
Competitive Programmer’s Handbook

Antti Laaksonen

Draft July 3, 2018

ii

Contents

Preface ix

I Basic techniques 1

1 Introduction 3
1.1 Programming languages . 3
1.2 Input and output . 4
1.3 Working with numbers . 6
1.4 Shortening code . 8
1.5 Mathematics . 10
1.6 Contests and resources . 15

2 Time complexity 17
2.1 Calculation rules . 17
2.2 Complexity classes . 20
2.3 Estimating efficiency . 21
2.4 Maximum subarray sum . 21

3 Sorting 25
3.1 Sorting theory . 25
3.2 Sorting in C++ . 29
3.3 Binary search . 31

4 Data structures 35
4.1 Dynamic arrays . 35
4.2 Set structures . 37
4.3 Map structures . 38
4.4 Iterators and ranges . 39
4.5 Other structures . 41
4.6 Comparison to sorting . 44

5 Complete search 47
5.1 Generating subsets . 47
5.2 Generating permutations . 49
5.3 Backtracking . 50
5.4 Pruning the search . 51
5.5 Meet in the middle . 54

iii

6 Greedy algorithms 57
6.1 Coin problem . 57
6.2 Scheduling . 58
6.3 Tasks and deadlines . 60
6.4 Minimizing sums . 61
6.5 Data compression . 62

7 Dynamic programming 65
7.1 Coin problem . 65
7.2 Longest increasing subsequence . 70
7.3 Paths in a grid . 71
7.4 Knapsack problems . 72
7.5 Edit distance . 74
7.6 Counting tilings . 75

8 Amortized analysis 77
8.1 Two pointers method . 77
8.2 Nearest smaller elements . 79
8.3 Sliding window minimum . 81

9 Range queries 83
9.1 Static array queries . 84
9.2 Binary indexed tree . 86
9.3 Segment tree . 89
9.4 Additional techniques . 93

10 Bit manipulation 95
10.1 Bit representation . 95
10.2 Bit operations . 96
10.3 Representing sets . 98
10.4 Bit optimizations . 100
10.5 Dynamic programming . 102

II Graph algorithms 107

11 Basics of graphs 109
11.1 Graph terminology . 109
11.2 Graph representation . 113

12 Graph traversal 117
12.1 Depth-first search . 117
12.2 Breadth-first search . 119
12.3 Applications . 121

iv

13 Shortest paths 123
13.1 Bellman–Ford algorithm . 123
13.2 Dijkstra’s algorithm . 126
13.3 Floyd–Warshall algorithm . 129

14 Tree algorithms 133
14.1 Tree traversal . 134
14.2 Diameter . 135
14.3 All longest paths . 137
14.4 Binary trees . 139

15 Spanning trees 141
15.1 Kruskal’s algorithm . 142
15.2 Union-find structure . 145
15.3 Prim’s algorithm . 147

16 Directed graphs 149
16.1 Topological sorting . 149
16.2 Dynamic programming . 151
16.3 Successor paths . 154
16.4 Cycle detection . 155

17 Strong connectivity 157
17.1 Kosaraju’s algorithm . 158
17.2 2SAT problem . 160

18 Tree queries 163
18.1 Finding ancestors . 163
18.2 Subtrees and paths . 164
18.3 Lowest common ancestor . 167
18.4 Offline algorithms . 170

19 Paths and circuits 173
19.1 Eulerian paths . 173
19.2 Hamiltonian paths . 177
19.3 De Bruijn sequences . 178
19.4 Knight’s tours . 179

20 Flows and cuts 181
20.1 Ford–Fulkerson algorithm . 182
20.2 Disjoint paths . 186
20.3 Maximum matchings . 187
20.4 Path covers . 190

v

III Advanced topics 195

21 Number theory 197
21.1 Primes and factors . 197
21.2 Modular arithmetic . 201
21.3 Solving equations . 204
21.4 Other results . 205

22 Combinatorics 207
22.1 Binomial coefficients . 208
22.2 Catalan numbers . 210
22.3 Inclusion-exclusion . 212
22.4 Burnside’s lemma . 214
22.5 Cayley’s formula . 215

23 Matrices 217
23.1 Operations . 217
23.2 Linear recurrences . 220
23.3 Graphs and matrices . 222

24 Probability 225
24.1 Calculation . 225
24.2 Events . 226
24.3 Random variables . 228
24.4 Markov chains . 230
24.5 Randomized algorithms . 231

25 Game theory 235
25.1 Game states . 235
25.2 Nim game . 237
25.3 Sprague–Grundy theorem . 238

26 String algorithms 243
26.1 String terminology . 243
26.2 Trie structure . 244
26.3 String hashing . 245
26.4 Z-algorithm . 247

27 Square root algorithms 251
27.1 Combining algorithms . 252
27.2 Integer partitions . 254
27.3 Mo’s algorithm . 255

28 Segment trees revisited 257
28.1 Lazy propagation . 258
28.2 Dynamic trees . 261
28.3 Data structures . 263
28.4 Two-dimensionality . 264

vi

29 Geometry 265
29.1 Complex numbers . 266
29.2 Points and lines . 268
29.3 Polygon area . 271
29.4 Distance functions . 272

30 Sweep line algorithms 275
30.1 Intersection points . 276
30.2 Closest pair problem . 277
30.3 Convex hull problem . 278

Bibliography 281

vii

viii

Preface

The purpose of this book is to give you a thorough introduction to competitive
programming. It is assumed that you already know the basics of programming,
but no previous background in competitive programming is needed.

The book is especially intended for students who want to learn algorithms
and possibly participate in the International Olympiad in Informatics (IOI) or in
the International Collegiate Programming Contest (ICPC). Of course, the book is
also suitable for anybody else interested in competitive programming.

It takes a long time to become a good competitive programmer, but it is also
an opportunity to learn a lot. You can be sure that you will get a good general
understanding of algorithms if you spend time reading the book, solving problems
and taking part in contests.

The book is under continuous development. You can always send feedback on
the book to ahslaaks@cs.helsinki.fi.

Helsinki, July 2018
Antti Laaksonen

ix

x

Part I

Basic techniques

1

Chapter 1

Introduction

Competitive programming combines two topics: (1) the design of algorithms and
(2) the implementation of algorithms.

The design of algorithms consists of problem solving and mathematical
thinking. Skills for analyzing problems and solving them creatively are needed.
An algorithm for solving a problem has to be both correct and efficient, and the
core of the problem is often about inventing an efficient algorithm.

Theoretical knowledge of algorithms is important to competitive programmers.
Typically, a solution to a problem is a combination of well-known techniques and
new insights. The techniques that appear in competitive programming also form
the basis for the scientific research of algorithms.

The implementation of algorithms requires good programming skills. In
competitive programming, the solutions are graded by testing an implemented
algorithm using a set of test cases. Thus, it is not enough that the idea of the
algorithm is correct, but the implementation also has to be correct.

A good coding style in contests is straightforward and concise. Programs
should be written quickly, because there is not much time available. Unlike in
traditional software engineering, the programs are short (usually at most a few
hundred lines of code), and they do not need to be maintained after the contest.

Programming languages

At the moment, the most popular programming languages used in contests are
C++, Python and Java. For example, in Google Code Jam 2017, among the best
3,000 participants, 79 % used C++, 16 % used Python and 8 % used Java [29].
Some participants also used several languages.

Many people think that C++ is the best choice for a competitive programmer,
and C++ is nearly always available in contest systems. The benefits of using C++
are that it is a very efficient language and its standard library contains a large
collection of data structures and algorithms.

On the other hand, it is good to master several languages and understand
their strengths. For example, if large integers are needed in the problem, Python
can be a good choice, because it contains built-in operations for calculating with

3

large integers. Still, most problems in programming contests are set so that using
a specific programming language is not an unfair advantage.

All example programs in this book are written in C++, and the standard
library’s data structures and algorithms are often used. The programs follow the
C++11 standard, which can be used in most contests nowadays. If you cannot
program in C++ yet, now is a good time to start learning.

C++ code template

A typical C++ code template for competitive programming looks like this:

#include <bits/stdc++.h>

using namespace std;

int main() {

// solution comes here

}

The #include line at the beginning of the code is a feature of the g++ compiler
that allows us to include the entire standard library. Thus, it is not needed to
separately include libraries such as iostream, vector and algorithm, but rather
they are available automatically.

The using line declares that the classes and functions of the standard library
can be used directly in the code. Without the using line we would have to write,
for example, std::cout, but now it suffices to write cout.

The code can be compiled using the following command:

g++ -std=c++11 -O2 -Wall test.cpp -o test

This command produces a binary file test from the source code test.cpp. The
compiler follows the C++11 standard (-std=c++11), optimizes the code (-O2) and
shows warnings about possible errors (-Wall).

Input and output

In most contests, standard streams are used for reading input and writing output.
In C++, the standard streams are cin for input and cout for output. In addition,
the C functions scanf and printf can be used.

The input for the program usually consists of numbers and strings that are
separated with spaces and newlines. They can be read from the cin stream as
follows:

int a, b;

string x;

cin >> a >> b >> x;

4

This kind of code always works, assuming that there is at least one space or
newline between each element in the input. For example, the above code can
read both of the following inputs:

123 456 monkey

123 456

monkey

The cout stream is used for output as follows:

int a = 123, b = 456;

string x = "monkey";

cout << a << " " << b << " " << x << "\n";

Input and output is sometimes a bottleneck in the program. The following
lines at the beginning of the code make input and output more efficient:

ios::sync_with_stdio(0);

cin.tie(0);

Note that the newline "\n" works faster than endl, because endl always
causes a flush operation.

The C functions scanf and printf are an alternative to the C++ standard
streams. They are usually a bit faster, but they are also more difficult to use. The
following code reads two integers from the input:

int a, b;

scanf("%d %d", &a, &b);

The following code prints two integers:

int a = 123, b = 456;

printf("%d %d\n", a, b);

Sometimes the program should read a whole line from the input, possibly
containing spaces. This can be accomplished by using the getline function:

string s;

getline(cin, s);

If the amount of data is unknown, the following loop is useful:

while (cin >> x) {

// code

}

This loop reads elements from the input one after another, until there is no more
data available in the input.

5

In some contest systems, files are used for input and output. An easy solution
for this is to write the code as usual using standard streams, but add the following
lines to the beginning of the code:

freopen("input.txt", "r", stdin);

freopen("output.txt", "w", stdout);

After this, the program reads the input from the file ”input.txt” and writes the
output to the file ”output.txt”.

Working with numbers

Integers

The most used integer type in competitive programming is int, which is a 32-bit
type with a value range of −231 . . .231 −1 or about −2 ·109 . . .2 ·109. If the type
int is not enough, the 64-bit type long long can be used. It has a value range of
−263 . . .263 −1 or about −9 ·1018 . . .9 ·1018.

The following code defines a long long variable:

long long x = 123456789123456789LL;

The suffix LL means that the type of the number is long long.
A common mistake when using the type long long is that the type int is still

used somewhere in the code. For example, the following code contains a subtle
error:

int a = 123456789;

long long b = a*a;

cout << b << "\n"; // -1757895751

Even though the variable b is of type long long, both numbers in the expres-
sion a*a are of type int and the result is also of type int. Because of this, the
variable b will contain a wrong result. The problem can be solved by changing
the type of a to long long or by changing the expression to (long long)a*a.

Usually contest problems are set so that the type long long is enough. Still,
it is good to know that the g++ compiler also provides a 128-bit type __int128_t

with a value range of −2127 . . .2127−1 or about −1038 . . .1038. However, this type
is not available in all contest systems.

Modular arithmetic

We denote by x mod m the remainder when x is divided by m. For example,
17 mod 5= 2, because 17= 3 ·5+2.

Sometimes, the answer to a problem is a very large number but it is enough
to output it ”modulo m”, i.e., the remainder when the answer is divided by m (for

6

example, ”modulo 109 +7”). The idea is that even if the actual answer is very
large, it suffices to use the types int and long long.

An important property of the remainder is that in addition, subtraction and
multiplication, the remainder can be taken before the operation:

(a+b) mod m = (a mod m+b mod m) mod m
(a−b) mod m = (a mod m−b mod m) mod m
(a ·b) mod m = (a mod m ·b mod m) mod m

Thus, we can take the remainder after every operation and the numbers will
never become too large.

For example, the following code calculates n!, the factorial of n, modulo m:

long long x = 1;

for (int i = 2; i <= n; i++) {

x = (x*i)%m;

}

cout << x%m << "\n";

Usually we want the remainder to always be between 0 . . .m−1. However, in
C++ and other languages, the remainder of a negative number is either zero or
negative. An easy way to make sure there are no negative remainders is to first
calculate the remainder as usual and then add m if the result is negative:

x = x%m;

if (x < 0) x += m;

However, this is only needed when there are subtractions in the code and the
remainder may become negative.

Floating point numbers

The usual floating point types in competitive programming are the 64-bit double
and, as an extension in the g++ compiler, the 80-bit long double. In most cases,
double is enough, but long double is more accurate.

The required precision of the answer is usually given in the problem statement.
An easy way to output the answer is to use the printf function and give the
number of decimal places in the formatting string. For example, the following
code prints the value of x with 9 decimal places:

printf("%.9f\n", x);

A difficulty when using floating point numbers is that some numbers cannot
be represented accurately as floating point numbers, and there will be rounding
errors. For example, the result of the following code is surprising:

double x = 0.3*3+0.1;

printf("%.20f\n", x); // 0.99999999999999988898

7

Due to a rounding error, the value of x is a bit smaller than 1, while the correct
value would be 1.

It is risky to compare floating point numbers with the == operator, because it
is possible that the values should be equal but they are not because of precision
errors. A better way to compare floating point numbers is to assume that two
numbers are equal if the difference between them is less than ε, where ε is a
small number.

In practice, the numbers can be compared as follows (ε= 10−9):

if (abs(a-b) < 1e-9) {

// a and b are equal

}

Note that while floating point numbers are inaccurate, integers up to a certain
limit can still be represented accurately. For example, using double, it is possible
to accurately represent all integers whose absolute value is at most 253.

Shortening code
Short code is ideal in competitive programming, because programs should be
written as fast as possible. Because of this, competitive programmers often define
shorter names for datatypes and other parts of code.

Type names

Using the command typedef it is possible to give a shorter name to a datatype.
For example, the name long long is long, so we can define a shorter name ll:

typedef long long ll;

After this, the code

long long a = 123456789;

long long b = 987654321;

cout << a*b << "\n";

can be shortened as follows:

ll a = 123456789;

ll b = 987654321;

cout << a*b << "\n";

The command typedef can also be used with more complex types. For example,
the following code gives the name vi for a vector of integers and the name pi for
a pair that contains two integers.

typedef vector<int> vi;

typedef pair<int,int> pi;

8

Macros

Another way to shorten code is to define macros. A macro means that certain
strings in the code will be changed before the compilation. In C++, macros are
defined using the #define keyword.

For example, we can define the following macros:

#define F first

#define S second

#define PB push_back

#define MP make_pair

After this, the code

v.push_back(make_pair(y1,x1));

v.push_back(make_pair(y2,x2));

int d = v[i].first+v[i].second;

can be shortened as follows:

v.PB(MP(y1,x1));

v.PB(MP(y2,x2));

int d = v[i].F+v[i].S;

A macro can also have parameters which makes it possible to shorten loops
and other structures. For example, we can define the following macro:

#define REP(i,a,b) for (int i = a; i <= b; i++)

After this, the code

for (int i = 1; i <= n; i++) {

search(i);

}

can be shortened as follows:

REP(i,1,n) {

search(i);

}

Sometimes macros cause bugs that may be difficult to detect. For example,
consider the following macro that calculates the square of a number:

#define SQ(a) a*a

This macro does not always work as expected. For example, the code

cout << SQ(3+3) << "\n";

9

corresponds to the code

cout << 3+3*3+3 << "\n"; // 15

A better version of the macro is as follows:

#define SQ(a) (a)*(a)

Now the code

cout << SQ(3+3) << "\n";

corresponds to the code

cout << (3+3)*(3+3) << "\n"; // 36

Mathematics

Mathematics plays an important role in competitive programming, and it is
not possible to become a successful competitive programmer without having
good mathematical skills. This section discusses some important mathematical
concepts and formulas that are needed later in the book.

