia.org/wiki/CloudStore

Back

BigTable Re�nements

Next

Summary: BigTable

333

Summary: BigTable

Here is a quick summary of BigTable for you!

We'll cover the following

• Summary

• References & further reading

Summary #

#JH5BCMF�JT�(PPHMFÇT�EJTUSJCVUFE�TUPSBHF�TZTUFN�EFTJHOFE�UP�NBOBHF

MBSHF�BNPVOUT�PG�TUSVDUVSFE�EBUB�XJUI�IJHI�BWBJMBCJMJUZ�MPX�MBUFODZ

TDBMBCJMJUZ�BOE�GBVMU�UPMFSBODF�HPBMT�

#JH5BCMF�JT�B�TQBSTF�EJTUSJCVUFE�QFSTJTUFOU�NVMUJEJNFOTJPOBM�TPSUFE

NBQ�

5IF�NBQ�JT�JOEFYFE�CZ�B�VOJRVF�LFZ�NBEF�VQ�PG�B�SPX�LFZ�B�DPMVNO

LFZ�BOE�B�UJNFTUBNQ�	B����CJU�JOUFHFS�ÉSFBM�UJNFÊ�JO�NJMMJTFDPOE
�

&BDI�SPX�LFZ�JT�BO�BSCJUSBSZ�TUSJOH�PG�VQ�UP����LJMPCZUFT�JO�TJ[F�BMUIPVHI

NPTU�LFZT�BSF�TJHOJGJDBOUMZ�TNBMMFS�

6OMJLF�B�USBEJUJPOBM�SFMBUJPOBM�EBUBCBTF�UBCMF�#JH5BCMF�JT�B�XJEF�

DPMVNO�EBUBTUPSF�XJUI�BO�VOCPVOEFE�OVNCFS�PG�DPMVNOT�

$PMVNOT�BSF�HSPVQFE�JOUP�DPMVNO�GBNJMJFT��&BDI�DPMVNO�GBNJMZ�TUPSFT

TJNJMBS�UZQFT�PG�EBUB�VOEFS�B�ÆGBNJMZ�RVBMJGJFSÇ�DPMVNO�LFZ�

5IF�SPX�LFZ�BOE�UIF�DPMVNO�	GBNJMZ�RVBMJGJFS
�LFZ�VOJRVFMZ�JEFOUJGZ�B

EBUB�DFMM��8JUIJO�FBDI�DFMM�UIF�EBUB�DPOUFOUT�BSF�GVSUIFS�JOEFYFE�CZ

UJNFTUBNQT�QSPWJEJOH�NVMUJQMF�WFSTJPOT�PG�UIF�EBUB�JO�UJNF�

334

&WFSZ�SFBE�PS�XSJUF�PG�EBUB�VOEFS�B�TJOHMF�SPX�JT�BUPNJD��"UPNJDJUZ

BDSPTT�SPXT�JT�OPU�HVBSBOUFFE�

#JH5BCMF�QSPWJEFT�"1*T�GPS�NFUBEBUB�PQFSBUJPOT�MJLF�DSFBUJOH�BOE

EFMFUJOH�UBCMFT�BOE�DPMVNO�GBNJMJFT��#JH5BCMF�DMJFOUT�DBO�VTF�EBUB

PQFSBUJPO�"1*T�GPS�XSJUJOH�PS�EFMFUJOH�WBMVFT�MPPLVQ�WBMVFT�GSPN

JOEJWJEVBM�SPXT�PS�JUFSBUF�PWFS�B�TVCTFU�PG�UIF�EBUB�JO�B�UBCMF�

"�UBCMF�JT�TQMJU�JOUP�TNBMMFS�SBOHFT�PG�SPXT�DBMMFE�5BCMFUT��"�5BCMFU�IPMET

B�DPOUJHVPVT�SBOHF�PG�SPXT�

5BCMFUT�BSF�UIF�VOJU�PG�EJTUSJCVUJPO�BOE�MPBE�CBMBODJOH�

#JH5BCMF�BSDIJUFDUVSF�DPOTJTUT�PG�POF�NBTUFS�TFSWFS�BOE�NVMUJQMF

5BCMFU�TFSWFST�

.BTUFS�JT�SFTQPOTJCMF�GPS�BTTJHOJOH�5BCMFUT�UP�5BCMFU�TFSWFST�BT�XFMM�BT

NPOJUPSJOH�BOE�CBMBODJOH�5BCMFU�TFSWFSTÇ�MPBE�

&BDI�5BCMFU�TFSWFS�TFSWFT�SFBE�BOE�XSJUF�SFRVFTUT�PG�UIF�EBUB�UP�UIF

5BCMFUT�JU�JT�BTTJHOFE�

#JH5BCMF�DMJFOUT�DPNNVOJDBUF�EJSFDUMZ�XJUI�UIF�5BCMFU�TFSWFST�UP

SFBE�XSJUF�EBUB�

&BDI�5BCMFU�TFSWFS�TUPSFT�UIF�EBUB�JO�JNNVUBCMF�445BCMF�GJMFT�XIJDI�BSF

TUPSFE�JO�(PPHMF�'JMF�4ZTUFN�	('4
�

/FX�DPNNJUUFE�VQEBUFT�BSF�GJSTU�TUPSFE�JO�B�NFNPSZ�CBTFE�.FN5BCMF�

#JH5BCMF�QFSGPSNT�BMM�SFBE�PQFSBUJPOT�BHBJOTU�B�DPNCJOFE�WJFX�PG

445BCMFT�BOE�.FN5BCMF�

1FSJPEJDBMMZ�UIF�.FN5BCMF�JT�GMVTIFE�JOUP�BO�445BCMF�BMMPXJOH�GPS

FGGJDJFOU�NFNPSZ�VUJMJ[BUJPO�

5P�FOIBODF�SFBE�QFSGPSNBODF�#JH5BCMF�NBLFT�VTF�PG�DBDIJOH�BOE

#MPPN�GJMUFST�

#JH5BCMF�SFMJFT�IFBWJMZ�PO�EJTUSJCVUFE�MPDLJOH�TFSWJDF�$IVCCZ�GPS�NBTUFS

TFSWFS�TFMFDUJPO�BOE�NPOJUPSJOH�

References & further reading #
335

Back

BigTable Characteristics

Next

Quiz: BigTable

#JH5BCMF�	IUUQT���SFTFBSDI�HPPHMF�QVCT�QVC������

445BCMF�	IUUQT���NFEJVN�DPN�EBUBCBTTT�PO�EJTL�JP�QBSU���MTN�USFFT�

�C�EB������G

%ZOBNP

	IUUQT���XXX�BMMUIJOHTEJTUSJCVUFE�DPN���������BNB[POT@EZOBNP�IUNM

$BTTBOESB�	IUUQT���DBTTBOESB�BQBDIF�PSH�

)#BTF�	IUUQT���ICBTF�BQBDIF�PSH�

336

https://research.google/pubs/pub27898/
https://medium.com/databasss/on-disk-io-part-3-lsm-trees-8b2da218496f
https://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
https://cassandra.apache.org/
https://hbase.apache.org/

337

Yoda
System Design Patterns

Introduction: System Design Patterns

This lesson gives a brief overview of the system design
patterns that we will be discussing in the following lessons.

In the following chapters, we will discuss a set of system design patterns.

These patterns refer to common design problems related to distributed

systems and their solutions. Knowing these patterns is very important as

they can be applied to all types of distributed systems and are very handy,

especially in a system design interview.

Here is the list of patterns we will be discussing:

1. Bloom Filters

2. Consistent Hashing

3. Quorum

4. Leader and Follower

5. Write-ahead Log

6. Segmented Log

7. High-Water mark

8. Lease

9. Heartbeat

10. Gossip Protocol

11. Phi Accrual Failure Detection

12. Split-brain

13. Fencing

14. Checksum

15. Vector Clocks

16. CAP Theorem

338

Back

Mock Interview: BigTable

Next

1. Bloom Filters

17. PACELEC Theorem

18. Hinted Handoff

19. Read Repair

20. Merkle Trees

Let’s get going.

339

1. Bloom Filters

Let's learn about Bloom �lters and how to use them.

We'll cover the following

• Background

• De�nition

• Solution

• Example: BigTable

Background #

If we have a large set of structured data (identified by record IDs) stored in a

set of data files, what is the most efficient way to know which file might

contain our required data? We don’t want to read each file, as that would be

slow, and we have to read a lot of data from the disk. One solution can be to

build an index on each data file and store it in a separate index file. This

index can map each record ID to its offset in the data file. Each index file will

be sorted on the record ID. Now, if we want to search an ID in this index, the

best we can do is a Binary Search. Can we do better than that?

Definition #

Use Bloom filters to quickly find if an element might be present in a set.

Solution #
340

The Bloom filter data structure tells whether an element may be in a set, or

definitely is not. The only possible errors are false positives, i.e., a search

for a nonexistent element might give an incorrect answer. With more

elements in the filter, the error rate increases. An empty Bloom filter is a bit-

array of m bits, all set to 0. There are also k different hash functions, each of

which maps a set element to one of the m bit positions.

To add an element, feed it to the hash functions to get k bit positions,

and set the bits at these positions to 1.

To test if an element is in the set, feed it to the hash functions to get k

bit positions.

If any of the bits at these positions is 0, the element is definitely

not in the set.

If all are 1, then the element may be in the set.

Here is a Bloom filter with three elements P , Q , and R . It consists of 20 bits

and uses three hash functions. The colored arrows point to the bits that the

elements of the set are mapped to.

341

A Bloom �lter consisting of 20 bits.

1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0

P Q R

 X

The element X definitely is not in the set, since it hashes to a bit position

containing 0.

For a fixed error rate, adding a new element and testing for

membership are both constant time operations, and a filter with room

for ‘n’ elements requires O(n) space.

Example: BigTable #

In BigTable (and Cassandra), any read operation has to read from all

SSTables that make up a Tablet. If these SSTables are not in memory, the read

operation may end up doing many disk accesses. To reduce the number of

disk accesses, BigTable uses Bloom filters.

Bloom filters are created for SSTables (particularly for the locality groups).

They help reduce the number of disk accesses by predicting if an SSTable

may contain data corresponding to a particular row or column pair. For

342

Back

Introduction: System Design Patterns

Next

2. Consistent Hashing

certain applications, a small amount of Tablet server memory used for

storing Bloom filters drastically reduces the number of disk-seeks, thereby

improving read performance.

343

2. Consistent Hashing

Let's learn about Consistent Hashing and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Virtual nodes

• Advantages of Vnodes

• Examples

Background #

The act of distributing data across a set of nodes is called data partitioning.

There are two challenges when we try to distribute data:

1. How do we know on which node a particular piece of data will be

stored?

2. When we add or remove nodes, how do we know what data will be

moved from existing nodes to the new nodes? Additionally, how can we

minimize data movement when nodes join or leave?

A naive approach will use a suitable hash function that maps the data key to

a number. Then, find the server by applying modulo on this number and the

total number of servers. For example:

344

Simple hashing

key = "California"

hash(key) = 17

17 % total-servers => 17 % 5 = 2

Server Server Server Server Server

51 2 3 4

Naive approach

The scheme described in the above diagram solves the problem of finding a

server for storing/retrieving the data. But when we add or remove a server,

we have to remap all the keys and move our data based on the new server

count, which will be a complete mess!

Definition #

Use the Consistent Hashing algorithm to distribute data across nodes.

Consistent Hashing maps data to physical nodes and ensures that only a

small set of keys move when servers are added or removed.

Solution #

345

Consistent Hashing technique stores the data managed by a distributed

system in a ring. Each node in the ring is assigned a range of data. Here is an

example of the consistent hash ring:

Consistent Hashing ring

Server 4

Server 1

Server 2

Server 3

Data range (1-25)

Data range (26-50)Data range (51-75)

Data range (76-100)
1-25

26-50

51-75

76-100

Hash range = 1-100
Number of Nodes = 4
Number range per node = 100/4

All data in the range 1-25 is stored
at Server 1 and so on.

With consistent hashing, the ring is divided into smaller, predefined ranges.

Each node is assigned one of these ranges. The start of the range is called a

token. This means that each node will be assigned one token. The range

assigned to each node is computed as follows:

Range start: Token value

Range end: Next token value - 1

Here are the tokens and data ranges of the four nodes described in the above

diagram:

346

Server Token Range Start Range End

Server 1 1 1 25

Server 2 26 26 50

Server 3 51 51 75

Server 4 76 76 100

Whenever the system needs to read or write data, the first step it performs is

to apply the MD5 hashing algorithm to the key. The output of this hashing

algorithm determines within which range the data lies and hence, on which

node the data will be stored. As we saw above, each node is supposed to

store data for a fixed range. Thus, the hash generated from the key tells us

the node where the data will be stored.

Distributing data on the Consistent Hashing ring

Server 4

Server 1

Server 2

Server 3

Data range (1-25)

Data range (26-50)Data range (51-75)

Data range (76-100)
1-25

26-50

51-75

76-100

State City Zip

CA Sacramento 94203

WA Olympia 98501

TX Austin 73301

HI Honolulu 96801

NY Albany 12201

State City Zip

79 Sacramento 94203

3 Olympia 98501

75 Austin 73301

29 Honolulu 96801

49 Albany 12201

Key

Hash function

CA Sacramento 94203

WA Olympia 98501TX Austin 73301

HI Honolulu 96801

NY Albany 12201

Apply hash function to the key

The Consistent Hashing scheme above works great when a node is added or

removed from the ring, as in these cases, since only the next node is affected.

For example, when a node is removed, the next node becomes responsible

347

for all of the keys stored on the outgoing node. However, this scheme can

result in non-uniform data and load distribution. This problem can be solved

with the help of Virtual nodes.