Sum formulas

Each sum of the form

n∑
x=1

xk = 1k +2k +3k + . . .+nk,

where k is a positive integer, has a closed-form formula that is a polynomial of
degree k+1. For example1,

n∑
x=1

x = 1+2+3+ . . .+n = n(n+1)
2

and
n∑

x=1
x2 = 12 +22 +32 + . . .+n2 = n(n+1)(2n+1)

6
.

An arithmetic progression is a sequence of numbers where the difference
between any two consecutive numbers is constant. For example,

3,7,11,15

1 There is even a general formula for such sums, called Faulhaber’s formula, but it is too
complex to be presented here.

10

is an arithmetic progression with constant 4. The sum of an arithmetic progres-
sion can be calculated using the formula

a+·· ·+b︸ ︷︷ ︸
n numbers

= n(a+b)
2

where a is the first number, b is the last number and n is the amount of numbers.
For example,

3+7+11+15= 4 · (3+15)
2

= 36.

The formula is based on the fact that the sum consists of n numbers and the
value of each number is (a+b)/2 on average.

A geometric progression is a sequence of numbers where the ratio between
any two consecutive numbers is constant. For example,

3,6,12,24

is a geometric progression with constant 2. The sum of a geometric progression
can be calculated using the formula

a+ak+ak2 +·· ·+b = bk−a
k−1

where a is the first number, b is the last number and the ratio between consecu-
tive numbers is k. For example,

3+6+12+24= 24 ·2−3
2−1

= 45.

This formula can be derived as follows. Let

S = a+ak+ak2 +·· ·+b.

By multiplying both sides by k, we get

kS = ak+ak2 +ak3 +·· ·+bk,

and solving the equation
kS−S = bk−a

yields the formula.
A special case of a sum of a geometric progression is the formula

1+2+4+8+ . . .+2n−1 = 2n −1.

A harmonic sum is a sum of the form
n∑

x=1

1
x
= 1+ 1

2
+ 1

3
+ . . .+ 1

n
.

An upper bound for a harmonic sum is log2(n)+1. Namely, we can modify
each term 1/k so that k becomes the nearest power of two that does not exceed k.
For example, when n = 6, we can estimate the sum as follows:

1+ 1
2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
≤ 1+ 1

2
+ 1

2
+ 1

4
+ 1

4
+ 1

4
.

This upper bound consists of log2(n)+1 parts (1, 2 ·1/2, 4 ·1/4, etc.), and the value
of each part is at most 1.

11

Set theory

A set is a collection of elements. For example, the set

X = {2,4,7}

contains elements 2, 4 and 7. The symbol ; denotes an empty set, and |S| denotes
the size of a set S, i.e., the number of elements in the set. For example, in the
above set, |X | = 3.

If a set S contains an element x, we write x ∈ S, and otherwise we write x ∉ S.
For example, in the above set

4 ∈ X and 5 ∉ X .

New sets can be constructed using set operations:

• The intersection A∩B consists of elements that are in both A and B. For
example, if A = {1,2,5} and B = {2,4}, then A∩B = {2}.

• The union A ∪B consists of elements that are in A or B or both. For
example, if A = {3,7} and B = {2,3,8}, then A∪B = {2,3,7,8}.

• The complement Ā consists of elements that are not in A. The interpre-
tation of a complement depends on the universal set, which contains all
possible elements. For example, if A = {1,2,5,7} and the universal set is
{1,2, . . . ,10}, then Ā = {3,4,6,8,9,10}.

• The difference A \ B = A∩ B̄ consists of elements that are in A but not
in B. Note that B can contain elements that are not in A. For example, if
A = {2,3,7,8} and B = {3,5,8}, then A \ B = {2,7}.

If each element of A also belongs to S, we say that A is a subset of S, denoted
by A ⊂ S. A set S always has 2|S| subsets, including the empty set. For example,
the subsets of the set {2,4,7} are

;, {2}, {4}, {7}, {2,4}, {2,7}, {4,7} and {2,4,7}.

Some often used sets are N (natural numbers), Z (integers), Q (rational
numbers) and R (real numbers). The set N can be defined in two ways, depending
on the situation: either N= {0,1,2, . . .} or N= {1,2,3, ...}.

We can also construct a set using a rule of the form

{ f (n) : n ∈ S},

where f (n) is some function. This set contains all elements of the form f (n),
where n is an element in S. For example, the set

X = {2n : n ∈Z}

contains all even integers.

12

Logic

The value of a logical expression is either true (1) or false (0). The most impor-
tant logical operators are ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⇒
(implication) and ⇔ (equivalence). The following table shows the meanings
of these operators:

A B ¬A ¬B A∧B A∨B A ⇒ B A ⇔ B
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 0 0
1 1 0 0 1 1 1 1

The expression ¬A has the opposite value of A. The expression A∧B is true
if both A and B are true, and the expression A∨B is true if A or B or both are
true. The expression A ⇒ B is true if whenever A is true, also B is true. The
expression A ⇔ B is true if A and B are both true or both false.

A predicate is an expression that is true or false depending on its parameters.
Predicates are usually denoted by capital letters. For example, we can define
a predicate P(x) that is true exactly when x is a prime number. Using this
definition, P(7) is true but P(8) is false.

A quantifier connects a logical expression to the elements of a set. The most
important quantifiers are ∀ (for all) and ∃ (there is). For example,

∀x(∃y(y< x))

means that for each element x in the set, there is an element y in the set such
that y is smaller than x. This is true in the set of integers, but false in the set of
natural numbers.

Using the notation described above, we can express many kinds of logical
propositions. For example,

∀x((x > 1∧¬P(x))⇒ (∃a(∃b(a > 1∧b > 1∧ x = ab))))

means that if a number x is larger than 1 and not a prime number, then there are
numbers a and b that are larger than 1 and whose product is x. This proposition
is true in the set of integers.

Functions

The function bxc rounds the number x down to an integer, and the function dxe
rounds the number x up to an integer. For example,

b3/2c = 1 and d3/2e = 2.

The functions min(x1, x2, . . . , xn) and max(x1, x2, . . . , xn) give the smallest and
largest of values x1, x2, . . . , xn. For example,

min(1,2,3)= 1 and max(1,2,3)= 3.

13

The factorial n! can be defined
n∏

x=1
x = 1 ·2 ·3 · . . . ·n

or recursively
0! = 1
n! = n · (n−1)!

The Fibonacci numbers arise in many situations. They can be defined
recursively as follows:

f (0) = 0
f (1) = 1
f (n) = f (n−1)+ f (n−2)

The first Fibonacci numbers are

0,1,1,2,3,5,8,13,21,34,55, . . .

There is also a closed-form formula for calculating Fibonacci numbers, which is
sometimes called Binet’s formula:

f (n)= (1+p
5)n − (1−p

5)n

2n
p

5
.

Logarithms

The logarithm of a number x is denoted logk(x), where k is the base of the
logarithm. According to the definition, logk(x)= a exactly when ka = x.

A useful property of logarithms is that logk(x) equals the number of times we
have to divide x by k before we reach the number 1. For example, log2(32) = 5
because 5 divisions by 2 are needed:

32→ 16→ 8→ 4→ 2→ 1

Logarithms are often used in the analysis of algorithms, because many ef-
ficient algorithms halve something at each step. Hence, we can estimate the
efficiency of such algorithms using logarithms.

The logarithm of a product is

logk(ab)= logk(a)+ logk(b),

and consequently,
logk(xn)= n · logk(x).

In addition, the logarithm of a quotient is

logk

(a
b

)
= logk(a)− logk(b).

Another useful formula is
logu(x)= logk(x)

logk(u)
,

14

and using this, it is possible to calculate logarithms to any base if there is a way
to calculate logarithms to some fixed base.

The natural logarithm ln(x) of a number x is a logarithm whose base is
e ≈ 2.71828. Another property of logarithms is that the number of digits of an
integer x in base b is blogb(x)+1c. For example, the representation of 123 in base
2 is 1111011 and blog2(123)+1c = 7.

Contests and resources

IOI

The International Olympiad in Informatics (IOI) is an annual programming
contest for secondary school students. Each country is allowed to send a team of
four students to the contest. There are usually about 300 participants from 80
countries.

The IOI consists of two five-hour long contests. In both contests, the partic-
ipants are asked to solve three algorithm tasks of various difficulty. The tasks
are divided into subtasks, each of which has an assigned score. Even if the
contestants are divided into teams, they compete as individuals.

The IOI syllabus [41] regulates the topics that may appear in IOI tasks.
Almost all the topics in the IOI syllabus are covered by this book.

Participants for the IOI are selected through national contests. Before the IOI,
many regional contests are organized, such as the Baltic Olympiad in Informatics
(BOI), the Central European Olympiad in Informatics (CEOI) and the Asia-Pacific
Informatics Olympiad (APIO).

Some countries organize online practice contests for future IOI participants,
such as the Croatian Open Competition in Informatics [11] and the USA Comput-
ing Olympiad [68]. In addition, a large collection of problems from Polish contests
is available online [60].

ICPC

The International Collegiate Programming Contest (ICPC) is an annual program-
ming contest for university students. Each team in the contest consists of three
students, and unlike in the IOI, the students work together; there is only one
computer available for each team.

The ICPC consists of several stages, and finally the best teams are invited to
the World Finals. While there are tens of thousands of participants in the contest,
there are only a small number2 of final slots available, so even advancing to the
finals is a great achievement in some regions.

In each ICPC contest, the teams have five hours of time to solve about ten
algorithm problems. A solution to a problem is accepted only if it solves all test
cases efficiently. During the contest, competitors may view the results of other

2The exact number of final slots varies from year to year; in 2017, there were 133 final slots.

15

teams, but for the last hour the scoreboard is frozen and it is not possible to see
the results of the last submissions.

The topics that may appear at the ICPC are not so well specified as those
at the IOI. In any case, it is clear that more knowledge is needed at the ICPC,
especially more mathematical skills.

Online contests

There are also many online contests that are open for everybody. At the moment,
the most active contest site is Codeforces, which organizes contests about weekly.
In Codeforces, participants are divided into two divisions: beginners compete in
Div2 and more experienced programmers in Div1. Other contest sites include
AtCoder, CS Academy, HackerRank and Topcoder.

Some companies organize online contests with onsite finals. Examples of such
contests are Facebook Hacker Cup, Google Code Jam and Yandex.Algorithm. Of
course, companies also use those contests for recruiting: performing well in a
contest is a good way to prove one’s skills.

Books

There are already some books (besides this book) that focus on competitive
programming and algorithmic problem solving:

• S. S. Skiena and M. A. Revilla: Programming Challenges: The Programming
Contest Training Manual [59]

• S. Halim and F. Halim: Competitive Programming 3: The New Lower Bound
of Programming Contests [33]

• K. Diks et al.: Looking for a Challenge? The Ultimate Problem Set from the
University of Warsaw Programming Competitions [15]

The first two books are intended for beginners, whereas the last book contains
advanced material.

Of course, general algorithm books are also suitable for competitive program-
mers. Some popular books are:

• T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein: Introduction to
Algorithms [13]

• J. Kleinberg and É. Tardos: Algorithm Design [45]

• S. S. Skiena: The Algorithm Design Manual [58]

16

Chapter 2

Time complexity

The efficiency of algorithms is important in competitive programming. Usually,
it is easy to design an algorithm that solves the problem slowly, but the real
challenge is to invent a fast algorithm. If the algorithm is too slow, it will get only
partial points or no points at all.

The time complexity of an algorithm estimates how much time the algo-
rithm will use for some input. The idea is to represent the efficiency as a function
whose parameter is the size of the input. By calculating the time complexity, we
can find out whether the algorithm is fast enough without implementing it.

Calculation rules

The time complexity of an algorithm is denoted O(· · ·) where the three dots
represent some function. Usually, the variable n denotes the input size. For
example, if the input is an array of numbers, n will be the size of the array, and if
the input is a string, n will be the length of the string.

Loops

A common reason why an algorithm is slow is that it contains many loops that go
through the input. The more nested loops the algorithm contains, the slower it is.
If there are k nested loops, the time complexity is O(nk).

For example, the time complexity of the following code is O(n):

for (int i = 1; i <= n; i++) {

// code

}

And the time complexity of the following code is O(n2):

for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {

// code

}

}

17

Order of magnitude

A time complexity does not tell us the exact number of times the code inside
a loop is executed, but it only shows the order of magnitude. In the following
examples, the code inside the loop is executed 3n, n+5 and dn/2e times, but the
time complexity of each code is O(n).

for (int i = 1; i <= 3*n; i++) {

// code

}

for (int i = 1; i <= n+5; i++) {

// code

}

for (int i = 1; i <= n; i += 2) {

// code

}

As another example, the time complexity of the following code is O(n2):

for (int i = 1; i <= n; i++) {

for (int j = i+1; j <= n; j++) {

// code

}

}

Phases

If the algorithm consists of consecutive phases, the total time complexity is the
largest time complexity of a single phase. The reason for this is that the slowest
phase is usually the bottleneck of the code.

For example, the following code consists of three phases with time complexities
O(n), O(n2) and O(n). Thus, the total time complexity is O(n2).

for (int i = 1; i <= n; i++) {

// code

}

for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {

// code

}

}

for (int i = 1; i <= n; i++) {

// code

}

18

Several variables

Sometimes the time complexity depends on several factors. In this case, the time
complexity formula contains several variables.

For example, the time complexity of the following code is O(nm):

for (int i = 1; i <= n; i++) {

for (int j = 1; j <= m; j++) {

// code

}

}

Recursion

The time complexity of a recursive function depends on the number of times
the function is called and the time complexity of a single call. The total time
complexity is the product of these values.

For example, consider the following function:

void f(int n) {

if (n == 1) return;

f(n-1);

}

The call f(n) causes n function calls, and the time complexity of each call is O(1).
Thus, the total time complexity is O(n).

As another example, consider the following function:

void g(int n) {

if (n == 1) return;

g(n-1);

g(n-1);

}

In this case each function call generates two other calls, except for n = 1. Let us
see what happens when g is called with parameter n. The following table shows
the function calls produced by this single call:

function call number of calls
g(n) 1

g(n−1) 2
g(n−2) 4

· · · · · ·
g(1) 2n−1

Based on this, the time complexity is

1+2+4+·· ·+2n−1 = 2n −1=O(2n).

19

Complexity classes
The following list contains common time complexities of algorithms:

O(1) The running time of a constant-time algorithm does not depend on the
input size. A typical constant-time algorithm is a direct formula that
calculates the answer.

O(logn) A logarithmic algorithm often halves the input size at each step. The
running time of such an algorithm is logarithmic, because log2 n equals the
number of times n must be divided by 2 to get 1.

O(
p

n) A square root algorithm is slower than O(logn) but faster than O(n).
A special property of square roots is that

p
n = n/

p
n, so the square root

p
n

lies, in some sense, in the middle of the input.

O(n) A linear algorithm goes through the input a constant number of times. This
is often the best possible time complexity, because it is usually necessary to
access each input element at least once before reporting the answer.

O(n logn) This time complexity often indicates that the algorithm sorts the input,
because the time complexity of efficient sorting algorithms is O(n logn).
Another possibility is that the algorithm uses a data structure where each
operation takes O(logn) time.

O(n2) A quadratic algorithm often contains two nested loops. It is possible to
go through all pairs of the input elements in O(n2) time.

O(n3) A cubic algorithm often contains three nested loops. It is possible to go
through all triplets of the input elements in O(n3) time.

O(2n) This time complexity often indicates that the algorithm iterates through
all subsets of the input elements. For example, the subsets of {1,2,3} are ;,
{1}, {2}, {3}, {1,2}, {1,3}, {2,3} and {1,2,3}.

O(n!) This time complexity often indicates that the algorithm iterates through
all permutations of the input elements. For example, the permutations of
{1,2,3} are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1).

An algorithm is polynomial if its time complexity is at most O(nk) where k is
a constant. All the above time complexities except O(2n) and O(n!) are polynomial.
In practice, the constant k is usually small, and therefore a polynomial time
complexity roughly means that the algorithm is efficient.

Most algorithms in this book are polynomial. Still, there are many important
problems for which no polynomial algorithm is known, i.e., nobody knows how to
solve them efficiently. NP-hard problems are an important set of problems, for
which no polynomial algorithm is known1.