Virtual nodes #

Adding and removing nodes in any distributed system is quite common.

Existing nodes can die and may need to be decommissioned. Similarly, new

nodes may be added to an existing cluster to meet growing demands. To

efficiently handle these scenarios, Consistent Hashing makes use of virtual

nodes (or Vnodes).

As we saw above, the basic Consistent Hashing algorithm assigns a single

token (or a consecutive hash range) to each physical node. This was a static

division of ranges that requires calculating tokens based on a given number

of nodes. This scheme made adding or replacing a node an expensive

operation, as, in this case, we would like to rebalance and distribute the data

to all other nodes, resulting in moving a lot of data. Here are a few potential

issues associated with a manual and fixed division of the ranges:

Adding or removing nodes: Adding or removing nodes will result in

recomputing the tokens causing a significant administrative overhead

for a large cluster.

Hotspots: Since each node is assigned one large range, if the data is not

evenly distributed, some nodes can become hotspots.

Node rebuilding: Since each node’s data might be replicated (for fault-

tolerance) on a fixed number of other nodes, when we need to rebuild a

node, only its replica nodes can provide the data. This puts a lot of

pressure on the replica nodes and can lead to service degradation.

To handle these issues, Consistent Hashing introduces a new scheme of

distributing the tokens to physical nodes. Instead of assigning a single token

to a node, the hash range is divided into multiple smaller ranges, and each

348

physical node is assigned several of these smaller ranges. Each of these

subranges is considered a Vnode. With Vnodes, instead of a node being

responsible for just one token, it is responsible for many tokens (or

subranges).

Comparing Consistent Hashing ring with and without Vnodes

Server 1

Server 4

Server 2

Server 3

With Vnodes

Server 4

Server 1

Server 2

Server 3

Without Vnodes

Practically, Vnodes are randomly distributed across the cluster and are

generally non-contiguous so that no two neighboring Vnodes are assigned to

the same physical node. Additionally, nodes do carry replicas of other nodes

for fault tolerance. Also, since there can be heterogeneous machines in the

clusters, some servers might hold more Vnodes than others. The figure

below shows how physical nodes A, B, C, D, & E are using Vnodes of the

Consistent Hash ring. Each physical node is assigned a set of Vnodes and

each Vnode is replicated once.

349

Mapping Vnodes to physical nodes on a Consistent Hashing ring

1
2

3

4

5

6

7

89

10

11

12

13

14

15
16

Server B

Server A

Server C

1

2

4

5

6

7

8

9

10

11

12

15

16
1

2

3

4

5

6

7 9

10

11

12

13 15

Server D

Server E

14

13

16

3
14

8

Advantages of Vnodes #

Vnodes gives the following advantages:

1. As Vnodes help spread the load more evenly across the physical nodes

on the cluster by dividing the hash ranges into smaller subranges, this

speeds up the rebalancing process after adding or removing nodes.

When a new node is added, it receives many Vnodes from the existing

nodes to maintain a balanced cluster. Similarly, when a node needs to

be rebuilt, instead of getting data from a fixed number of replicas, many

nodes participate in the rebuild process.

2. Vnodes make it easier to maintain a cluster containing heterogeneous

machines. This means, with Vnodes, we can assign a high number of

sub-ranges to a powerful server and a lower number of sub-ranges to a

less powerful server.

350

Back

1. Bloom Filters

Next

3. Quorum

3. In contrast to one big range, since Vnodes help assign smaller ranges to

each physical node, this decreases the probability of hotspots.

Examples #

Dynamo and Cassandra use Consistent Hashing to distribute their data

across nodes.

351

3. Quorum

Let's learn about Quorum and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In Distributed Systems, data is replicated across multiple servers for fault

tolerance and high availability. Once a system decides to maintain multiple

copies of data, another problem arises: how to make sure that all replicas are

consistent, i.e., if they all have the latest copy of the data and that all clients

see the same view of the data?

Definition #

In a distributed environment, a quorum is the minimum number of servers

on which a distributed operation needs to be performed successfully before

declaring the operation’s overall success.

Solution #
352

Suppose a database is replicated on five machines. In that case, quorum

refers to the minimum number of machines that perform the same action

(commit or abort) for a given transaction in order to decide the final

operation for that transaction. So, in a set of 5 machines, three machines

form the majority quorum, and if they agree, we will commit that operation.

Quorum enforces the consistency requirement needed for distributed

operations.

In systems with multiple replicas, there is a possibility that the user reads

inconsistent data. For example, when there are three replicas, R1 , R2 , and

R3 in a cluster, and a user writes value v1 to replica R1 . Then another user

reads from replica R2 or R3 which are still behind R1 and thus will not

have the value v1 , so the second user will not get the consistent state of

data.

What value should we choose for a quorum? More than half of the

number of nodes in the cluster: (N/2 + 1) where N is the total number of

nodes in the cluster, for example:

In a 5-node cluster, three nodes must be online to have a majority.

In a 4-node cluster, three nodes must be online to have a majority.

With 5-node, the system can afford two node failures, whereas, with 4-

node, it can afford only one node failure. Because of this logic, it is

recommended to always have an odd number of total nodes in the

cluster.

Quorum is achieved when nodes follow the below protocol: R+W > N ,

where:

N = nodes in the quorum group

W = minimum write nodes

R = minimum read nodes

353

If a distributed system follows R+W > N rule, then every read will see at

least one copy of the latest value written. For example, a common

configuration could be (N=3, W=2, R=2) to ensure strong consistency. Here

are a couple of other examples:

(N=3, W=1, R=3): fast write, slow read, not very durable

(N=3, W=3, R=1): slow write, fast read, durable

The following two things should be kept in mind before deciding read/write

quorum:

R=1 and W=N ⇒ full replication (write-all, read-one): undesirable when

servers can be unavailable because writes are not guaranteed to

complete.

Best performance (throughput/availability) when 1 < r < w < n,

because reads are more frequent than writes in most applications

Examples #

For leader election, Chubby uses Paxos, which use quorum to ensure

strong consistency.

As stated above, quorum is also used to ensure that at least one node

receives the update in case of failures. For instance, in Cassandra, to

ensure data consistency, each write request can be configured to be

successful only if the data has been written to at least a quorum (or

majority) of replica nodes.

Dynamo replicates writes to a sloppy quorum of other nodes in the

system, instead of a strict majority quorum like Paxos. All read/write

operations are performed on the first N healthy nodes from the

preference list, which may not always be the first N nodes encountered

while walking the consistent hashing ring.

354

4. Leader and Follower

Let's learn about leader and followers patterns and its usage
in distributed systems.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

Distributed systems keep multiple copies of data for fault tolerance and

higher availability. A system can use quorum to ensure data consistency

between replicas, i.e., all reads and writes are not considered successful until

a majority of nodes participate in the operation. However, using quorum can

lead to another problem, that is, lower availability; at any time, the system

needs to ensure that at least a majority of replicas are up and available,

otherwise the operation will fail. Quorum is also not sufficient, as in certain

failure scenarios, the client can still see inconsistent data.

Definition #

Allow only a single server (called leader) to be responsible for data

replication and to coordinate work.

355

Solution #

At any time, one server is elected as the leader. This leader becomes

responsible for data replication and can act as the central point for all

coordination. The followers only accept writes from the leader and serve as

a backup. In case the leader fails, one of the followers can become the leader.

In some cases, the follower can serve read requests for load balancing.

Leader entertains requests from the client and is responsible for replicating and coordinating with
followers

Server 4
(Follower)

Server 3
(Follower)

Server 2
(Follower)

Client Server 1
(Leader)

replicate

Server 5
(Follower)

replicate

replicate

replicate

read/write request

response

Examples #

In Kafka, each partition has a designated leader which is responsible

for all reads and writes for that partition. Each follower’s responsibility

is to replicate the leader’s data to serve as a “backup” partition. This
356

Back

3. Quorum

Next

5. Write-ahead Log

provides redundancy of messages in a partition, so that a follower can

take over the leadership if the leader goes down.

Within the Kafka cluster, one broker is elected as the Controller. This

Controller is responsible for admin operations, such as creating/deleting

a topic, adding partitions, assigning leaders to partitions, monitoring

broker failures, etc. Furthermore, the Controller periodically checks the

health of other brokers in the system.

To ensure strong consistency, Paxos (hence Chubby) performs leader

election at startup. This leader is responsible for data replication and

coordination.

357

5. Write-ahead Log

Let's learn about write-ahead logging and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

Machines can fail or restart anytime. If a program is in the middle of

performing a data modification, what will happen when the machine it is

running on loses power? When the machine restarts, the program might

need to know the last thing it was doing. Based on its atomicity and

durability needs, the program might need to decide to redo or undo or finish

what it had started. How can the program know what it was doing before the

system crash?

Definition #

To guarantee durability and data integrity, each modification to the system is

first written to an append-only log on the disk. This log is known as Write-

Ahead Log (WAL) or transaction log or commit log. Writing to the WAL

358

guarantees that if the machine crashes, the system will be able to recover

and reapply the operation if necessary.

Solution #

The key idea behind the WAL is that all modifications before they are

applied to the system are first written to a log file on the disk. Each log entry

should contain enough information to redo or undo the modification. The log

can be read on every restart to recover the previous state by replaying all the

log entries. Using WAL results in a significantly reduced number of disk

writes, because only the log file needs to be flushed to disk to guarantee that

a transaction is committed, rather than every data file changed by the

transaction.

Each node, in a distributed environment, maintains its own log. WAL is

always sequentially appended, which simplifies the handling of the log. Each

log entry is given a unique identifier; this identifier helps in implementing

certain other operations like log segmentation(discussed later) or log

purging.

Write-ahead log

12 11 10 9 8 7 6 5 4 3 2 1 0

1st Record Next Record
Written

Examples #
359

Back

4. Leader and Follower

Next

6. Segmented Log

Cassandra: To ensure durability, whenever a node receives a write

request, it immediately writes the data to a commit log which is a WAL.

Cassandra, before writing data to a MemTable, first writes it to the

commit log. This provides durability in the case of an unexpected

shutdown. On startup, any mutations in the commit log will be applied

to MemTables.

Kafka implements a distributed Commit Log to persistently store all

messages it receives.

Chubby: For fault tolerance and in the event of a leader crash, all

database transactions are stored in a transaction log which is a WAL.

360

6. Segmented Log

Let's learn about segmented log and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

A single log can become difficult to manage. As the file grows, it can also

become a performance bottleneck, especially when it is read at the startup.

Older logs need to be cleaned up periodically or, in some cases, merged.

Doing these operations on a single large file is difficult to implement.

Definition #

Break down the log into smaller segments for easier management.

Solution #

361

Back

5. Write-ahead Log

Next

7. High-Water Mark

A single log file is split into multiple parts, such that the log data is divided

into equal-sized log segments. The system can roll the log based on a rolling

policy - either a configurable period of time (e.g., every 4 hours) or a

configurable maximum size (e.g., every 1GB).

Examples #

Cassandra uses the segmented log strategy to split its commit log into

multiple smaller files instead of a single large file for easier operations.

As we know, when a node receives a write operation, it immediately

writes the data to a commit log. As the Commit Log grows in size and

reaches its threshold in size, a new commit log is created. Hence, over

time, several commit logs will exist, each of which is called a segment.

Commit log segments reduce the number of seeks needed to write to

disk. Commit log segments are truncated when Cassandra has flushed

corresponding data to SSTables. A commit log segment can be archived,

deleted, or recycled once all its data has been flushed to SSTables.

Kafka uses log segmentation to implement storage for its partitions. As

Kafka regularly needs to find messages on disk for purging, a single long

file could be a performance bottleneck and error-prone. For easier

management and better performance, the partition is split into

segments.

362

7. High-Water Mark

Let's learn about high-water mark and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

Distributed systems keep multiple copies of data for fault tolerance and

higher availability. To achieve strong consistency, one of the options is to use

a leader-follower setup, where the leader is responsible for entertaining all

the writes, and the followers replicate data from the leader.

Each transaction on the leader is committed to a write-ahead log (WAL), so

that the leader can recover from crashes or failures. A write request is

considered successful as soon as it is committed to the WAL on the leader.

The replication can happen asynchronously; either the leader can push the

mutation to the followers, or the follower can pull it from the leader. In case

the leader crashes and cannot recover, one of the followers will be elected as

the new leader. Now, this new leader can be a bit behind the old leader, as

there might be some transactions that have not been completely propagated

before the old leader crashed. We do have these transactions in the WAL on

the old leader, but those log entries cannot be recovered until the old leader

363

becomes alive again. So those transactions are considered lost. Under this

scenario, the client can see some data inconsistencies, e.g., the last data that

the client fetched from the old leader may not be available anymore. In such

error scenarios, some followers can be missing entries in their logs, and

some can have more entries than others. So, it becomes important for the

leader and followers to know what part of the log is safe to be exposed to the

clients.

Definition #

Keep track of the last log entry on the leader, which has been successfully

replicated to a quorum of followers. The index of this entry in the log is

known as the High-Water Mark index. The leader exposes data only up to the

high-water mark index.

Solution #

For each data mutation, the leader first appends it to WAL and then sends it

to all the followers. Upon receiving the request, the followers append it to

their respective WAL and then send an acknowledgment to the leader. The

leader keeps track of the indexes of the entries that have been successfully

replicated on each follower. The high-water mark index is the highest index,

which has been replicated on the quorum of the followers. The leader can

propagate the high-water mark index to all followers as part of the regular

Heartbeat message. The leader and followers ensure that the client can read

data only up to the high-water mark index. This guarantees that even if the

current leader fails and another leader is elected, the client will not see any

data inconsistencies.