1A classic book on the topic is M. R. Garey’s and D. S. Johnson’s Computers and Intractability:
A Guide to the Theory of NP-Completeness [28].

20

Estimating efficiency

By calculating the time complexity of an algorithm, it is possible to check, before
implementing the algorithm, that it is efficient enough for the problem. The
starting point for estimations is the fact that a modern computer can perform
some hundreds of millions of operations in a second.

For example, assume that the time limit for a problem is one second and the
input size is n = 105. If the time complexity is O(n2), the algorithm will perform
about (105)2 = 1010 operations. This should take at least some tens of seconds, so
the algorithm seems to be too slow for solving the problem.

On the other hand, given the input size, we can try to guess the required time
complexity of the algorithm that solves the problem. The following table contains
some useful estimates assuming a time limit of one second.

input size required time complexity
n ≤ 10 O(n!)
n ≤ 20 O(2n)
n ≤ 500 O(n3)
n ≤ 5000 O(n2)
n ≤ 106 O(n logn) or O(n)
n is large O(1) or O(logn)

For example, if the input size is n = 105, it is probably expected that the
time complexity of the algorithm is O(n) or O(n logn). This information makes it
easier to design the algorithm, because it rules out approaches that would yield
an algorithm with a worse time complexity.

Still, it is important to remember that a time complexity is only an estimate
of efficiency, because it hides the constant factors. For example, an algorithm
that runs in O(n) time may perform n/2 or 5n operations. This has an important
effect on the actual running time of the algorithm.

Maximum subarray sum

There are often several possible algorithms for solving a problem such that their
time complexities are different. This section discusses a classic problem that has
a straightforward O(n3) solution. However, by designing a better algorithm, it is
possible to solve the problem in O(n2) time and even in O(n) time.

Given an array of n numbers, our task is to calculate the maximum subar-
ray sum, i.e., the largest possible sum of a sequence of consecutive values in the
array2. The problem is interesting when there may be negative values in the
array. For example, in the array

−1 2 4 −3 5 2 −5 2

2J. Bentley’s book Programming Pearls [8] made the problem popular.

21

the following subarray produces the maximum sum 10:

−1 2 4 −3 5 2 −5 2

We assume that an empty subarray is allowed, so the maximum subarray
sum is always at least 0.

Algorithm 1

A straightforward way to solve the problem is to go through all possible subarrays,
calculate the sum of values in each subarray and maintain the maximum sum.
The following code implements this algorithm:

int best = 0;

for (int a = 0; a < n; a++) {

for (int b = a; b < n; b++) {

int sum = 0;

for (int k = a; k <= b; k++) {

sum += array[k];

}

best = max(best,sum);

}

}

cout << best << "\n";

The variables a and b fix the first and last index of the subarray, and the
sum of values is calculated to the variable sum. The variable best contains the
maximum sum found during the search.

The time complexity of the algorithm is O(n3), because it consists of three
nested loops that go through the input.

Algorithm 2

It is easy to make Algorithm 1 more efficient by removing one loop from it. This
is possible by calculating the sum at the same time when the right end of the
subarray moves. The result is the following code:

int best = 0;

for (int a = 0; a < n; a++) {

int sum = 0;

for (int b = a; b < n; b++) {

sum += array[b];

best = max(best,sum);

}

}

cout << best << "\n";

After this change, the time complexity is O(n2).

22

Algorithm 3

Surprisingly, it is possible to solve the problem in O(n) time3, which means that
just one loop is enough. The idea is to calculate, for each array position, the
maximum sum of a subarray that ends at that position. After this, the answer
for the problem is the maximum of those sums.

Consider the subproblem of finding the maximum-sum subarray that ends at
position k. There are two possibilities:

1. The subarray only contains the element at position k.

2. The subarray consists of a subarray that ends at position k−1, followed by
the element at position k.

In the latter case, since we want to find a subarray with maximum sum, the
subarray that ends at position k−1 should also have the maximum sum. Thus,
we can solve the problem efficiently by calculating the maximum subarray sum
for each ending position from left to right.

The following code implements the algorithm:

int best = 0, sum = 0;

for (int k = 0; k < n; k++) {

sum = max(array[k],sum+array[k]);

best = max(best,sum);

}

cout << best << "\n";

The algorithm only contains one loop that goes through the input, so the time
complexity is O(n). This is also the best possible time complexity, because any
algorithm for the problem has to examine all array elements at least once.

Efficiency comparison

It is interesting to study how efficient algorithms are in practice. The following
table shows the running times of the above algorithms for different values of n
on a modern computer.

In each test, the input was generated randomly. The time needed for reading
the input was not measured.

array size n Algorithm 1 Algorithm 2 Algorithm 3
102 0.0 s 0.0 s 0.0 s
103 0.1 s 0.0 s 0.0 s
104 > 10.0 s 0.1 s 0.0 s
105 > 10.0 s 5.3 s 0.0 s
106 > 10.0 s > 10.0 s 0.0 s
107 > 10.0 s > 10.0 s 0.0 s

3In [8], this linear-time algorithm is attributed to J. B. Kadane, and the algorithm is sometimes
called Kadane’s algorithm.

23

The comparison shows that all algorithms are efficient when the input size is
small, but larger inputs bring out remarkable differences in the running times
of the algorithms. Algorithm 1 becomes slow when n = 104, and Algorithm 2
becomes slow when n = 105. Only Algorithm 3 is able to process even the largest
inputs instantly.

24

Chapter 3

Sorting

Sorting is a fundamental algorithm design problem. Many efficient algorithms
use sorting as a subroutine, because it is often easier to process data if the
elements are in a sorted order.

For example, the problem ”does an array contain two equal elements?” is easy
to solve using sorting. If the array contains two equal elements, they will be next
to each other after sorting, so it is easy to find them. Also, the problem ”what is
the most frequent element in an array?” can be solved similarly.

There are many algorithms for sorting, and they are also good examples of
how to apply different algorithm design techniques. The efficient general sorting
algorithms work in O(n logn) time, and many algorithms that use sorting as a
subroutine also have this time complexity.

Sorting theory

The basic problem in sorting is as follows:

Given an array that contains n elements, your task is to sort the elements in
increasing order.

For example, the array

1 3 8 2 9 2 5 6

will be as follows after sorting:

1 2 2 3 5 6 8 9

O(n2) algorithms

Simple algorithms for sorting an array work in O(n2) time. Such algorithms
are short and usually consist of two nested loops. A famous O(n2) time sorting

25

algorithm is bubble sort where the elements ”bubble” in the array according to
their values.

Bubble sort consists of n rounds. On each round, the algorithm iterates
through the elements of the array. Whenever two consecutive elements are found
that are not in correct order, the algorithm swaps them. The algorithm can be
implemented as follows:

for (int i = 0; i < n; i++) {

for (int j = 0; j < n-1; j++) {

if (array[j] > array[j+1]) {

swap(array[j],array[j+1]);

}

}

}

After the first round of the algorithm, the largest element will be in the correct
position, and in general, after k rounds, the k largest elements will be in the
correct positions. Thus, after n rounds, the whole array will be sorted.

For example, in the array

1 3 8 2 9 2 5 6

the first round of bubble sort swaps elements as follows:

1 3 2 8 9 2 5 6

1 3 2 8 2 9 5 6

1 3 2 8 2 5 9 6

1 3 2 8 2 5 6 9

Inversions

Bubble sort is an example of a sorting algorithm that always swaps consecutive
elements in the array. It turns out that the time complexity of such an algorithm
is always at least O(n2), because in the worst case, O(n2) swaps are required for
sorting the array.

A useful concept when analyzing sorting algorithms is an inversion: a pair
of array elements (array[a],array[b]) such that a < b and array[a]> array[b], i.e.,
the elements are in the wrong order. For example, the array

26

1 2 2 6 3 5 9 8

has three inversions: (6,3), (6,5) and (9,8). The number of inversions indicates
how much work is needed to sort the array. An array is completely sorted when
there are no inversions. On the other hand, if the array elements are in the
reverse order, the number of inversions is the largest possible:

1+2+·· ·+ (n−1)= n(n−1)
2

=O(n2)

Swapping a pair of consecutive elements that are in the wrong order removes
exactly one inversion from the array. Hence, if a sorting algorithm can only swap
consecutive elements, each swap removes at most one inversion, and the time
complexity of the algorithm is at least O(n2).

O(n logn) algorithms

It is possible to sort an array efficiently in O(n logn) time using algorithms that
are not limited to swapping consecutive elements. One such algorithm is merge
sort1, which is based on recursion.

Merge sort sorts a subarray array[a . . .b] as follows:

1. If a = b, do not do anything, because the subarray is already sorted.

2. Calculate the position of the middle element: k = b(a+b)/2c.
3. Recursively sort the subarray array[a . . .k].

4. Recursively sort the subarray array[k+1 . . .b].

5. Merge the sorted subarrays array[a . . .k] and array[k+1 . . .b] into a sorted
subarray array[a . . .b].

Merge sort is an efficient algorithm, because it halves the size of the subarray
at each step. The recursion consists of O(logn) levels, and processing each level
takes O(n) time. Merging the subarrays array[a . . .k] and array[k+1 . . .b] is
possible in linear time, because they are already sorted.

For example, consider sorting the following array:

1 3 6 2 8 2 5 9

The array will be divided into two subarrays as follows:

1 3 6 2 8 2 5 9

Then, the subarrays will be sorted recursively as follows:

1 2 3 6 2 5 8 9

1According to [47], merge sort was invented by J. von Neumann in 1945.

27

Finally, the algorithm merges the sorted subarrays and creates the final
sorted array:

1 2 2 3 5 6 8 9

Sorting lower bound

Is it possible to sort an array faster than in O(n logn) time? It turns out that this
is not possible when we restrict ourselves to sorting algorithms that are based on
comparing array elements.

The lower bound for the time complexity can be proved by considering sorting
as a process where each comparison of two elements gives more information
about the contents of the array. The process creates the following tree:

x < y?

x < y? x < y?

x < y? x < y? x < y? x < y?

Here ”x < y?” means that some elements x and y are compared. If x < y, the
process continues to the left, and otherwise to the right. The results of the process
are the possible ways to sort the array, a total of n! ways. For this reason, the
height of the tree must be at least

log2(n!)= log2(1)+ log2(2)+·· ·+ log2(n).

We get a lower bound for this sum by choosing the last n/2 elements and changing
the value of each element to log2(n/2). This yields an estimate

log2(n!)≥ (n/2) · log2(n/2),

so the height of the tree and the minimum possible number of steps in a sorting
algorithm in the worst case is at least n logn.

Counting sort

The lower bound n logn does not apply to algorithms that do not compare array
elements but use some other information. An example of such an algorithm is
counting sort that sorts an array in O(n) time assuming that every element in
the array is an integer between 0 . . . c and c =O(n).

The algorithm creates a bookkeeping array, whose indices are elements of the
original array. The algorithm iterates through the original array and calculates
how many times each element appears in the array.

28

For example, the array

1 3 6 9 9 3 5 9

corresponds to the following bookkeeping array:

1 0 2 0 1 1 0 0 3

1 2 3 4 5 6 7 8 9

For example, the value at position 3 in the bookkeeping array is 2, because
the element 3 appears 2 times in the original array.

Construction of the bookkeeping array takes O(n) time. After this, the sorted
array can be created in O(n) time because the number of occurrences of each
element can be retrieved from the bookkeeping array. Thus, the total time
complexity of counting sort is O(n).

Counting sort is a very efficient algorithm but it can only be used when the
constant c is small enough, so that the array elements can be used as indices in
the bookkeeping array.

Sorting in C++
It is almost never a good idea to use a home-made sorting algorithm in a contest,
because there are good implementations available in programming languages.
For example, the C++ standard library contains the function sort that can be
easily used for sorting arrays and other data structures.

There are many benefits in using a library function. First, it saves time
because there is no need to implement the function. Second, the library imple-
mentation is certainly correct and efficient: it is not probable that a home-made
sorting function would be better.

In this section we will see how to use the C++ sort function. The following
code sorts a vector in increasing order:

vector<int> v = {4,2,5,3,5,8,3};

sort(v.begin(),v.end());

After the sorting, the contents of the vector will be [2,3,3,4,5,5,8]. The default
sorting order is increasing, but a reverse order is possible as follows:

sort(v.rbegin(),v.rend());

An ordinary array can be sorted as follows:

int n = 7; // array size

int a[] = {4,2,5,3,5,8,3};

sort(a,a+n);

29

The following code sorts the string s:

string s = "monkey";

sort(s.begin(), s.end());

Sorting a string means that the characters of the string are sorted. For example,
the string ”monkey” becomes ”ekmnoy”.

Comparison operators

The function sort requires that a comparison operator is defined for the data
type of the elements to be sorted. When sorting, this operator will be used
whenever it is necessary to find out the order of two elements.

Most C++ data types have a built-in comparison operator, and elements
of those types can be sorted automatically. For example, numbers are sorted
according to their values and strings are sorted in alphabetical order.

Pairs (pair) are sorted primarily according to their first elements (first).
However, if the first elements of two pairs are equal, they are sorted according to
their second elements (second):

vector<pair<int,int>> v;

v.push_back({1,5});

v.push_back({2,3});

v.push_back({1,2});

sort(v.begin(), v.end());

After this, the order of the pairs is (1,2), (1,5) and (2,3).
In a similar way, tuples (tuple) are sorted primarily by the first element,

secondarily by the second element, etc.2:

vector<tuple<int,int,int>> v;

v.push_back({2,1,4});

v.push_back({1,5,3});

v.push_back({2,1,3});

sort(v.begin(), v.end());

After this, the order of the tuples is (1,5,3), (2,1,3) and (2,1,4).

User-defined structs

User-defined structs do not have a comparison operator automatically. The
operator should be defined inside the struct as a function operator<, whose
parameter is another element of the same type. The operator should return true

if the element is smaller than the parameter, and false otherwise.
For example, the following struct P contains the x and y coordinates of a point.

The comparison operator is defined so that the points are sorted primarily by the

2Note that in some older compilers, the function make_tuple has to be used to create a tuple
instead of braces (for example, make_tuple(2,1,4) instead of {2,1,4}).

30

x coordinate and secondarily by the y coordinate.

struct P {

int x, y;

bool operator<(const P &p) {

if (x != p.x) return x < p.x;

else return y < p.y;

}

};

Comparison functions

It is also possible to give an external comparison function to the sort function
as a callback function. For example, the following comparison function comp sorts
strings primarily by length and secondarily by alphabetical order:

bool comp(string a, string b) {

if (a.size() != b.size()) return a.size() < b.size();

return a < b;

}

Now a vector of strings can be sorted as follows:

sort(v.begin(), v.end(), comp);

Binary search

A general method for searching for an element in an array is to use a for loop
that iterates through the elements of the array. For example, the following code
searches for an element x in an array:

for (int i = 0; i < n; i++) {

if (array[i] == x) {

// x found at index i

}

}

The time complexity of this approach is O(n), because in the worst case, it
is necessary to check all elements of the array. If the order of the elements is
arbitrary, this is also the best possible approach, because there is no additional
information available where in the array we should search for the element x.

However, if the array is sorted, the situation is different. In this case it is
possible to perform the search much faster, because the order of the elements in
the array guides the search. The following binary search algorithm efficiently
searches for an element in a sorted array in O(logn) time.

31

Method 1

The usual way to implement binary search resembles looking for a word in a
dictionary. The search maintains an active region in the array, which initially
contains all array elements. Then, a number of steps is performed, each of which
halves the size of the region.

At each step, the search checks the middle element of the active region. If
the middle element is the target element, the search terminates. Otherwise, the
search recursively continues to the left or right half of the region, depending on
the value of the middle element.

The above idea can be implemented as follows:

int a = 0, b = n-1;

while (a <= b) {

int k = (a+b)/2;

if (array[k] == x) {

// x found at index k

}

if (array[k] > x) b = k-1;

else a = k+1;

}

In this implementation, the active region is a . . .b, and initially the region is
0 . . .n−1. The algorithm halves the size of the region at each step, so the time
complexity is O(logn).

Method 2

An alternative method to implement binary search is based on an efficient way to
iterate through the elements of the array. The idea is to make jumps and slow
the speed when we get closer to the target element.

The search goes through the array from left to right, and the initial jump
length is n/2. At each step, the jump length will be halved: first n/4, then n/8,
n/16, etc., until finally the length is 1. After the jumps, either the target element
has been found or we know that it does not appear in the array.