Examples #
364

Back

6. Segmented Log

Next

8. Lease

Kafka: To deal with non-repeatable reads and ensure data consistency, Kafka

brokers keep track of the high-water mark, which is the largest offset that all

In-Sync-Replicas (ISRs) of a particular partition share. Consumers can see

messages only until the high-water mark.

365

8. Lease

Let's learn about lease and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In distributed systems, a lot of times clients need specified rights to certain

resources. For example, a client might need exclusive rights to update the

contents of a file. One way to fulfill this requirement is through distributed

locking. A client first gets an exclusive (or write) lock associated with the file

and then proceeds with updating the file. One problem with locking is that

the lock is granted until the locking client explicitly releases it. If the client

fails to release the lock due to any reason, e.g., process crash, deadlock, or a

software bug, the resource will be locked indefinitely. This leads to resource

unavailability until the system is reset. Is there an alternate solution?

Definition #

Use time-bound leases to grant clients rights on resources.

366

Back

7. High-Water Mark

Next

9. Heartbeat

Solution #

A lease is like a lock, but it works even when the client goes away. The client

asks for a lease for a limited period of time, after which the lease expires. If

the client wants to extend the lease, it can renew the lease before it expires.

Examples #

Chubby clients maintain a time-bound session lease with the leader. During

this time interval, the leader guarantees to not terminate the session

unilaterally.

367

9. Heartbeat

Let's learn about heartbeat and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In a distributed environment, work/data is distributed among servers. To

efficiently route requests in such a setup, servers need to know what other

servers are part of the system. Furthermore, servers should know if other

servers are alive and working. In a decentralized system, whenever a

request arrives at a server, the server should have enough information to

decide which server is responsible for entertaining that request. This makes

the timely detection of server failure an important task, which also enables

the system to take corrective actions and move the data/work to another

healthy server and stop the environment from further deterioration.

Definition #

368

Back Next

Each server periodically sends a heartbeat message to a central monitoring

server or other servers in the system to show that it is still alive and

functioning.

Solution #

Heartbeating is one of the mechanisms for detecting failures in a distributed

system. If there is a central server, all servers periodically send a heartbeat

message to it. If there is no central server, all servers randomly choose a set

of servers and send them a heartbeat message every few seconds. This way,

if no heartbeat message is received from a server for a while, the system can

suspect that the server might have crashed. If there is no heartbeat within a

configured timeout period, the system can conclude that the server is not

alive anymore and stop sending requests to it and start working on its

replacement.

Examples #

GFS: The leader periodically communicates with each ChunkServer in

HeartBeat messages to give instructions and collect state.

HDFS: The NameNode keeps track of DataNodes through a heartbeat

mechanism. Each DataNode sends periodic heartbeat messages (every

few seconds) to the NameNode. If a DataNode dies, then the heartbeats

to the NameNode are stopped. The NameNode detects that a DataNode

has died if the number of missed heartbeat messages reaches a certain

threshold. The NameNode then marks the DataNode as dead and will no

longer forward any I/O requests to that DataNode.

369

10. Gossip Protocol

Let's learn about gossip protocol and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In a large distributed environment where we do not have any central node

that keeps track of all nodes to know if a node is down or not, how does a

node know every other node’s current state? The simplest way to do this is to

have every node maintain a heartbeat with every other node. Then, when a

node goes down, it will stop sending out heartbeats, and everyone else will

find out immediately. But, this means O(N) messages get sent every tick (

N being the total number of nodes), which is a ridiculously high amount and

will consume a lot of network bandwidth, and thus, not feasible in any

sizable cluster. So, is there any other option for monitoring the state of the

cluster?

Definition #

2

370

Each node keeps track of state information about other nodes in the cluster

and gossip (i.e., share) this information to one other random node every

second. This way, eventually, each node gets to know about the state of every

other node in the cluster.

Solution #

Gossip protocol is a peer-to-peer communication mechanism in which nodes

periodically exchange state information about themselves and about other

nodes they know about. Each node initiates a gossip round every second to

exchange state information about themselves and other nodes with one

other random node. This means that any state change will eventually

propagate through the system, and all nodes quickly learn about all other

nodes in a cluster.

371

Server 3

Server 1

Server 2

Server 4

Server 5

[1, 3, 5]
[2, 4, 5]

[1, 3, 5]

[1, 2, 3, 5]

[2, 4]

Server 3

Server 1

Server 2

Server 4

Server 5

[1, 2, 3, 4, 5]
[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

Every second each server exchanges information with one randomly selected server

Every second each server exchanges information about all the servers it knows about

Examples #

372

Back

9. Heartbeat

Next

11. Phi Accrual Failure Detection

Dynamo & Cassandra use gossip protocol which allows each node to keep

track of state information about the other nodes in the cluster, like which

nodes are reachable, what key ranges they are responsible for, etc.

373

11. Phi Accrual Failure Detection

Let's learn about Phi Accrual Failure Detection algorithm and
its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In distributed systems, accurately detecting failures is a hard problem to

solve, as we cannot say with 100% surety if a system is genuinely down or is

just very slow in responding due to heavy load, network congestion, etc.

Conventional failure detection mechanisms like Heartbeating outputs a

boolean value telling us if the system is alive or not; there is no middle

ground. Heartbeating uses a fixed timeout, and if there is no heartbeat from

a server, the system, after the timeout assumes that the server has crashed.

Here, the value of the timeout is critical. If we keep the timeout short, the

system will detect failures quickly but with many false positives due to slow

machines or faulty network. On the other hand, if we keep the timeout long,

the false positives will be reduced, but the system will not perform efficiently

for being slow in detecting failures.

Definition #
374

Back

10. Gossip Protocol

Next

12. Split Brain

Use adaptive failure detection algorithm as described by Phi Accrual Failure

Detector. Accrual means accumulation or the act of accumulating over time.

This algorithm uses historical heartbeat information to make the threshold

adaptive. Instead of telling if the server is alive or not, a generic Accrual

Failure Detector outputs the suspicion level about a server. A higher

suspicion level means there are higher chances that the server is down.

Solution #

With Phi Accrual Failure Detector, if a node does not respond, its suspicion

level is increased and could be declared dead later. As a node’s suspicion

level increases, the system can gradually stop sending new requests to it. Phi

Accrual Failure Detector makes a distributed system efficient as it takes into

account fluctuations in the network environment and other intermittent

server issues before declaring a system completely dead.

Examples #

Cassandra uses the Phi Accrual Failure Detector algorithm to determine the

state of the nodes in the cluster.

375

12. Split Brain

Let's learn about split-brain and how to handle it.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In a distributed environment with a central (or leader) server, if the central

server dies, the system must quickly find a substitute, otherwise, the system

can quickly deteriorate.

One of the problems is that we cannot truly know if the leader has stopped

for good or has experienced an intermittent failure like a stop-the-world GC

pause or a temporary network disruption. Nevertheless, the cluster has to

move on and pick a new leader. If the original leader had an intermittent

failure, we now find ourselves with a so-called zombie leader. A zombie

leader can be defined as a leader node that had been deemed dead by the

system and has since come back online. Another node has taken its place,

but the zombie leader might not know that yet. The system now has two

active leaders that could be issuing conflicting commands. How can a system

376

detect such a scenario, so that all nodes in the system can ignore requests

from the old leader and the old leader itself can detect that it is no longer the

leader?

Definition #

The common scenario in which a distributed system has two or more active

leaders is called split-brain.

Split-brain is solved through the use of Generation Clock, which is simply a

monotonically increasing number to indicate a server’s generation.

Solution #

Every time a new leader is elected, the generation number gets incremented.

This means if the old leader had a generation number of ‘1’, the new one will

have ‘2’. This generation number is included in every request that is sent

from the leader to other nodes. This way, nodes can now easily differentiate

the real leader by simply trusting the leader with the highest number. The

generation number should be persisted on disk, so that it remains available

after a server reboot. One way is to store it with every entry in the Write-

ahead Log.

Examples #

Kafka: To handle Split-brain (where we could have multiple active controller

brokers), Kafka uses ‘Epoch number,’ which is simply a monotonically

increasing number to indicate a server’s generation.

377

Back

11. Phi Accrual Failure Detection

Next

13. Fencing

HDFS: ZooKeeper is used to ensure that only one NameNode is active at any

time. An epoch number is maintained as part of every transaction ID to

reflect the NameNode generation.

Cassandra uses generation number to distinguish a node’s state before and

after a restart. Each node stores a generation number which is incremented

every time a node restarts. This generation number is included in gossip

messages exchanged between nodes and is used to distinguish the current

state of a node from the state before a restart. The generation number

remains the same while the node is alive and is incremented each time the

node restarts. The node receiving the gossip message can compare the

generation number it knows and the generation number in the gossip

message. If the generation number in the gossip message is higher, it knows

that the node was restarted.

378

13. Fencing

Let's learn about fencing and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In a leader-follower setup, when a leader fails, it is impossible to be sure that

the leader has stopped working. For example, a slow network or a network

partition can trigger a new leader election, even though the previous leader

is still running and thinks it is still the active leader. Now, in this situation, if

the system elects a new leader, how do we make sure that the old leader is

not running and possibly issuing conflicting commands?

Definition #

Put a ‘Fence’ around the previous leader to prevent it from doing any

damage or causing corruption.

Solution #
379

Back

12. Split Brain

Next

14. Checksum

Fencing is the idea of putting a fence around a previously active leader so

that it cannot access cluster resources and hence stop serving any read/write

request. The following two techniques are used:

Resource fencing: Under this scheme, the system blocks the previously

active leader from accessing resources needed to perform essential

tasks. For example, revoking its access to the shared storage directory

(typically by using a vendor-specific Network File System (NFS)

command), or disabling its network port via a remote management

command.

Node fencing: Under this scheme, the system stops the previously active

leader from accessing all resources. A common way of doing this is to

power off or reset the node. This is a very effective method of keeping it

from accessing anything at all. This technique is also called STONIT or

“Shoot The Other Node In The Head.”

Examples #

HDFS uses fencing to stop the previously active NameNode from accessing

cluster resources, thereby stopping it from servicing requests.

380

14. Checksum

Let's learn about checksum and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In a distributed system, while moving data between components, it is

possible that the data fetched from a node may arrive corrupted. This

corruption can occur because of faults in a storage device, network,

software, etc. How can a distributed system ensure data integrity, so that the

client receives an error instead of corrupt data?

Definition #

Calculate a checksum and store it with data.

Solution #

381

Back

13. Fencing

Next

15. Vector Clocks

When a system is storing some data, it computes a checksum of the data, and

stores the checksum with the data. When a client retrieves data, it verifies

that the data it received from the server matches the checksum stored. If not,

then the client can opt to retrieve that data from another replica.

Examples #

HDFS and Chubby store the checksum of each file with the data.

382

15. Vector Clocks

Let's learn about vector clocks and their usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

When a distributed system allows concurrent writes, it can result in multiple

versions of an object. Different replicas of an object can end up with

different versions of the data. Let’s understand this with an example.

On a single machine, all we need to know about is the absolute or wall clock

time: suppose we perform a write to key k with timestamp t1 , and then

perform another write to k with timestamp t2 . Since t2 > t1 , the second

write must have been newer than the first write, and therefore, the database

can safely overwrite the original value.

In a distributed system, this assumption does not hold true. The problem is

clock skew – different clocks tend to run at different rates, so we cannot

assume that time t on node a happened before time t + 1 on node b . The

most practical techniques that help with synchronizing clocks, like NTP, still

383

do not guarantee that every clock in a distributed system is synchronized at

all times. So, without special hardware like GPS units and atomic clocks, just

using wall clock timestamps is not enough.

So how can we reconcile and capture causality between different versions of

the same object?

Definition #

Use Vector clocks to keep track of value history and reconcile divergent

histories at read time.

Solution #

A vector clock is effectively a (node, counter) pair. One vector clock is

associated with every version of every object. If the counters on the first

object’s clock are less-than-or-equal to all of the nodes in the second clock,

then the first is an ancestor of the second and can be forgotten. Otherwise,

the two changes are considered to be in conflict and require reconciliation.

Such conflicts are resolved at read-time, and if the system is not able to

reconcile an object’s state from its vector clocks, it sends it to the client

application for reconciliation (since clients have more semantic information

on the object and may be able to reconcile it). Resolving conflicts is similar to

how Git works. If Git can merge different versions into one, merging is done

automatically. If not, the client (i.e., the developer) has to reconcile conflicts

manually.

To see how Dynamo handles conflicting data, take a look at Vector Clocks and

Conflicting Data (/02.Dynamo_How Design_Key-value_Store/Vector Clocks

and Conflicting Data - Grokking the Advanced System Design Interview.html)

384

http://192.168.20.9:8081/02.Dynamo_How%20Design_Key-value_Store/Vector%20Clocks%20and%20Conflicting%20Data%20-%20Grokking%20the%20Advanced%20System%20Design%20Interview.html

Back

14. Checksum

Next

16. CAP Theorem

Examples #

To reconcile concurrent updates on an object Amazon’s Dynamo uses Vector

Clocks.

385

16. CAP Theorem

Let's learn about the CAP theorem and its usage in distributed
systems.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In distributed systems, different types of failures can occur, e.g., servers can

crash or fail permanently, disks can go bad resulting in data losses, or

network connection can be lost, making a part of the system inaccessible.

How can a distributed system model itself to get the maximum benefits out

of different resources available?

Definition #

CAP theorem states that it is impossible for a distributed system to

simultaneously provide all three of the following desirable properties:

Consistency (C): All nodes see the same data at the same time. It is

equivalent to having a single up-to-date copy of the data.

386

Availability (A): Every request received by a non-failing node in the system

must result in a response. Even when severe network failures occur, every

request must terminate.