The following code implements the above idea:

int k = 0;

for (int b = n/2; b >= 1; b /= 2) {

while (k+b < n && array[k+b] <= x) k += b;

}

if (array[k] == x) {

// x found at index k

}

During the search, the variable b contains the current jump length. The
time complexity of the algorithm is O(logn), because the code in the while loop is
performed at most twice for each jump length.

32

C++ functions

The C++ standard library contains the following functions that are based on
binary search and work in logarithmic time:

• lower_bound returns a pointer to the first array element whose value is at
least x.

• upper_bound returns a pointer to the first array element whose value is
larger than x.

• equal_range returns both above pointers.

The functions assume that the array is sorted. If there is no such element,
the pointer points to the element after the last array element. For example, the
following code finds out whether an array contains an element with value x:

auto k = lower_bound(array,array+n,x)-array;

if (k < n && array[k] == x) {

// x found at index k

}

Then, the following code counts the number of elements whose value is x:

auto a = lower_bound(array, array+n, x);

auto b = upper_bound(array, array+n, x);

cout << b-a << "\n";

Using equal_range, the code becomes shorter:

auto r = equal_range(array, array+n, x);

cout << r.second-r.first << "\n";

Finding the smallest solution

An important use for binary search is to find the position where the value of a
function changes. Suppose that we wish to find the smallest value k that is a
valid solution for a problem. We are given a function ok(x) that returns true if x
is a valid solution and false otherwise. In addition, we know that ok(x) is false

when x < k and true when x ≥ k. The situation looks as follows:

x 0 1 · · · k−1 k k+1 · · ·
ok(x) false false · · · false true true · · ·

Now, the value of k can be found using binary search:

int x = -1;

for (int b = z; b >= 1; b /= 2) {

while (!ok(x+b)) x += b;

}

int k = x+1;

33

The search finds the largest value of x for which ok(x) is false. Thus, the next
value k = x+1 is the smallest possible value for which ok(k) is true. The initial
jump length z has to be large enough, for example some value for which we know
beforehand that ok(z) is true.

The algorithm calls the function ok O(log z) times, so the total time complexity
depends on the function ok. For example, if the function works in O(n) time, the
total time complexity is O(n log z).

Finding the maximum value

Binary search can also be used to find the maximum value for a function that is
first increasing and then decreasing. Our task is to find a position k such that

• f (x)< f (x+1) when x < k, and

• f (x)> f (x+1) when x ≥ k.

The idea is to use binary search for finding the largest value of x for which
f (x)< f (x+1). This implies that k = x+1 because f (x+1)> f (x+2). The following
code implements the search:

int x = -1;

for (int b = z; b >= 1; b /= 2) {

while (f(x+b) < f(x+b+1)) x += b;

}

int k = x+1;

Note that unlike in the ordinary binary search, here it is not allowed that
consecutive values of the function are equal. In this case it would not be possible
to know how to continue the search.

34

Chapter 4

Data structures

A data structure is a way to store data in the memory of a computer. It is
important to choose an appropriate data structure for a problem, because each
data structure has its own advantages and disadvantages. The crucial question
is: which operations are efficient in the chosen data structure?

This chapter introduces the most important data structures in the C++ stan-
dard library. It is a good idea to use the standard library whenever possible,
because it will save a lot of time. Later in the book we will learn about more
sophisticated data structures that are not available in the standard library.

Dynamic arrays

A dynamic array is an array whose size can be changed during the execution of
the program. The most popular dynamic array in C++ is the vector structure,
which can be used almost like an ordinary array.

The following code creates an empty vector and adds three elements to it:

vector<int> v;

v.push_back(3); // [3]

v.push_back(2); // [3,2]

v.push_back(5); // [3,2,5]

After this, the elements can be accessed like in an ordinary array:

cout << v[0] << "\n"; // 3

cout << v[1] << "\n"; // 2

cout << v[2] << "\n"; // 5

The function size returns the number of elements in the vector. The following
code iterates through the vector and prints all elements in it:

for (int i = 0; i < v.size(); i++) {

cout << v[i] << "\n";

}

35

A shorter way to iterate through a vector is as follows:

for (auto x : v) {

cout << x << "\n";

}

The function back returns the last element in the vector, and the function
pop_back removes the last element:

vector<int> v;

v.push_back(5);

v.push_back(2);

cout << v.back() << "\n"; // 2

v.pop_back();

cout << v.back() << "\n"; // 5

The following code creates a vector with five elements:

vector<int> v = {2,4,2,5,1};

Another way to create a vector is to give the number of elements and the
initial value for each element:

// size 10, initial value 0

vector<int> v(10);

// size 10, initial value 5

vector<int> v(10, 5);

The internal implementation of a vector uses an ordinary array. If the size of
the vector increases and the array becomes too small, a new array is allocated
and all the elements are moved to the new array. However, this does not happen
often and the average time complexity of push_back is O(1).

The string structure is also a dynamic array that can be used almost like
a vector. In addition, there is special syntax for strings that is not available in
other data structures. Strings can be combined using the + symbol. The function
substr(k, x) returns the substring that begins at position k and has length x, and
the function find(t) finds the position of the first occurrence of a substring t.

The following code presents some string operations:

string a = "hatti";

string b = a+a;

cout << b << "\n"; // hattihatti

b[5] = ’v’;

cout << b << "\n"; // hattivatti

string c = b.substr(3,4);

cout << c << "\n"; // tiva

36

Set structures

A set is a data structure that maintains a collection of elements. The basic
operations of sets are element insertion, search and removal.

The C++ standard library contains two set implementations: The structure
set is based on a balanced binary tree and its operations work in O(logn) time.
The structure unordered_set uses hashing, and its operations work in O(1) time
on average.

The choice of which set implementation to use is often a matter of taste. The
benefit of the set structure is that it maintains the order of the elements and
provides functions that are not available in unordered_set. On the other hand,
unordered_set can be more efficient.

The following code creates a set that contains integers, and shows some of the
operations. The function insert adds an element to the set, the function count

returns the number of occurrences of an element in the set, and the function
erase removes an element from the set.

set<int> s;

s.insert(3);

s.insert(2);

s.insert(5);

cout << s.count(3) << "\n"; // 1

cout << s.count(4) << "\n"; // 0

s.erase(3);

s.insert(4);

cout << s.count(3) << "\n"; // 0

cout << s.count(4) << "\n"; // 1

A set can be used mostly like a vector, but it is not possible to access the
elements using the [] notation. The following code creates a set, prints the
number of elements in it, and then iterates through all the elements:

set<int> s = {2,5,6,8};

cout << s.size() << "\n"; // 4

for (auto x : s) {

cout << x << "\n";

}

An important property of sets is that all their elements are distinct. Thus,
the function count always returns either 0 (the element is not in the set) or 1 (the
element is in the set), and the function insert never adds an element to the set if
it is already there. The following code illustrates this:

set<int> s;

s.insert(5);

s.insert(5);

s.insert(5);

cout << s.count(5) << "\n"; // 1

37

C++ also contains the structures multiset and unordered_multiset that other-
wise work like set and unordered_set but they can contain multiple instances of
an element. For example, in the following code all three instances of the number
5 are added to a multiset:

multiset<int> s;

s.insert(5);

s.insert(5);

s.insert(5);

cout << s.count(5) << "\n"; // 3

The function erase removes all instances of an element from a multiset:

s.erase(5);

cout << s.count(5) << "\n"; // 0

Often, only one instance should be removed, which can be done as follows:

s.erase(s.find(5));

cout << s.count(5) << "\n"; // 2

Map structures

A map is a generalized array that consists of key-value-pairs. While the keys in
an ordinary array are always the consecutive integers 0,1, . . . ,n−1, where n is
the size of the array, the keys in a map can be of any data type and they do not
have to be consecutive values.

The C++ standard library contains two map implementations that correspond
to the set implementations: the structure map is based on a balanced binary tree
and accessing elements takes O(logn) time, while the structure unordered_map

uses hashing and accessing elements takes O(1) time on average.
The following code creates a map where the keys are strings and the values

are integers:

map<string,int> m;

m["monkey"] = 4;

m["banana"] = 3;

m["harpsichord"] = 9;

cout << m["banana"] << "\n"; // 3

If the value of a key is requested but the map does not contain it, the key
is automatically added to the map with a default value. For example, in the
following code, the key ”aybabtu” with value 0 is added to the map.

map<string,int> m;

cout << m["aybabtu"] << "\n"; // 0

38

The function count checks if a key exists in a map:

if (m.count("aybabtu")) {

// key exists

}

The following code prints all the keys and values in a map:

for (auto x : m) {

cout << x.first << " " << x.second << "\n";

}

Iterators and ranges
Many functions in the C++ standard library operate with iterators. An iterator
is a variable that points to an element in a data structure.

The often used iterators begin and end define a range that contains all ele-
ments in a data structure. The iterator begin points to the first element in the
data structure, and the iterator end points to the position after the last element.
The situation looks as follows:

{ 3, 4, 6, 8, 12, 13, 14, 17 }
↑ ↑
s.begin() s.end()

Note the asymmetry in the iterators: s.begin() points to an element in the
data structure, while s.end() points outside the data structure. Thus, the range
defined by the iterators is half-open.

Working with ranges

Iterators are used in C++ standard library functions that are given a range of
elements in a data structure. Usually, we want to process all elements in a data
structure, so the iterators begin and end are given for the function.

For example, the following code sorts a vector using the function sort, then
reverses the order of the elements using the function reverse, and finally shuffles
the order of the elements using the function random_shuffle.

sort(v.begin(), v.end());

reverse(v.begin(), v.end());

random_shuffle(v.begin(), v.end());

These functions can also be used with an ordinary array. In this case, the
functions are given pointers to the array instead of iterators:

39

sort(a, a+n);

reverse(a, a+n);

random_shuffle(a, a+n);

Set iterators

Iterators are often used to access elements of a set. The following code creates an
iterator it that points to the smallest element in a set:

set<int>::iterator it = s.begin();

A shorter way to write the code is as follows:

auto it = s.begin();

The element to which an iterator points can be accessed using the * symbol. For
example, the following code prints the first element in the set:

auto it = s.begin();

cout << *it << "\n";

Iterators can be moved using the operators ++ (forward) and -- (backward),
meaning that the iterator moves to the next or previous element in the set.

The following code prints all the elements in increasing order:

for (auto it = s.begin(); it != s.end(); it++) {

cout << *it << "\n";

}

The following code prints the largest element in the set:

auto it = s.end(); it--;

cout << *it << "\n";

The function find(x) returns an iterator that points to an element whose
value is x. However, if the set does not contain x, the iterator will be end.

auto it = s.find(x);

if (it == s.end()) {

// x is not found

}

The function lower_bound(x) returns an iterator to the smallest element in the
set whose value is at least x, and the function upper_bound(x) returns an iterator
to the smallest element in the set whose value is larger than x. In both functions,
if such an element does not exist, the return value is end. These functions are
not supported by the unordered_set structure which does not maintain the order
of the elements.

40

For example, the following code finds the element nearest to x:

auto it = s.lower_bound(x);

if (it == s.begin()) {

cout << *it << "\n";

} else if (it == s.end()) {

it--;

cout << *it << "\n";

} else {

int a = *it; it--;

int b = *it;

if (x-b < a-x) cout << b << "\n";

else cout << a << "\n";

}

The code assumes that the set is not empty, and goes through all possible
cases using an iterator it. First, the iterator points to the smallest element
whose value is at least x. If it equals begin, the corresponding element is nearest
to x. If it equals end, the largest element in the set is nearest to x. If none
of the previous cases hold, the element nearest to x is either the element that
corresponds to it or the previous element.

Other structures

Bitset

A bitset is an array whose each value is either 0 or 1. For example, the following
code creates a bitset that contains 10 elements:

bitset<10> s;

s[1] = 1;

s[3] = 1;

s[4] = 1;

s[7] = 1;

cout << s[4] << "\n"; // 1

cout << s[5] << "\n"; // 0

The benefit of using bitsets is that they require less memory than ordinary
arrays, because each element in a bitset only uses one bit of memory. For
example, if n bits are stored in an int array, 32n bits of memory will be used, but
a corresponding bitset only requires n bits of memory. In addition, the values of a
bitset can be efficiently manipulated using bit operators, which makes it possible
to optimize algorithms using bit sets.

The following code shows another way to create the above bitset:

bitset<10> s(string("0010011010")); // from right to left

cout << s[4] << "\n"; // 1

cout << s[5] << "\n"; // 0

41

The function count returns the number of ones in the bitset:

bitset<10> s(string("0010011010"));

cout << s.count() << "\n"; // 4

The following code shows examples of using bit operations:

bitset<10> a(string("0010110110"));

bitset<10> b(string("1011011000"));

cout << (a&b) << "\n"; // 0010010000

cout << (a|b) << "\n"; // 1011111110

cout << (a^b) << "\n"; // 1001101110

Deque

A deque is a dynamic array whose size can be efficiently changed at both ends of
the array. Like a vector, a deque provides the functions push_back and pop_back,
but it also includes the functions push_front and pop_front which are not avail-
able in a vector.

A deque can be used as follows:

deque<int> d;

d.push_back(5); // [5]

d.push_back(2); // [5,2]

d.push_front(3); // [3,5,2]

d.pop_back(); // [3,5]

d.pop_front(); // [5]

The internal implementation of a deque is more complex than that of a vector,
and for this reason, a deque is slower than a vector. Still, both adding and
removing elements take O(1) time on average at both ends.

Stack

A stack is a data structure that provides two O(1) time operations: adding an
element to the top, and removing an element from the top. It is only possible to
access the top element of a stack.

The following code shows how a stack can be used:

stack<int> s;

s.push(3);

s.push(2);

s.push(5);

cout << s.top(); // 5

s.pop();

cout << s.top(); // 2

42

Queue

A queue also provides two O(1) time operations: adding an element to the end
of the queue, and removing the first element in the queue. It is only possible to
access the first and last element of a queue.

The following code shows how a queue can be used:

queue<int> q;

q.push(3);

q.push(2);

q.push(5);

cout << q.front(); // 3

q.pop();

cout << q.front(); // 2

Priority queue

A priority queue maintains a set of elements. The supported operations are
insertion and, depending on the type of the queue, retrieval and removal of either
the minimum or maximum element. Insertion and removal take O(logn) time,
and retrieval takes O(1) time.

While an ordered set efficiently supports all the operations of a priority queue,
the benefit of using a priority queue is that it has smaller constant factors. A
priority queue is usually implemented using a heap structure that is much
simpler than a balanced binary tree used in an ordered set.

By default, the elements in a C++ priority queue are sorted in decreasing
order, and it is possible to find and remove the largest element in the queue. The
following code illustrates this:

priority_queue<int> q;

q.push(3);

q.push(5);

q.push(7);

q.push(2);

cout << q.top() << "\n"; // 7

q.pop();

cout << q.top() << "\n"; // 5

q.pop();

q.push(6);

cout << q.top() << "\n"; // 6

q.pop();

If we want to create a priority queue that supports finding and removing the
smallest element, we can do it as follows:

priority_queue<int,vector<int>,greater<int>> q;

43

Policy-based data structures

The g++ compiler also supports some data structures that are not part of the C++
standard library. Such structures are called policy-based data structures. To use
these structures, the following lines must be added to the code:

#include <ext/pb_ds/assoc_container.hpp>

using namespace __gnu_pbds;

After this, we can define a data structure indexed_set that is like set but can be
indexed like an array. The definition for int values is as follows:

typedef tree<int,null_type,less<int>,rb_tree_tag,

tree_order_statistics_node_update> indexed_set;

Now we can create a set as follows:

indexed_set s;

s.insert(2);

s.insert(3);

s.insert(7);

s.insert(9);

The speciality of this set is that we have access to the indices that the elements
would have in a sorted array. The function find_by_order returns an iterator to
the element at a given position:

auto x = s.find_by_order(2);

cout << *x << "\n"; // 7

And the function order_of_key returns the position of a given element:

cout << s.order_of_key(7) << "\n"; // 2

If the element does not appear in the set, we get the position that the element
would have in the set:

cout << s.order_of_key(6) << "\n"; // 2

cout << s.order_of_key(8) << "\n"; // 3

Both the functions work in logarithmic time.