Partition tolerance (P): A partition-tolerant system continues to operate

despite partial system failure or arbitrary message loss. Such a system can

sustain any network failure that does not result in a failure of the entire

network. Data is sufficiently replicated across combinations of nodes and

networks to keep the system up through intermittent outages.

Solution #

According to the CAP theorem, any distributed system needs to pick two out

of the three properties. The three options are CA, CP, and AP. However, CA is

not really a coherent option, as a system that is not partition-tolerant will be

forced to give up either Consistency or Availability in the case of a network

partition. Therefore, the theorem can really be stated as: In the presence of

a network partition, a distributed system must choose either

Consistency or Availability.

387

Back

15. Vector Clocks

Next

17. PACELC Theorem

RDBMS

Not
possible

BigTable,
MongoDB,

 HBase

Availability
System continues
to function even

with node failures

Consistency
All users see the
same data at the

same time

Partition tolerance
System continues to function

even if the communication
fails between nodes

Dynamo,
Cassandra,
CouchDB

Examples #

Dynamo: In CAP theorem terms, Dynamo falls within the category of AP

systems and is designed for high availability at the expense of strong

consistency. The primary motivation for designing Dynamo as a highly

available system was the observation that the availability of a system

directly correlates to the number of customers served.

BigTable: In terms of the CAP theorem, BigTable is a CP system, i.e., it has

strictly consistent reads and writes.

388

17. PACELC Theorem

Let's learn about PACELC theorem and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

We cannot avoid partition in a distributed system, therefore, according to the

CAP theorem, a distributed system should choose between consistency or

availability. ACID (Atomicity, Consistency, Isolation, Durability) databases

chose consistency (refuse response if it cannot check with peers), while BASE

(Basically Available, Soft-state, Eventually consistent) databases chose

availability (respond with local data without ensuring it is the latest with its

peers). One place where the CAP theorem is silent is what happens when

there is no network partition? What choices does a distributed system have

when there is no partition?

Definition #

The PACELC theorem states that in a system that replicates data:

389

Back

16. CAP Theorem

Next

18. Hinted Handoff

if there is a partition (‘P’), a distributed system can tradeoff between

availability and consistency (i.e., ‘A’ and ‘C’);

else (‘E’), when the system is running normally in the absence of

partitions, the system can tradeoff between latency (‘L’) and consistency

(‘C’).

Solution #

The first part of the theorem (PAC) is the same as the CAP theorem, and the

ELC is the extension. The whole thesis is assuming we maintain high

availability by replication. So, when there is a failure, CAP theorem prevails.

But if not, we still have to consider the tradeoff between consistency and

latency of a replicated system.

Examples #

Dynamo and Cassandra are PA/EL systems: They choose availability

over consistency when a partition occurs; otherwise, they choose lower

latency.

BigTable and HBase are PC/EC systems: They will always choose

consistency, giving up availability and lower latency.

MongoDB is PA/EC: In case of a network partition, it chooses availability,

but otherwise guarantees consistency.

390

18. Hinted Handoff

Let's learn about hinted handoff and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

Depending upon the consistency level, a distributed system can still serve

write requests even when nodes are down. For example, if we have the

replication factor of three and the client is writing with a quorum

consistency level. This means that if one of the nodes is down, the system can

still write on the remaining two nodes to fulfill the consistency level, making

the write successful. Now, when the node which was down comes online

again, how should we write data to it?

Definition #

For nodes that are down, the system keeps notes (or hints) of all the write

requests they have missed. Once the failing nodes recover, the write requests

are forwarded to them based on the hints stored.

391

Back

17. PACELC Theorem

Next

19. Read Repair

Solution #

When a node is down or is not responding to a write request, the node which

is coordinating the operation, writes a hint in a text file on the local disk.

This hint contains the data itself along with information about which node

the data belongs to. When the coordinating node discovers that a node for

which it holds hints has recovered, it forwards the write requests for each

hint to the target.

Examples #

Cassandra nodes use Hinted Handoff to remember the write operation

for failing nodes.

Dynamo ensures that the system is “always-writeable” by using Hinted

Handoff (and Sloppy Quorum).

392

19. Read Repair

Let's learn about read repair and its usage.

We'll cover the following

• Background

• De�nition

• Solution

• Examples

Background #

In Distributed Systems, where data is replicated across multiple nodes, some

nodes can end up having stale data. Imagine a scenario where a node failed

to receive a write or update request because it was down or there was a

network partition. How do we ensure that the node gets the latest version of

the data when it is healthy again?

Definition #

Repair stale data during the read operation, since at that point, we can read

data from multiple nodes to perform a comparison and find nodes that have

stale data. This mechanism is called Read Repair. Once the node with old

data is known, the read repair operation pushes the newer version of data to

nodes with the older version.

393

Back

18. Hinted Handoff

Next

20. Merkle Trees

Solution #

Based on the quorum, the system reads data from multiple nodes. For

example, for Quorum=2, the system reads data from one node and digest of

the data from the second node. The digest is a checksum of the data and is

used to save network bandwidth. If the digest does not match, it means some

replicas do not have the latest version of the data. In this case, the system

reads the data from all the replicas to find the latest data. The system returns

the latest data to the client and initiates a Read Repair request. The read

repair operation pushes the latest version of data to nodes with the older

version.

When the read consistency level is less than ‘All,’ some systems perform a

read repair probabilistically, for example, 10% of the requests. In this case,

the system immediately sends a response to the client when the consistency

level is met and performs the read repair asynchronously in the background.

Examples #

Cassandra and Dynamo use ‘Read Repair’ to push the latest version of the

data to nodes with the older versions.

394

20. Merkle Trees

Let's learn about Merkle trees and their usage.

We'll cover the following

• Background

• De}nition

• Solution

• Examples

Background #

"T�XF�TBX�JO�UIF�QSFWJPVT�MFTTPO

	IUUQT���XXX�FEVDBUJWF�JP�DPMMFDUJPO�QBHF�������������������������������

��������������������
�3FBE�3FQBJS�SFNPWFT�DPOGMJDUT�XIJMF�TFSWJOH�SFBE

SFRVFTUT��#VU�JG�B�SFQMJDB�GBMMT�TJHOJGJDBOUMZ�CFIJOE�PUIFST�JU�NJHIU�UBLF�B

WFSZ�MPOH�UJNF�UP�SFTPMWF�DPOGMJDUT��*U�XPVME�CF�OJDF�UP�CF�BCMF�UP

BVUPNBUJDBMMZ�SFTPMWF�TPNF�DPOGMJDUT�JO�UIF�CBDLHSPVOE��5P�EP�UIJT�XF�OFFE

UP�RVJDLMZ�DPNQBSF�UXP�DPQJFT�PG�B�SBOHF�BOE�GJHVSF�PVU�FYBDUMZ�XIJDI�QBSUT

BSF�EJGGFSFOU��*O�B�EJTUSJCVUFE�FOWJSPONFOU�IPX�DBO�XF�RVJDLMZ�DPNQBSF

UXP�DPQJFT�PG�B�SBOHF�PG�EBUB�SFTJEJOH�PO�UXP�EJGGFSFOU�SFQMJDBT�BOE�GJHVSF

PVU�FYBDUMZ�XIJDI�QBSUT�BSF�EJGGFSFOU

Definition #

395

https://www.educative.io/collection/page/5668639101419520/5559029852536832/5978407785988096