Comparison to sorting

It is often possible to solve a problem using either data structures or sorting.
Sometimes there are remarkable differences in the actual efficiency of these
approaches, which may be hidden in their time complexities.

Let us consider a problem where we are given two lists A and B that both
contain n elements. Our task is to calculate the number of elements that belong

44

to both of the lists. For example, for the lists

A = [5,2,8,9,4] and B = [3,2,9,5],

the answer is 3 because the numbers 2, 5 and 9 belong to both of the lists.
A straightforward solution to the problem is to go through all pairs of elements

in O(n2) time, but next we will focus on more efficient algorithms.

Algorithm 1

We construct a set of the elements that appear in A, and after this, we iterate
through the elements of B and check for each elements if it also belongs to A.
This is efficient because the elements of A are in a set. Using the set structure,
the time complexity of the algorithm is O(n logn).

Algorithm 2

It is not necessary to maintain an ordered set, so instead of the set structure
we can also use the unordered_set structure. This is an easy way to make the
algorithm more efficient, because we only have to change the underlying data
structure. The time complexity of the new algorithm is O(n).

Algorithm 3

Instead of data structures, we can use sorting. First, we sort both lists A and
B. After this, we iterate through both the lists at the same time and find the
common elements. The time complexity of sorting is O(n logn), and the rest of
the algorithm works in O(n) time, so the total time complexity is O(n logn).

Efficiency comparison

The following table shows how efficient the above algorithms are when n varies
and the elements of the lists are random integers between 1 . . .109:

n Algorithm 1 Algorithm 2 Algorithm 3
106 1.5 s 0.3 s 0.2 s

2 ·106 3.7 s 0.8 s 0.3 s
3 ·106 5.7 s 1.3 s 0.5 s
4 ·106 7.7 s 1.7 s 0.7 s
5 ·106 10.0 s 2.3 s 0.9 s

Algorithms 1 and 2 are equal except that they use different set structures. In
this problem, this choice has an important effect on the running time, because
Algorithm 2 is 4–5 times faster than Algorithm 1.

However, the most efficient algorithm is Algorithm 3 which uses sorting.
It only uses half the time compared to Algorithm 2. Interestingly, the time
complexity of both Algorithm 1 and Algorithm 3 is O(n logn), but despite this,
Algorithm 3 is ten times faster. This can be explained by the fact that sorting is a

45

simple procedure and it is done only once at the beginning of Algorithm 3, and
the rest of the algorithm works in linear time. On the other hand, Algorithm 1
maintains a complex balanced binary tree during the whole algorithm.

46

Chapter 5

Complete search

Complete search is a general method that can be used to solve almost any
algorithm problem. The idea is to generate all possible solutions to the problem
using brute force, and then select the best solution or count the number of
solutions, depending on the problem.

Complete search is a good technique if there is enough time to go through
all the solutions, because the search is usually easy to implement and it always
gives the correct answer. If complete search is too slow, other techniques, such as
greedy algorithms or dynamic programming, may be needed.

Generating subsets

We first consider the problem of generating all subsets of a set of n elements. For
example, the subsets of {0,1,2} are ;, {0}, {1}, {2}, {0,1}, {0,2}, {1,2} and {0,1,2}.
There are two common methods to generate subsets: we can either perform a
recursive search or exploit the bit representation of integers.

Method 1

An elegant way to go through all subsets of a set is to use recursion. The
following function search generates the subsets of the set {0,1, . . . ,n−1}. The
function maintains a vector subset that will contain the elements of each subset.
The search begins when the function is called with parameter 0.

void search(int k) {

if (k == n) {

// process subset

} else {

search(k+1);

subset.push_back(k);

search(k+1);

subset.pop_back();

}

}

47

When the function search is called with parameter k, it decides whether to
include the element k in the subset or not, and in both cases, then calls itself
with parameter k+1 However, if k = n, the function notices that all elements
have been processed and a subset has been generated.

The following tree illustrates the function calls when n = 3. We can always
choose either the left branch (k is not included in the subset) or the right branch
(k is included in the subset).

search(0)

search(1) search(1)

search(2) search(2) search(2) search(2)

search(3) search(3) search(3) search(3) search(3) search(3) search(3) search(3)

; {2} {1} {1,2} {0} {0,2} {0,1} {0,1,2}

Method 2

Another way to generate subsets is based on the bit representation of integers.
Each subset of a set of n elements can be represented as a sequence of n bits,
which corresponds to an integer between 0 . . .2n −1. The ones in the bit sequence
indicate which elements are included in the subset.

The usual convention is that the last bit corresponds to element 0, the second
last bit corresponds to element 1, and so on. For example, the bit representation
of 25 is 11001, which corresponds to the subset {0,3,4}.

The following code goes through the subsets of a set of n elements

for (int b = 0; b < (1<<n); b++) {

// process subset

}

The following code shows how we can find the elements of a subset that
corresponds to a bit sequence. When processing each subset, the code builds a
vector that contains the elements in the subset.

for (int b = 0; b < (1<<n); b++) {

vector<int> subset;

for (int i = 0; i < n; i++) {

if (b&(1<<i)) subset.push_back(i);

}

}

48

Generating permutations

Next we consider the problem of generating all permutations of a set of n elements.
For example, the permutations of {0,1,2} are (0,1,2), (0,2,1), (1,0,2), (1,2,0),
(2,0,1) and (2,1,0). Again, there are two approaches: we can either use recursion
or go through the permutations iteratively.

Method 1

Like subsets, permutations can be generated using recursion. The following
function search goes through the permutations of the set {0,1, . . . ,n−1}. The
function builds a vector permutation that contains the permutation, and the
search begins when the function is called without parameters.

void search() {

if (permutation.size() == n) {

// process permutation

} else {

for (int i = 0; i < n; i++) {

if (chosen[i]) continue;

chosen[i] = true;

permutation.push_back(i);

search();

chosen[i] = false;

permutation.pop_back();

}

}

}

Each function call adds a new element to permutation. The array chosen

indicates which elements are already included in the permutation. If the size of
permutation equals the size of the set, a permutation has been generated.

Method 2

Another method for generating permutations is to begin with the permutation
{0,1, . . . ,n−1} and repeatedly use a function that constructs the next permu-
tation in increasing order. The C++ standard library contains the function
next_permutation that can be used for this:

vector<int> permutation;

for (int i = 0; i < n; i++) {

permutation.push_back(i);

}

do {

// process permutation

} while (next_permutation(permutation.begin(),permutation.end()));

49

Backtracking
A backtracking algorithm begins with an empty solution and extends the
solution step by step. The search recursively goes through all different ways how
a solution can be constructed.

As an example, consider the problem of calculating the number of ways n
queens can be placed on an n×n chessboard so that no two queens attack each
other. For example, when n = 4, there are two possible solutions:

Q

Q

Q

Q

Q

Q

Q

Q

The problem can be solved using backtracking by placing queens to the board
row by row. More precisely, exactly one queen will be placed on each row so that
no queen attacks any of the queens placed before. A solution has been found
when all n queens have been placed on the board.

For example, when n = 4, some partial solutions generated by the backtrack-
ing algorithm are as follows:

Q Q Q Q

Q Q Q Q

Q Q Q Q

illegal illegal illegal valid

At the bottom level, the three first configurations are illegal, because the
queens attack each other. However, the fourth configuration is valid and it can be
extended to a complete solution by placing two more queens to the board. There
is only one way to place the two remaining queens.

The algorithm can be implemented as follows:

50

void search(int y) {

if (y == n) {

count++;

return;

}

for (int x = 0; x < n; x++) {

if (column[x] || diag1[x+y] || diag2[x-y+n-1]) continue;

column[x] = diag1[x+y] = diag2[x-y+n-1] = 1;

search(y+1);

column[x] = diag1[x+y] = diag2[x-y+n-1] = 0;

}

}

The search begins by calling search(0). The size of the board is n×n, and the
code calculates the number of solutions to count.

The code assumes that the rows and columns of the board are numbered from
0 to n−1. When the function search is called with parameter y, it places a queen
on row y and then calls itself with parameter y+1. Then, if y= n, a solution has
been found and the variable count is increased by one.

The array column keeps track of columns that contain a queen, and the arrays
diag1 and diag2 keep track of diagonals. It is not allowed to add another queen
to a column or diagonal that already contains a queen. For example, the columns
and diagonals of the 4×4 board are numbered as follows:

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

3 4 5 6

2 3 4 5

1 2 3 4

0 1 2 3

column diag1 diag2

Let q(n) denote the number of ways to place n queens on an n×n chessboard.
The above backtracking algorithm tells us that, for example, q(8) = 92. When
n increases, the search quickly becomes slow, because the number of solutions
increases exponentially. For example, calculating q(16) = 14772512 using the
above algorithm already takes about a minute on a modern computer1.

Pruning the search
We can often optimize backtracking by pruning the search tree. The idea is to
add ”intelligence” to the algorithm so that it will notice as soon as possible if a
partial solution cannot be extended to a complete solution. Such optimizations
can have a tremendous effect on the efficiency of the search.

1There is no known way to efficiently calculate larger values of q(n). The current record is
q(27)= 234907967154122528, calculated in 2016 [55].

51

Let us consider the problem of calculating the number of paths in an n×n
grid from the upper-left corner to the lower-right corner such that the path visits
each square exactly once. For example, in a 7×7 grid, there are 111712 such
paths. One of the paths is as follows:

We focus on the 7×7 case, because its level of difficulty is appropriate to
our needs. We begin with a straightforward backtracking algorithm, and then
optimize it step by step using observations of how the search can be pruned.
After each optimization, we measure the running time of the algorithm and the
number of recursive calls, so that we clearly see the effect of each optimization
on the efficiency of the search.

Basic algorithm

The first version of the algorithm does not contain any optimizations. We simply
use backtracking to generate all possible paths from the upper-left corner to the
lower-right corner and count the number of such paths.

• running time: 483 seconds

• number of recursive calls: 76 billion

Optimization 1

In any solution, we first move one step down or right. There are always two
paths that are symmetric about the diagonal of the grid after the first step. For
example, the following paths are symmetric:

Hence, we can decide that we always first move one step down (or right), and
finally multiply the number of solutions by two.

• running time: 244 seconds

• number of recursive calls: 38 billion

52

Optimization 2

If the path reaches the lower-right square before it has visited all other squares
of the grid, it is clear that it will not be possible to complete the solution. An
example of this is the following path:

Using this observation, we can terminate the search immediately if we reach the
lower-right square too early.

• running time: 119 seconds

• number of recursive calls: 20 billion

Optimization 3

If the path touches a wall and can turn either left or right, the grid splits into
two parts that contain unvisited squares. For example, in the following situation,
the path can turn either left or right:

In this case, we cannot visit all squares anymore, so we can terminate the search.
This optimization is very useful:

• running time: 1.8 seconds

• number of recursive calls: 221 million

Optimization 4

The idea of Optimization 3 can be generalized: if the path cannot continue
forward but can turn either left or right, the grid splits into two parts that both
contain unvisited squares. For example, consider the following path:

53

It is clear that we cannot visit all squares anymore, so we can terminate the
search. After this optimization, the search is very efficient:

• running time: 0.6 seconds

• number of recursive calls: 69 million

Now is a good moment to stop optimizing the algorithm and see what we have
achieved. The running time of the original algorithm was 483 seconds, and now
after the optimizations, the running time is only 0.6 seconds. Thus, the algorithm
became nearly 1000 times faster after the optimizations.

This is a usual phenomenon in backtracking, because the search tree is usually
large and even simple observations can effectively prune the search. Especially
useful are optimizations that occur during the first steps of the algorithm, i.e., at
the top of the search tree.

Meet in the middle

Meet in the middle is a technique where the search space is divided into two
parts of about equal size. A separate search is performed for both of the parts,
and finally the results of the searches are combined.

The technique can be used if there is an efficient way to combine the results
of the searches. In such a situation, the two searches may require less time than
one large search. Typically, we can turn a factor of 2n into a factor of 2n/2 using
the meet in the middle technique.

As an example, consider a problem where we are given a list of n numbers
and a number x, and we want to find out if it is possible to choose some numbers
from the list so that their sum is x. For example, given the list [2,4,5,9] and
x = 15, we can choose the numbers [2,4,9] to get 2+4+9= 15. However, if x = 10
for the same list, it is not possible to form the sum.

A simple algorithm to the problem is to go through all subsets of the elements
and check if the sum of any of the subsets is x. The running time of such an
algorithm is O(2n), because there are 2n subsets. However, using the meet in the
middle technique, we can achieve a more efficient O(2n/2) time algorithm2. Note
that O(2n) and O(2n/2) are different complexities because 2n/2 equals

p
2n.

2This idea was introduced in 1974 by E. Horowitz and S. Sahni [39].

54

The idea is to divide the list into two lists A and B such that both lists contain
about half of the numbers. The first search generates all subsets of A and stores
their sums to a list SA. Correspondingly, the second search creates a list SB from
B. After this, it suffices to check if it is possible to choose one element from SA
and another element from SB such that their sum is x. This is possible exactly
when there is a way to form the sum x using the numbers of the original list.

For example, suppose that the list is [2,4,5,9] and x = 15. First, we divide
the list into A = [2,4] and B = [5,9]. After this, we create lists SA = [0,2,4,6]
and SB = [0,5,9,14]. In this case, the sum x = 15 is possible to form, because SA
contains the sum 6, SB contains the sum 9, and 6+9= 15. This corresponds to
the solution [2,4,9].

We can implement the algorithm so that its time complexity is O(2n/2). First,
we generate sorted lists SA and SB, which can be done in O(2n/2) time using a
merge-like technique. After this, since the lists are sorted, we can check in O(2n/2)
time if the sum x can be created from SA and SB.

55

56

Chapter 6

Greedy algorithms

A greedy algorithm constructs a solution to the problem by always making a
choice that looks the best at the moment. A greedy algorithm never takes back
its choices, but directly constructs the final solution. For this reason, greedy
algorithms are usually very efficient.

The difficulty in designing greedy algorithms is to find a greedy strategy that
always produces an optimal solution to the problem. The locally optimal choices
in a greedy algorithm should also be globally optimal. It is often difficult to argue
that a greedy algorithm works.

Coin problem

As a first example, we consider a problem where we are given a set of coins and
our task is to form a sum of money n using the coins. The values of the coins are
coins= {c1, c2, . . . , ck}, and each coin can be used as many times we want. What
is the minimum number of coins needed?

For example, if the coins are the euro coins (in cents)

{1,2,5,10,20,50,100,200}

and n = 520, we need at least four coins. The optimal solution is to select coins
200+200+100+20 whose sum is 520.

Greedy algorithm

A simple greedy algorithm to the problem always selects the largest possible coin,
until the required sum of money has been constructed. This algorithm works in
the example case, because we first select two 200 cent coins, then one 100 cent
coin and finally one 20 cent coin. But does this algorithm always work?

It turns out that if the coins are the euro coins, the greedy algorithm always
works, i.e., it always produces a solution with the fewest possible number of coins.
The correctness of the algorithm can be shown as follows:

First, each coin 1, 5, 10, 50 and 100 appears at most once in an optimal
solution, because if the solution would contain two such coins, we could replace

57

them by one coin and obtain a better solution. For example, if the solution would
contain coins 5+5, we could replace them by coin 10.

In the same way, coins 2 and 20 appear at most twice in an optimal solution,
because we could replace coins 2+2+2 by coins 5+1 and coins 20+20+20 by
coins 50+10. Moreover, an optimal solution cannot contain coins 2+2+1 or
20+20+10, because we could replace them by coins 5 and 50.

Using these observations, we can show for each coin x that it is not possible
to optimally construct a sum x or any larger sum by only using coins that are
smaller than x. For example, if x = 100, the largest optimal sum using the smaller
coins is 50+20+20+5+2+2= 99. Thus, the greedy algorithm that always selects
the largest coin produces the optimal solution.

This example shows that it can be difficult to argue that a greedy algorithm
works, even if the algorithm itself is simple.

General case

In the general case, the coin set can contain any coins and the greedy algorithm
does not necessarily produce an optimal solution.

We can prove that a greedy algorithm does not work by showing a counterex-
ample where the algorithm gives a wrong answer. In this problem we can easily
find a counterexample: if the coins are {1,3,4} and the target sum is 6, the greedy
algorithm produces the solution 4+1+1 while the optimal solution is 3+3.

It is not known if the general coin problem can be solved using any greedy
algorithm1. However, as we will see in Chapter 7, in some cases, the general
problem can be efficiently solved using a dynamic programming algorithm that
always gives the correct answer.

Scheduling

Many scheduling problems can be solved using greedy algorithms. A classic
problem is as follows: Given n events with their starting and ending times, find a
schedule that includes as many events as possible. It is not possible to select an
event partially. For example, consider the following events:

event starting time ending time
A 1 3
B 2 5
C 3 9
D 6 8

In this case the maximum number of events is two. For example, we can select
events B and D as follows:

1However, it is possible to check in polynomial time if the greedy algorithm presented in this
chapter works for a given set of coins [53].

58

A
B

C
D

It is possible to invent several greedy algorithms for the problem, but which
of them works in every case?

Algorithm 1

The first idea is to select as short events as possible. In the example case this
algorithm selects the following events:

A
B

C
D

However, selecting short events is not always a correct strategy. For example,
the algorithm fails in the following case:

If we select the short event, we can only select one event. However, it would be
possible to select both long events.

Algorithm 2

Another idea is to always select the next possible event that begins as early as
possible. This algorithm selects the following events:

A
B

C
D

However, we can find a counterexample also for this algorithm. For example,
in the following case, the algorithm only selects one event:

If we select the first event, it is not possible to select any other events. However,
it would be possible to select the other two events.

59

Algorithm 3

The third idea is to always select the next possible event that ends as early as
possible. This algorithm selects the following events:

A
B

C
D

It turns out that this algorithm always produces an optimal solution. The
reason for this is that it is always an optimal choice to first select an event that
ends as early as possible. After this, it is an optimal choice to select the next
event using the same strategy, etc., until we cannot select any more events.

One way to argue that the algorithm works is to consider what happens if we
first select an event that ends later than the event that ends as early as possible.
Now, we will have at most an equal number of choices how we can select the next
event. Hence, selecting an event that ends later can never yield a better solution,
and the greedy algorithm is correct.

Tasks and deadlines
Let us now consider a problem where we are given n tasks with durations and
deadlines and our task is to choose an order to perform the tasks. For each task,
we earn d− x points where d is the task’s deadline and x is the moment when we
finish the task. What is the largest possible total score we can obtain?

For example, suppose that the tasks are as follows:

task duration deadline
A 4 2
B 3 5
C 2 7
D 4 5

In this case, an optimal schedule for the tasks is as follows:

C B A D

0 5 10

In this solution, C yields 5 points, B yields 0 points, A yields −7 points and D
yields −8 points, so the total score is −10.

Surprisingly, the optimal solution to the problem does not depend on the
deadlines at all, but a correct greedy strategy is to simply perform the tasks
sorted by their durations in increasing order. The reason for this is that if we
ever perform two tasks one after another such that the first task takes longer
than the second task, we can obtain a better solution if we swap the tasks. For
example, consider the following schedule:

60

X Y

a b

Here a > b, so we should swap the tasks:

Y X

b a

Now X gives b points less and Y gives a points more, so the total score increases
by a−b > 0. In an optimal solution, for any two consecutive tasks, it must hold
that the shorter task comes before the longer task. Thus, the tasks must be
performed sorted by their durations.

Minimizing sums
We next consider a problem where we are given n numbers a1,a2, . . . ,an and our
task is to find a value x that minimizes the sum

|a1 − x|c +|a2 − x|c +·· ·+ |an − x|c.

We focus on the cases c = 1 and c = 2.

Case c = 1

In this case, we should minimize the sum

|a1 − x|+ |a2 − x|+ · · ·+ |an − x|.

For example, if the numbers are [1,2,9,2,6], the best solution is to select x = 2
which produces the sum

|1−2|+ |2−2|+ |9−2|+ |2−2|+ |6−2| = 12.

In the general case, the best choice for x is the median of the numbers, i.e., the
middle number after sorting. For example, the list [1,2,9,2,6] becomes [1,2,2,6,9]
after sorting, so the median is 2.

The median is an optimal choice, because if x is smaller than the median, the
sum becomes smaller by increasing x, and if x is larger then the median, the
sum becomes smaller by decreasing x. Hence, the optimal solution is that x is
the median. If n is even and there are two medians, both medians and all values
between them are optimal choices.

Case c = 2

In this case, we should minimize the sum

(a1 − x)2 + (a2 − x)2 +·· ·+ (an − x)2.

61

For example, if the numbers are [1,2,9,2,6], the best solution is to select x = 4
which produces the sum

(1−4)2 + (2−4)2 + (9−4)2 + (2−4)2 + (6−4)2 = 46.

In the general case, the best choice for x is the average of the numbers. In the
example the average is (1+2+9+2+6)/5 = 4. This result can be derived by
presenting the sum as follows:

nx2 −2x(a1 +a2 +·· ·+an)+ (a2
1 +a2

2 +·· ·+a2
n)

The last part does not depend on x, so we can ignore it. The remaining parts
form a function nx2−2xs where s = a1+a2+·· ·+an. This is a parabola opening
upwards with roots x = 0 and x = 2s/n, and the minimum value is the average of
the roots x = s/n, i.e., the average of the numbers a1,a2, . . . ,an.

Data compression
A binary code assigns for each character of a string a codeword that consists
of bits. We can compress the string using the binary code by replacing each
character by the corresponding codeword. For example, the following binary code
assigns codewords for characters A–D:

character codeword
A 00
B 01
C 10
D 11

This is a constant-length code which means that the length of each codeword is
the same. For example, we can compress the string AABACDACA as follows:

000001001011001000

Using this code, the length of the compressed string is 18 bits. However, we can
compress the string better if we use a variable-length code where codewords
may have different lengths. Then we can give short codewords for characters
that appear often and long codewords for characters that appear rarely. It turns
out that an optimal code for the above string is as follows:

character codeword
A 0
B 110
C 10
D 111

An optimal code produces a compressed string that is as short as possible. In this
case, the compressed string using the optimal code is

001100101110100,

62

so only 15 bits are needed instead of 18 bits. Thus, thanks to a better code it was
possible to save 3 bits in the compressed string.

We require that no codeword is a prefix of another codeword. For example,
it is not allowed that a code would contain both codewords 10 and 1011. The
reason for this is that we want to be able to generate the original string from
the compressed string. If a codeword could be a prefix of another codeword, this
would not always be possible. For example, the following code is not valid:

character codeword
A 10
B 11
C 1011
D 111

Using this code, it would not be possible to know if the compressed string 1011
corresponds to the string AB or the string C.

Huffman coding

Huffman coding2 is a greedy algorithm that constructs an optimal code for
compressing a given string. The algorithm builds a binary tree based on the
frequencies of the characters in the string, and each character’s codeword can be
read by following a path from the root to the corresponding node. A move to the
left corresponds to bit 0, and a move to the right corresponds to bit 1.

Initially, each character of the string is represented by a node whose weight
is the number of times the character occurs in the string. Then at each step two
nodes with minimum weights are combined by creating a new node whose weight
is the sum of the weights of the original nodes. The process continues until all
nodes have been combined.

Next we will see how Huffman coding creates the optimal code for the string
AABACDACA. Initially, there are four nodes that correspond to the characters of the
string:

5 1 2 1

A B C D

The node that represents character A has weight 5 because character A appears 5
times in the string. The other weights have been calculated in the same way.

The first step is to combine the nodes that correspond to characters B and D,
both with weight 1. The result is:

5 2 1 1

2

A C B D

0 1

2D. A. Huffman discovered this method when solving a university course assignment and
published the algorithm in 1952 [40].

63

After this, the nodes with weight 2 are combined:

5

2

1 1

2

4

A

C

B D

0 1

0 1

Finally, the two remaining nodes are combined:

5

2

1 1

2

4

9

A

C

B D

0 1

0 1

0 1

Now all nodes are in the tree, so the code is ready. The following codewords
can be read from the tree:

character codeword
A 0
B 110
C 10
D 111

64

Chapter 7

Dynamic programming

Dynamic programming is a technique that combines the correctness of com-
plete search and the efficiency of greedy algorithms. Dynamic programming can
be applied if the problem can be divided into overlapping subproblems that can
be solved independently.

There are two uses for dynamic programming:

• Finding an optimal solution: We want to find a solution that is as large
as possible or as small as possible.

• Counting the number of solutions: We want to calculate the total num-
ber of possible solutions.

We will first see how dynamic programming can be used to find an optimal
solution, and then we will use the same idea for counting the solutions.

Understanding dynamic programming is a milestone in every competitive
programmer’s career. While the basic idea is simple, the challenge is how to apply
dynamic programming to different problems. This chapter introduces a set of
classic problems that are a good starting point.

Coin problem
We first focus on a problem that we have already seen in Chapter 6: Given a set
of coin values coins= {c1, c2, . . . , ck} and a target sum of money n, our task is to
form the sum n using as few coins as possible.

In Chapter 6, we solved the problem using a greedy algorithm that always
chooses the largest possible coin. The greedy algorithm works, for example, when
the coins are the euro coins, but in the general case the greedy algorithm does
not necessarily produce an optimal solution.

Now is time to solve the problem efficiently using dynamic programming, so
that the algorithm works for any coin set. The dynamic programming algorithm
is based on a recursive function that goes through all possibilities how to form
the sum, like a brute force algorithm. However, the dynamic programming
algorithm is efficient because it uses memoization and calculates the answer to
each subproblem only once.

65

Recursive formulation

The idea in dynamic programming is to formulate the problem recursively so
that the solution to the problem can be calculated from solutions to smaller
subproblems. In the coin problem, a natural recursive problem is as follows: what
is the smallest number of coins required to form a sum x?

Let solve(x) denote the minimum number of coins required for a sum x.
The values of the function depend on the values of the coins. For example, if
coins= {1,3,4}, the first values of the function are as follows:

solve(0) = 0
solve(1) = 1
solve(2) = 2
solve(3) = 1
solve(4) = 1
solve(5) = 2
solve(6) = 2
solve(7) = 2
solve(8) = 2
solve(9) = 3
solve(10) = 3

For example, solve(10) = 3, because at least 3 coins are needed to form the
sum 10. The optimal solution is 3+3+4= 10.

The essential property of solve is that its values can be recursively calculated
from its smaller values. The idea is to focus on the first coin that we choose for
the sum. For example, in the above scenario, the first coin can be either 1, 3
or 4. If we first choose coin 1, the remaining task is to form the sum 9 using
the minimum number of coins, which is a subproblem of the original problem.
Of course, the same applies to coins 3 and 4. Thus, we can use the following
recursive formula to calculate the minimum number of coins:

solve(x)=min(solve(x−1)+1,
solve(x−3)+1,
solve(x−4)+1).

The base case of the recursion is solve(0) = 0, because no coins are needed to
form an empty sum. For example,

solve(10)= solve(7)+1= solve(4)+2= solve(0)+3= 3.

Now we are ready to give a general recursive function that calculates the
minimum number of coins needed to form a sum x:

solve(x)=


∞ x < 0
0 x = 0
minc∈coinssolve(x− c)+1 x > 0

First, if x < 0, the value is ∞, because it is impossible to form a negative sum
of money. Then, if x = 0, the value is 0, because no coins are needed to form an

66

empty sum. Finally, if x > 0, the variable c goes through all possibilities how to
choose the first coin of the sum.

Once a recursive function that solves the problem has been found, we can
directly implement a solution in C++ (the constant INF denotes infinity):

int solve(int x) {

if (x < 0) return INF;

if (x == 0) return 0;

int best = INF;

for (auto c : coins) {

best = min(best, solve(x-c)+1);

}

return best;

}

Still, this function is not efficient, because there may be an exponential
number of ways to construct the sum. However, next we will see how to make the
function efficient using a technique called memoization.

Using memoization

The idea of dynamic programming is to use memoization to efficiently calculate
values of a recursive function. This means that the values of the function are
stored in an array after calculating them. For each parameter, the value of the
function is calculated recursively only once, and after this, the value can be
directly retrieved from the array.

In this problem, we use arrays

bool ready[N];

int value[N];

where ready[x] indicates whether the value of solve(x) has been calculated,
and if it is, value[x] contains this value. The constant N has been chosen so that
all required values fit in the arrays.

Now the function can be efficiently implemented as follows:

int solve(int x) {

if (x < 0) return INF;

if (x == 0) return 0;

if (ready[x]) return value[x];

int best = INF;

for (auto c : coins) {

best = min(best, solve(x-c)+1);

}

value[x] = best;

ready[x] = true;

return best;

}

67

The function handles the base cases x < 0 and x = 0 as previously. Then the
function checks from ready[x] if solve(x) has already been stored in value[x], and
if it is, the function directly returns it. Otherwise the function calculates the
value of solve(x) recursively and stores it in value[x].

This function works efficiently, because the answer for each parameter x is
calculated recursively only once. After a value of solve(x) has been stored in
value[x], it can be efficiently retrieved whenever the function will be called again
with the parameter x. The time complexity of the algorithm is O(nk), where n is
the target sum and k is the number of coins.

Note that we can also iteratively construct the array value using a loop that
simply calculates all the values of solve for parameters 0 . . .n:

value[0] = 0;

for (int x = 1; x <= n; x++) {

value[x] = INF;

for (auto c : coins) {

if (x-c >= 0) {

value[x] = min(value[x], value[x-c]+1);

}

}

}

In fact, most competitive programmers prefer this implementation, because
it is shorter and has lower constant factors. From now on, we also use iterative
implementations in our examples. Still, it is often easier to think about dynamic
programming solutions in terms of recursive functions.

Constructing a solution

Sometimes we are asked both to find the value of an optimal solution and to give
an example how such a solution can be constructed. In the coin problem, for
example, we can declare another array that indicates for each sum of money the
first coin in an optimal solution:

int first[N];

Then, we can modify the algorithm as follows:

value[0] = 0;

for (int x = 1; x <= n; x++) {

value[x] = INF;

for (auto c : coins) {

if (x-c >= 0 && value[x-c]+1 < value[x]) {

value[x] = value[x-c]+1;

first[x] = c;

}

}

}

68

After this, the following code can be used to print the coins that appear in an
optimal solution for the sum n:

while (n > 0) {

cout << first[n] << "\n";

n -= first[n];

}

Counting the number of solutions

Let us now consider another version of the coin problem where our task is to
calculate the total number of ways to produce a sum x using the coins. For
example, if coins= {1,3,4} and x = 5, there are a total of 6 ways:

• 1+1+1+1+1

• 1+1+3

• 1+3+1

• 3+1+1

• 1+4

• 4+1

Again, we can solve the problem recursively. Let solve(x) denote the number
of ways we can form the sum x. For example, if coins= {1,3,4}, then solve(5)= 6
and the recursive formula is

solve(x)=solve(x−1)+
solve(x−3)+
solve(x−4).

Then, the general recursive function is as follows:

solve(x)=


0 x < 0
1 x = 0∑

c∈coinssolve(x− c) x > 0

If x < 0, the value is 0, because there are no solutions. If x = 0, the value is 1,
because there is only one way to form an empty sum. Otherwise we calculate the
sum of all values of the form solve(x− c) where c is in coins.

The following code constructs an array count such that count[x] equals the
value of solve(x) for 0≤ x ≤ n:

count[0] = 1;

for (int x = 1; x <= n; x++) {

for (auto c : coins) {

if (x-c >= 0) {

count[x] += count[x-c];

}

}

}

69

Often the number of solutions is so large that it is not required to calculate the
exact number but it is enough to give the answer modulo m where, for example,
m = 109 +7. This can be done by changing the code so that all calculations are
done modulo m. In the above code, it suffices to add the line

count[x] %= m;

after the line

count[x] += count[x-c];

Now we have discussed all basic ideas of dynamic programming. Since
dynamic programming can be used in many different situations, we will now go
through a set of problems that show further examples about the possibilities of
dynamic programming.