"�SFQMJDB�DBO�DPOUBJO�B�MPU�PG�EBUB��/BJWFMZ�TQMJUUJOH�VQ�UIF�FOUJSF�SBOHF�UP

DBMDVMBUF�DIFDLTVNT�GPS�DPNQBSJTPO�JT�OPU�WFSZ�GFBTJCMF��UIFSF�JT�TJNQMZ�UPP

NVDI�EBUB�UP�CF�USBOTGFSSFE��*OTUFBE�XF�DBO�VTF�.FSLMF�USFFT�UP�DPNQBSF

SFQMJDBT�PG�B�SBOHF�

Solution #

"�.FSLMF�USFF�JT�B�CJOBSZ�USFF�PG�IBTIFT�XIFSF�FBDI�JOUFSOBM�OPEF�JT�UIF

IBTI�PG�JUT�UXP�DIJMESFO�BOE�FBDI�MFBG�OPEF�JT�B�IBTI�PG�B�QPSUJPO�PG�UIF

PSJHJOBM�EBUB�

Merkle tree

$PNQBSJOH�.FSLMF�USFFT�JT�DPODFQUVBMMZ�TJNQMF�

���$PNQBSF�UIF�SPPU�IBTIFT�PG�CPUI�USFFT�

���*G�UIFZ�BSF�FRVBM�TUPQ�

���3FDVSTF�PO�UIF�MFGU�BOE�SJHIU�DIJMESFO�

6MUJNBUFMZ�UIJT�NFBOT�UIBU�SFQMJDBT�LOPX�FYBDUMZ�XIJDI�QBSUT�PG�UIF�SBOHF

BSF�EJGGFSFOU�CVU�UIF�BNPVOU�PG�EBUB�FYDIBOHFE�JT�NJOJNJ[FE��5IF�QSJODJQBM

BEWBOUBHF�PG�B�.FSLMF�USFF�JT�UIBU�FBDI�CSBODI�PG�UIF�USFF�DBO�CF�DIFDLFE

JOEFQFOEFOUMZ�XJUIPVU�SFRVJSJOH�OPEFT�UP�EPXOMPBE�UIF�FOUJSF�USFF�PS�UIF

FOUJSF�EBUB�TFU��)FODF�.FSLMF�USFFT�NJOJNJ[F�UIF�BNPVOU�PG�EBUB�UIBU�OFFET

UP�CF�USBOTGFSSFE�GPS�TZODISPOJ[BUJPO�BOE�SFEVDF�UIF�OVNCFS�PG�EJTL�SFBET�

396

Back

19. Read Repair

Next

Quiz I

5IF�EJTBEWBOUBHF�PG�VTJOH�.FSLMF�USFFT�JT�UIBU�NBOZ�LFZ�SBOHFT�DBO�DIBOHF

XIFO�B�OPEF�KPJOT�PS�MFBWFT�BU�XIJDI�QPJOU�UIF�USFFT�OFFE�UP�CF�SFDBMDVMBUFE�

Examples #

'PS�BOUJ�FOUSPQZ�BOE�UP�SFTPMWF�DPOGMJDUT�JO�UIF�CBDLHSPVOE�Dynamo�VTFT

.FSLMF�USFFT�

397

	What Is This Course About?
	Dynamo: How to Design a Key-value Store?
	Dynamo: Introduction
	High-level Architecture
	Data Partitioning
	Replication
	Vector Clocks and Conflicting Data
	The Life of Dynamo’s put() & get() Operations
	Anti-entropy Through Merkle Trees
	Gossip Protocol
	Dynamo Characteristics and Criticism
	Summary: Dynamo
	Messaging Systems: Introduction
	Kafka: Introduction
	High-level Architecture

	Cassandra: How to Design a Wide-column NoSQL Database?
	Cassandra: Introduction
	High-level Architecture
	Replication
	Cassandra Consistency Levels
	Gossiper
	Anatomy of Cassandra's Write Operation
	Anatomy of Cassandra's Read Operation
	Compaction
	Tombstones
	Summary: Cassandra

	Kafka: How to Design a Distributed Messaging System?
	Messaging Systems: Introduction
	Kafka: Introduction
	High-level Architecture
	Kafka: Deep Dive
	Consumer Groups
	Kafka Workflow
	Role of ZooKeeper
	Controller Broker
	Kafka Delivery Semantics
	Kafka Characteristics
	Summary: Kafka

	Chubby: How to Design a Distributed Locking Service?
	Chubby: Introduction
	High-level Architecture
	Design Rationale
	How Chubby Works
	File, Directories, and Handles
	Locks, Sequencers, and Lock-delays
	Sessions and Events
	Master Election and Chubby Events
	Caching
	Database
	Scaling Chubby
	Summary: Chubby

	GFS: How to Design a Distributed File Storage System?
	Google File System: Introduction
	High-level Architecture
	Single Master and Large Chunk Size
	Metadata
	Master Operations
	Anatomy of a Read Operation
	Anatomy of a Write Operation
	Anatomy of an Append Operation
	GFS Consistency Model and Snapshotting
	Fault Tolerance, High Availability, and Data Integrity
	Garbage Collection
	Criticism on GFS
	Summary: GFS

	HDFS: How to Design a Distributed File Storage System?
	Hadoop Distributed File System: Introduction
	High-level Architecture
	Anatomy of a Read Operation
	Anatomy of a Write Operation
	Data Integrity & Caching
	Fault Tolerance
	HDFS High Availability (HA)
	HDFS Characteristics
	Summary: HDFS

	BigTable: How to Design a Wide-column Storage System?
	BigTable: Introduction
	BigTable Data Model
	System APIs
	Partitioning and High-level Architecture
	SSTable
	GFS and Chubby
	Bigtable Components
	Working with Tablets
	The Life of BigTable's Read & Write Operations
	Fault Tolerance and Compaction
	BigTable Re}nements
	BigTable Characteristics
	Summary: BigTable

	System Design Patterns
	Introduction: System Design Patterns
	1. Bloom Filters
	2. Consistent Hashing
	3. Quorum
	4. Leader and Follower
	5. Write-ahead Log
	6. Segmented Log
	7. High-Water Mark
	8. Lease
	9. Heartbeat
	10. Gossip Protocol
	11. Phi Accrual Failure Detection
	12. Split Brain
	13. Fencing
	14. Checksum
	15. Vector Clocks
	16. CAP Theorem
	17. PACELC Theorem
	18. Hinted Handoff
	19. Read Repair
	20. Merkle Trees