Longest increasing subsequence
Our first problem is to find the longest increasing subsequence in an array
of n elements. This is a maximum-length sequence of array elements that goes
from left to right, and each element in the sequence is larger than the previous
element. For example, in the array

6 2 5 1 7 4 8 3

0 1 2 3 4 5 6 7

the longest increasing subsequence contains 4 elements:

6 2 5 1 7 4 8 3

0 1 2 3 4 5 6 7

Let length(k) denote the length of the longest increasing subsequence that
ends at position k. Thus, if we calculate all values of length(k) where 0≤ k ≤ n−1,
we will find out the length of the longest increasing subsequence. For example,
the values of the function for the above array are as follows:

length(0) = 1
length(1) = 1
length(2) = 2
length(3) = 1
length(4) = 3
length(5) = 2
length(6) = 4
length(7) = 2

For example, length(6)= 4, because the longest increasing subsequence that
ends at position 6 consists of 4 elements.

70

To calculate a value of length(k), we should find a position i < k for which
array[i] < array[k] and length(i) is as large as possible. Then we know that
length(k) = length(i)+1, because this is an optimal way to add array[k] to a
subsequence. However, if there is no such position i, then length(k)= 1, which
means that the subsequence only contains array[k].

Since all values of the function can be calculated from its smaller values, we
can use dynamic programming. In the following code, the values of the function
will be stored in an array length.

for (int k = 0; k < n; k++) {

length[k] = 1;

for (int i = 0; i < k; i++) {

if (array[i] < array[k]) {

length[k] = max(length[k],length[i]+1);

}

}

}

This code works in O(n2) time, because it consists of two nested loops. How-
ever, it is also possible to implement the dynamic programming calculation more
efficiently in O(n logn) time. Can you find a way to do this?

Paths in a grid
Our next problem is to find a path from the upper-left corner to the lower-right
corner of an n×n grid, such that we only move down and right. Each square
contains a positive integer, and the path should be constructed so that the sum of
the values along the path is as large as possible.

The following picture shows an optimal path in a grid:

3 7 9 2 7

9 8 3 5 5

1 7 9 8 5

3 8 6 4 10

6 3 9 7 8

The sum of the values on the path is 67, and this is the largest possible sum on a
path from the upper-left corner to the lower-right corner.

Assume that the rows and columns of the grid are numbered from 1 to n, and
value[y][x] equals the value of square (y, x). Let sum(y, x) denote the maximum
sum on a path from the upper-left corner to square (y, x). Now sum(n,n) tells
us the maximum sum from the upper-left corner to the lower-right corner. For
example, in the above grid, sum(5,5)= 67.

We can recursively calculate the sums as follows:

sum(y, x)=max(sum(y, x−1),sum(y−1, x))+value[y][x]

71

The recursive formula is based on the observation that a path that ends at
square (y, x) can come either from square (y, x−1) or square (y−1, x):

→
↓

Thus, we select the direction that maximizes the sum. We assume that
sum(y, x) = 0 if y = 0 or x = 0 (because no such paths exist), so the recursive
formula also works when y= 1 or x = 1.

Since the function sum has two parameters, the dynamic programming array
also has two dimensions. For example, we can use an array

int sum[N][N];

and calculate the sums as follows:

for (int y = 1; y <= n; y++) {

for (int x = 1; x <= n; x++) {

sum[y][x] = max(sum[y][x-1],sum[y-1][x])+value[y][x];

}

}

The time complexity of the algorithm is O(n2).

Knapsack problems
The term knapsack refers to problems where a set of objects is given, and
subsets with some properties have to be found. Knapsack problems can often be
solved using dynamic programming.

In this section, we focus on the following problem: Given a list of weights
[w1,w2, . . . ,wn], determine all sums that can be constructed using the weights.
For example, if the weights are [1,3,3,5], the following sums are possible:

0 1 2 3 4 5 6 7 8 9 10 11 12
X X X X X X X X X X X

In this case, all sums between 0 . . .12 are possible, except 2 and 10. For
example, the sum 7 is possible because we can select the weights [1,3,3].

To solve the problem, we focus on subproblems where we only use the first k
weights to construct sums. Let possible(x,k)= true if we can construct a sum x
using the first k weights, and otherwise possible(x,k)= false. The values of the
function can be recursively calculated as follows:

possible(x,k)= possible(x−wk,k−1)∨possible(x,k−1)

72

The formula is based on the fact that we can either use or not use the weight wk
in the sum. If we use wk, the remaining task is to form the sum x−wk using the
first k−1 weights, and if we do not use wk, the remaining task is to form the sum
x using the first k−1 weights. As the base cases,

possible(x,0)=
{

true x = 0
false x 6= 0

because if no weights are used, we can only form the sum 0.
The following table shows all values of the function for the weights [1,3,3,5]

(the symbol ”X” indicates the true values):

k\x 0 1 2 3 4 5 6 7 8 9 10 11 12
0 X
1 X X
2 X X X X
3 X X X X X X
4 X X X X X X X X X X X

After calculating those values, possible(x,n) tells us whether we can con-
struct a sum x using all weights.

Let W denote the total sum of the weights. The following O(nW) time dynamic
programming solution corresponds to the recursive function:

possible[0][0] = true;

for (int k = 1; k <= n; k++) {

for (int x = 0; x <= W; x++) {

if (x-w[k] >= 0) possible[x][k] |= possible[x-w[k]][k-1];

possible[x][k] |= possible[x][k-1];

}

}

However, here is a better implementation that only uses a one-dimensional
array possible[x] that indicates whether we can construct a subset with sum x.
The trick is to update the array from right to left for each new weight:

possible[0] = true;

for (int k = 1; k <= n; k++) {

for (int x = W; x >= 0; x--) {

if (possible[x]) possible[x+w[k]] = true;

}

}

Note that the general idea presented here can be used in many knapsack
problems. For example, if we are given objects with weights and values, we can
determine for each weight sum the maximum value sum of a subset.

73

Edit distance

The edit distance or Levenshtein distance1 is the minimum number of edit-
ing operations needed to transform a string into another string. The allowed
editing operations are as follows:

• insert a character (e.g. ABC → ABCA)

• remove a character (e.g. ABC → AC)

• modify a character (e.g. ABC → ADC)

For example, the edit distance between LOVE and MOVIE is 2, because we can
first perform the operation LOVE → MOVE (modify) and then the operation MOVE →
MOVIE (insert). This is the smallest possible number of operations, because it is
clear that only one operation is not enough.

Suppose that we are given a string x of length n and a string y of length m,
and we want to calculate the edit distance between x and y. To solve the problem,
we define a function distance(a,b) that gives the edit distance between prefixes
x[0 . . .a] and y[0 . . .b]. Thus, using this function, the edit distance between x and
y equals distance(n−1,m−1).

We can calculate values of distance as follows:

distance(a,b)=min(distance(a,b−1)+1,
distance(a−1,b)+1,
distance(a−1,b−1)+cost(a,b)).

Here cost(a,b) = 0 if x[a] = y[b], and otherwise cost(a,b) = 1. The formula
considers the following ways to edit the string x:

• distance(a,b−1): insert a character at the end of x

• distance(a−1,b): remove the last character from x

• distance(a−1,b−1): match or modify the last character of x

In the two first cases, one editing operation is needed (insert or remove). In the
last case, if x[a] = y[b], we can match the last characters without editing, and
otherwise one editing operation is needed (modify).

The following table shows the values of distance in the example case:

L

O

V

E

M O V I E

0

1

2

3

4

1

1

2

3

4

2

2

1

2

3

3

3

2

1

2

4

4

3

2

2

5

5

4

3

2

1The distance is named after V. I. Levenshtein who studied it in connection with binary codes
[49].

74

The lower-right corner of the table tells us that the edit distance between
LOVE and MOVIE is 2. The table also shows how to construct the shortest sequence
of editing operations. In this case the path is as follows:

L

O

V

E

M O V I E

0

1

2

3

4

1

1

2

3

4

2

2

1

2

3

3

3

2

1

2

4

4

3

2

2

5

5

4

3

2

The last characters of LOVE and MOVIE are equal, so the edit distance between
them equals the edit distance between LOV and MOVI. We can use one editing
operation to remove the character I from MOVI. Thus, the edit distance is one
larger than the edit distance between LOV and MOV, etc.

Counting tilings
Sometimes the states of a dynamic programming solution are more complex
than fixed combinations of numbers. As an example, consider the problem of
calculating the number of distinct ways to fill an n×m grid using 1×2 and 2×1
size tiles. For example, one valid solution for the 4×7 grid is

and the total number of solutions is 781.
The problem can be solved using dynamic programming by going through

the grid row by row. Each row in a solution can be represented as a string that
contains m characters from the set {u,t,@,A}. For example, the above solution
consists of four rows that correspond to the following strings:

• u@Au@Au
• t@Atuut
• @A@Attu
• @A@A@At
Let count(k, x) denote the number of ways to construct a solution for rows

1 . . .k of the grid such that string x corresponds to row k. It is possible to use
dynamic programming here, because the state of a row is constrained only by the
state of the previous row.

75

A solution is valid if row 1 does not contain the character t, row n does not
contain the character u, and all consecutive rows are compatible. For example, the
rows t@Atuut and @A@Attu are compatible, while the rows u@Au@Au
and @A@A@At are not compatible.

Since a row consists of m characters and there are four choices for each
character, the number of distinct rows is at most 4m. Thus, the time complexity
of the solution is O(n42m) because we can go through the O(4m) possible states
for each row, and for each state, there are O(4m) possible states for the previous
row. In practice, it is a good idea to rotate the grid so that the shorter side has
length m, because the factor 42m dominates the time complexity.

It is possible to make the solution more efficient by using a more compact
representation for the rows. It turns out that it is sufficient to know which
columns of the previous row contain the upper square of a vertical tile. Thus, we
can represent a row using only characters u and �, where � is a combination
of characters t, @ and A. Using this representation, there are only 2m distinct
rows and the time complexity is O(n22m).

As a final note, there is also a surprising direct formula for calculating the
number of tilings2:

dn/2e∏
a=1

dm/2e∏
b=1

4 · (cos2 πa
n+1

+cos2 πb
m+1

)

This formula is very efficient, because it calculates the number of tilings in O(nm)
time, but since the answer is a product of real numbers, a problem when using
the formula is how to store the intermediate results accurately.

2Surprisingly, this formula was discovered in 1961 by two research teams [43, 67] that worked
independently.

76

Chapter 8

Amortized analysis

The time complexity of an algorithm is often easy to analyze just by examining
the structure of the algorithm: what loops does the algorithm contain and how
many times the loops are performed. However, sometimes a straightforward
analysis does not give a true picture of the efficiency of the algorithm.

Amortized analysis can be used to analyze algorithms that contain opera-
tions whose time complexity varies. The idea is to estimate the total time used to
all such operations during the execution of the algorithm, instead of focusing on
individual operations.

Two pointers method
In the two pointers method, two pointers are used to iterate through the array
values. Both pointers can move to one direction only, which ensures that the
algorithm works efficiently. Next we discuss two problems that can be solved
using the two pointers method.

Subarray sum

As the first example, consider a problem where we are given an array of n positive
integers and a target sum x, and we want to find a subarray whose sum is x or
report that there is no such subarray.

For example, the array

1 3 2 5 1 1 2 3

contains a subarray whose sum is 8:

1 3 2 5 1 1 2 3

This problem can be solved in O(n) time by using the two pointers method.
The idea is to maintain pointers that point to the first and last value of a subarray.
On each turn, the left pointer moves one step to the right, and the right pointer
moves to the right as long as the resulting subarray sum is at most x. If the sum
becomes exactly x, a solution has been found.

77

As an example, consider the following array and a target sum x = 8:

1 3 2 5 1 1 2 3

The initial subarray contains the values 1, 3 and 2 whose sum is 6:

1 3 2 5 1 1 2 3

Then, the left pointer moves one step to the right. The right pointer does not
move, because otherwise the subarray sum would exceed x.

1 3 2 5 1 1 2 3

Again, the left pointer moves one step to the right, and this time the right
pointer moves three steps to the right. The subarray sum is 2+5+1 = 8, so a
subarray whose sum is x has been found.

1 3 2 5 1 1 2 3

The running time of the algorithm depends on the number of steps the right
pointer moves. While there is no useful upper bound on how many steps the
pointer can move on a single turn. we know that the pointer moves a total of
O(n) steps during the algorithm, because it only moves to the right.

Since both the left and right pointer move O(n) steps during the algorithm,
the algorithm works in O(n) time.

2SUM problem

Another problem that can be solved using the two pointers method is the following
problem, also known as the 2SUM problem: given an array of n numbers and a
target sum x, find two array values such that their sum is x, or report that no
such values exist.

To solve the problem, we first sort the array values in increasing order. After
that, we iterate through the array using two pointers. The left pointer starts at
the first value and moves one step to the right on each turn. The right pointer
begins at the last value and always moves to the left until the sum of the left and
right value is at most x. If the sum is exactly x, a solution has been found.

For example, consider the following array and a target sum x = 12:

1 4 5 6 7 9 9 10

The initial positions of the pointers are as follows. The sum of the values is
1+10= 11 that is smaller than x.

78

1 4 5 6 7 9 9 10

Then the left pointer moves one step to the right. The right pointer moves
three steps to the left, and the sum becomes 4+7= 11.

1 4 5 6 7 9 9 10

After this, the left pointer moves one step to the right again. The right pointer
does not move, and a solution 5+7= 12 has been found.

1 4 5 6 7 9 9 10

The running time of the algorithm is O(n logn), because it first sorts the array
in O(n logn) time, and then both pointers move O(n) steps.

Note that it is possible to solve the problem in another way in O(n logn) time
using binary search. In such a solution, we iterate through the array and for
each array value, we try to find another value that yields the sum x. This can be
done by performing n binary searches, each of which takes O(logn) time.

A more difficult problem is the 3SUM problem that asks to find three array
values whose sum is x. Using the idea of the above algorithm, this problem can
be solved in O(n2) time1. Can you see how?

Nearest smaller elements
Amortized analysis is often used to estimate the number of operations performed
on a data structure. The operations may be distributed unevenly so that most
operations occur during a certain phase of the algorithm, but the total number of
the operations is limited.

As an example, consider the problem of finding for each array element the
nearest smaller element, i.e., the first smaller element that precedes the
element in the array. It is possible that no such element exists, in which case the
algorithm should report this. Next we will see how the problem can be efficiently
solved using a stack structure.

We go through the array from left to right and maintain a stack of array
elements. At each array position, we remove elements from the stack until the
top element is smaller than the current element, or the stack is empty. Then, we
report that the top element is the nearest smaller element of the current element,
or if the stack is empty, there is no such element. Finally, we add the current
element to the stack.

As an example, consider the following array:
1For a long time, it was thought that solving the 3SUM problem more efficiently than in O(n2)

time would not be possible. However, in 2014, it turned out [30] that this is not the case.

79

1 3 4 2 5 3 4 2

First, the elements 1, 3 and 4 are added to the stack, because each element is
larger than the previous element. Thus, the nearest smaller element of 4 is 3,
and the nearest smaller element of 3 is 1.

1 3 4 2 5 3 4 2

1 3 4

The next element 2 is smaller than the two top elements in the stack. Thus,
the elements 3 and 4 are removed from the stack, and then the element 2 is
added to the stack. Its nearest smaller element is 1:

1 3 4 2 5 3 4 2

1 2

Then, the element 5 is larger than the element 2, so it will be added to the
stack, and its nearest smaller element is 2:

1 3 4 2 5 3 4 2

1 2 5

After this, the element 5 is removed from the stack and the elements 3 and 4
are added to the stack:

1 3 4 2 5 3 4 2

1 2 3 4

Finally, all elements except 1 are removed from the stack and the last element
2 is added to the stack:

1 3 4 2 5 3 4 2

1 2

The efficiency of the algorithm depends on the total number of stack opera-
tions. If the current element is larger than the top element in the stack, it is
directly added to the stack, which is efficient. However, sometimes the stack can
contain several larger elements and it takes time to remove them. Still, each
element is added exactly once to the stack and removed at most once from the
stack. Thus, each element causes O(1) stack operations, and the algorithm works
in O(n) time.

80

Sliding window minimum
A sliding window is a constant-size subarray that moves from left to right
through the array. At each window position, we want to calculate some infor-
mation about the elements inside the window. In this section, we focus on the
problem of maintaining the sliding window minimum, which means that we
should report the smallest value inside each window.

The sliding window minimum can be calculated using a similar idea that
we used to calculate the nearest smaller elements. We maintain a queue where
each element is larger than the previous element, and the first element always
corresponds to the minimum element inside the window. After each window
move, we remove elements from the end of the queue until the last queue element
is smaller than the new window element, or the queue becomes empty. We also
remove the first queue element if it is not inside the window anymore. Finally,
we add the new window element to the end of the queue.

As an example, consider the following array:

2 1 4 5 3 4 1 2

Suppose that the size of the sliding window is 4. At the first window position,
the smallest value is 1:

2 1 4 5 3 4 1 2

1 4 5

Then the window moves one step right. The new element 3 is smaller than
the elements 4 and 5 in the queue, so the elements 4 and 5 are removed from the
queue and the element 3 is added to the queue. The smallest value is still 1.

2 1 4 5 3 4 1 2

1 3

After this, the window moves again, and the smallest element 1 does not
belong to the window anymore. Thus, it is removed from the queue and the
smallest value is now 3. Also the new element 4 is added to the queue.

2 1 4 5 3 4 1 2

3 4

The next new element 1 is smaller than all elements in the queue. Thus, all
elements are removed from the queue and it will only contain the element 1:

2 1 4 5 3 4 1 2

1

81

Finally the window reaches its last position. The element 2 is added to the
queue, but the smallest value inside the window is still 1.

2 1 4 5 3 4 1 2

1 2

Since each array element is added to the queue exactly once and removed
from the queue at most once, the algorithm works in O(n) time.

82

Chapter 9

Range queries

In this chapter, we discuss data structures that allow us to efficiently process
range queries. In a range query, our task is to calculate a value based on a
subarray of an array. Typical range queries are:

• sumq(a,b): calculate the sum of values in range [a,b]

• minq(a,b): find the minimum value in range [a,b]

• maxq(a,b): find the maximum value in range [a,b]

For example, consider the range [3,6] in the following array:

1 3 8 4 6 1 3 4

0 1 2 3 4 5 6 7

In this case, sumq(3,6)= 14, minq(3,6)= 1 and maxq(3,6)= 6.
A simple way to process range queries is to use a loop that goes through all

array values in the range. For example, the following function can be used to
process sum queries on an array:

int sum(int a, int b) {

int s = 0;

for (int i = a; i <= b; i++) {

s += array[i];

}

return s;

}

This function works in O(n) time, where n is the size of the array. Thus, we
can process q queries in O(nq) time using the function. However, if both n and q
are large, this approach is slow. Fortunately, it turns out that there are ways to
process range queries much more efficiently.

83

Static array queries

We first focus on a situation where the array is static, i.e., the array values are
never updated between the queries. In this case, it suffices to construct a static
data structure that tells us the answer for any possible query.

Sum queries

We can easily process sum queries on a static array by constructing a prefix
sum array. Each value in the prefix sum array equals the sum of values in the
original array up to that position, i.e., the value at position k is sumq(0,k). The
prefix sum array can be constructed in O(n) time.

For example, consider the following array:

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

The corresponding prefix sum array is as follows:

1 4 8 16 22 23 27 29

0 1 2 3 4 5 6 7

Since the prefix sum array contains all values of sumq(0,k), we can calculate any
value of sumq(a,b) in O(1) time as follows:

sumq(a,b)= sumq(0,b)−sumq(0,a−1)

By defining sumq(0,−1)= 0, the above formula also holds when a = 0.
For example, consider the range [3,6]:

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

In this case sumq(3,6) = 8+6+1+4 = 19. This sum can be calculated from two
values of the prefix sum array:

1 4 8 16 22 23 27 29

0 1 2 3 4 5 6 7

Thus, sumq(3,6)= sumq(0,6)−sumq(0,2)= 27−8= 19.
It is also possible to generalize this idea to higher dimensions. For example,

we can construct a two-dimensional prefix sum array that can be used to calculate
the sum of any rectangular subarray in O(1) time. Each sum in such an array
corresponds to a subarray that begins at the upper-left corner of the array.

84

The following picture illustrates the idea:

AB

CD

The sum of the gray subarray can be calculated using the formula

S(A)−S(B)−S(C)+S(D),

where S(X) denotes the sum of values in a rectangular subarray from the upper-
left corner to the position of X .

Minimum queries

Minimum queries are more difficult to process than sum queries. Still, there is
a quite simple O(n logn) time preprocessing method after which we can answer
any minimum query in O(1) time1. Note that since minimum and maximum
queries can be processed similarly, we can focus on minimum queries.

The idea is to precalculate all values of minq(a,b) where b−a+1 (the length
of the range) is a power of two. For example, for the array

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

the following values are calculated:

a b minq(a,b)
0 0 1
1 1 3
2 2 4
3 3 8
4 4 6
5 5 1
6 6 4
7 7 2

a b minq(a,b)
0 1 1
1 2 3
2 3 4
3 4 6
4 5 1
5 6 1
6 7 2

a b minq(a,b)
0 3 1
1 4 3
2 5 1
3 6 1
4 7 1
0 7 1

The number of precalculated values is O(n logn), because there are O(logn)
range lengths that are powers of two. The values can be calculated efficiently
using the recursive formula

minq(a,b)=min(minq(a,a+w−1),minq(a+w,b)),

1This technique was introduced in [7] and sometimes called the sparse table method. There
are also more sophisticated techniques [22] where the preprocessing time is only O(n), but such
algorithms are not needed in competitive programming.

85

where b−a+1 is a power of two and w = (b−a+1)/2. Calculating all those values
takes O(n logn) time.

After this, any value of minq(a,b) can be calculated in O(1) time as a minimum
of two precalculated values. Let k be the largest power of two that does not exceed
b−a+1. We can calculate the value of minq(a,b) using the formula

minq(a,b)=min(minq(a,a+k−1),minq(b−k+1,b)).

In the above formula, the range [a,b] is represented as the union of the ranges
[a,a+k−1] and [b−k+1,b], both of length k.

As an example, consider the range [1,6]:

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

The length of the range is 6, and the largest power of two that does not exceed 6
is 4. Thus the range [1,6] is the union of the ranges [1,4] and [3,6]:

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

1 3 4 8 6 1 4 2

0 1 2 3 4 5 6 7

Since minq(1,4)= 3 and minq(3,6)= 1, we conclude that minq(1,6)= 1.

Binary indexed tree

A binary indexed tree or a Fenwick tree2 can be seen as a dynamic variant
of a prefix sum array. It supports two O(logn) time operations on an array:
processing a range sum query and updating a value.

The advantage of a binary indexed tree is that it allows us to efficiently update
array values between sum queries. This would not be possible using a prefix sum
array, because after each update, it would be necessary to build the whole prefix
sum array again in O(n) time.

Structure

Even if the name of the structure is a binary indexed tree, it is usually represented
as an array. In this section we assume that all arrays are one-indexed, because it
makes the implementation easier.

Let p(k) denote the largest power of two that divides k. We store a binary
indexed tree as an array tree such that

tree[k]= sumq(k− p(k)+1,k),

2The binary indexed tree structure was presented by P. M. Fenwick in 1994 [21].

86

i.e., each position k contains the sum of values in a range of the original array
whose length is p(k) and that ends at position k. For example, since p(6) = 2,
tree[6] contains the value of sumq(5,6).

For example, consider the following array:

1 3 4 8 6 1 4 2

1 2 3 4 5 6 7 8

The corresponding binary indexed tree is as follows:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

The following picture shows more clearly how each value in the binary indexed
tree corresponds to a range in the original array:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

Using a binary indexed tree, any value of sumq(1,k) can be calculated in
O(logn) time, because a range [1,k] can always be divided into O(logn) ranges
whose sums are stored in the tree.

For example, the range [1,7] consists of the following ranges:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

Thus, we can calculate the corresponding sum as follows:

sumq(1,7)= sumq(1,4)+sumq(5,6)+sumq(7,7)= 16+7+4= 27

To calculate the value of sumq(a,b) where a > 1, we can use the same trick
that we used with prefix sum arrays:

sumq(a,b)= sumq(1,b)−sumq(1,a−1).

87

Since we can calculate both sumq(1,b) and sumq(1,a−1) in O(logn) time, the total
time complexity is O(logn).

Then, after updating a value in the original array, several values in the binary
indexed tree should be updated. For example, if the value at position 3 changes,
the sums of the following ranges change:

1 4 4 16 6 7 4 29

1 2 3 4 5 6 7 8

Since each array element belongs to O(logn) ranges in the binary indexed
tree, it suffices to update O(logn) values in the tree.

Implementation

The operations of a binary indexed tree can be efficiently implemented using bit
operations. The key fact needed is that we can calculate any value of p(k) using
the formula

p(k)= k&−k.

The following function calculates the value of sumq(1,k):

int sum(int k) {

int s = 0;

while (k >= 1) {

s += tree[k];

k -= k&-k;

}

return s;

}

The following function increases the array value at position k by x (x can be
positive or negative):

void add(int k, int x) {

while (k <= n) {

tree[k] += x;

k += k&-k;

}

}

The time complexity of both the functions is O(logn), because the functions
access O(logn) values in the binary indexed tree, and each move to the next
position takes O(1) time.

88

Segment tree

A segment tree3 is a data structure that supports two operations: processing
a range query and updating an array value. Segment trees can support sum
queries, minimum and maximum queries and many other queries so that both
operations work in O(logn) time.

Compared to a binary indexed tree, the advantage of a segment tree is that it
is a more general data structure. While binary indexed trees only support sum
queries4, segment trees also support other queries. On the other hand, a segment
tree requires more memory and is a bit more difficult to implement.

Structure

A segment tree is a binary tree such that the nodes on the bottom level of the
tree correspond to the array elements, and the other nodes contain information
needed for processing range queries.

In this section, we assume that the size of the array is a power of two and
zero-based indexing is used, because it is convenient to build a segment tree for
such an array. If the size of the array is not a power of two, we can always append
extra elements to it.

We will first discuss segment trees that support sum queries. As an example,
consider the following array:

5 8 6 3 2 7 2 6

0 1 2 3 4 5 6 7

The corresponding segment tree is as follows:

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

Each internal tree node corresponds to an array range whose size is a power
of two. In the above tree, the value of each internal node is the sum of the
corresponding array values, and it can be calculated as the sum of the values of
its left and right child node.

3The bottom-up-implementation in this chapter corresponds to that in [62]. Similar structures
were used in late 1970’s to solve geometric problems [9].

4In fact, using two binary indexed trees it is possible to support minimum queries [16], but
this is more complicated than to use a segment tree.

89

It turns out that any range [a,b] can be divided into O(logn) ranges whose
values are stored in tree nodes. For example, consider the range [2,7]:

5 8 6 3 2 7 2 6

0 1 2 3 4 5 6 7

Here sumq(2,7)= 6+3+2+7+2+6= 26. In this case, the following two tree nodes
correspond to the range:

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

Thus, another way to calculate the sum is 9+17= 26.
When the sum is calculated using nodes located as high as possible in the

tree, at most two nodes on each level of the tree are needed. Hence, the total
number of nodes is O(logn).

After an array update, we should update all nodes whose value depends on
the updated value. This can be done by traversing the path from the updated
array element to the top node and updating the nodes along the path.

The following picture shows which tree nodes change if the array value 7
changes:

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

The path from bottom to top always consists of O(logn) nodes, so each update
changes O(logn) nodes in the tree.

Implementation

We store a segment tree as an array of 2n elements where n is the size of the
original array and a power of two. The tree nodes are stored from top to bottom:

90

tree[1] is the top node, tree[2] and tree[3] are its children, and so on. Finally,
the values from tree[n] to tree[2n−1] correspond to the values of the original
array on the bottom level of the tree.

For example, the segment tree

5 8 6 3 2 7 2 6

13 9 9 8

22 17

39

is stored as follows:

39 22 17 13 9 9 8 5 8 6 3 2 7 2 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Using this representation, the parent of tree[k] is tree[bk/2c], and its children
are tree[2k] and tree[2k+1]. Note that this implies that the position of a node
is even if it is a left child and odd if it is a right child.

The following function calculates the value of sumq(a,b):

int sum(int a, int b) {

a += n; b += n;

int s = 0;

while (a <= b) {

if (a%2 == 1) s += tree[a++];

if (b%2 == 0) s += tree[b--];

a /= 2; b /= 2;

}

return s;

}

The function maintains a range that is initially [a+n,b+n]. Then, at each step,
the range is moved one level higher in the tree, and before that, the values of the
nodes that do not belong to the higher range are added to the sum.

The following function increases the array value at position k by x:

void add(int k, int x) {

k += n;

tree[k] += x;

for (k /= 2; k >= 1; k /= 2) {

tree[k] = tree[2*k]+tree[2*k+1];

}

}

91

First the function updates the value at the bottom level of the tree. After this,
the function updates the values of all internal tree nodes, until it reaches the top
node of the tree.

Both the above functions work in O(logn) time, because a segment tree of n
elements consists of O(logn) levels, and the functions move one level higher in
the tree at each step.

Other queries

Segment trees can support all range queries where it is possible to divide a range
into two parts, calculate the answer separately for both parts and then efficiently
combine the answers. Examples of such queries are minimum and maximum,
greatest common divisor, and bit operations and, or and xor.

For example, the following segment tree supports minimum queries:

5 8 6 3 1 7 2 6

5 3 1 2

3 1

1

In this case, every tree node contains the smallest value in the corresponding
array range. The top node of the tree contains the smallest value in the whole
array. The operations can be implemented like previously, but instead of sums,
minima are calculated.

The structure of a segment tree also allows us to use binary search for locating
array elements. For example, if the tree supports minimum queries, we can find
the position of an element with the smallest value in O(logn) time.

For example, in the above tree, an element with the smallest value 1 can be
found by traversing a path downwards from the top node:

5 8 6 3 1 7 2 6

5 3 1 2

3 1

1

92

Additional techniques

Index compression

A limitation in data structures that are built upon an array is that the elements
are indexed using consecutive integers. Difficulties arise when large indices are
needed. For example, if we wish to use the index 109, the array should contain
109 elements which would require too much memory.

However, we can often bypass this limitation by using index compression,
where the original indices are replaced with indices 1,2,3, etc. This can be done
if we know all the indices needed during the algorithm beforehand.

The idea is to replace each original index x with c(x) where c is a function that
compresses the indices. We require that the order of the indices does not change,
so if a < b, then c(a)< c(b). This allows us to conveniently perform queries even
if the indices are compressed.

For example, if the original indices are 555, 109 and 8, the new indices are:

c(8) = 1
c(555) = 2
c(109) = 3

Range updates

So far, we have implemented data structures that support range queries and
updates of single values. Let us now consider an opposite situation, where we
should update ranges and retrieve single values. We focus on an operation that
increases all elements in a range [a,b] by x.

Surprisingly, we can use the data structures presented in this chapter also in
this situation. To do this, we build a difference array whose values indicate the
differences between consecutive values in the original array. Thus, the original
array is the prefix sum array of the difference array. For example, consider the
following array:

3 3 1 1 1 5 2 2

0 1 2 3 4 5 6 7

The difference array for the above array is as follows:

3 0 −2 0 0 4 −3 0

0 1 2 3 4 5 6 7

For example, the value 2 at position 6 in the original array corresponds to the
sum 3−2+4−3= 2 in the difference array.

The advantage of the difference array is that we can update a range in the
original array by changing just two elements in the difference array. For example,
if we want to increase the original array values between positions 1 and 4 by 5, it
suffices to increase the difference array value at position 1 by 5 and decrease the
value at position 5 by 5. The result is as follows:

93

3 5 −2 0 0 −1 −3 0

0 1 2 3 4 5 6 7

More generally, to increase the values in range [a,b] by x, we increase the
value at position a by x and decrease the value at position b+1 by x. Thus, it is
only needed to update single values and process sum queries, so we can use a
binary indexed tree or a segment tree.

A more difficult problem is to support both range queries and range updates.
In Chapter 28 we will see that even this is possible.

94

Chapter 10

Bit manipulation

All data in computer programs is internally stored as bits, i.e., as numbers 0
and 1. This chapter discusses the bit representation of integers, and shows
examples of how to use bit operations. It turns out that there are many uses for
bit manipulation in algorithm programming.

Bit representation
In programming, an n bit integer is internally stored as a binary number that
consists of n bits. For example, the C++ type int is a 32-bit type, which means
that every int number consists of 32 bits.

Here is the bit representation of the int number 43:

00000000000000000000000000101011

The bits in the representation are indexed from right to left. To convert a bit
representation bk · · ·b2b1b0 into a number, we can use the formula

bk2k + . . .+b222 +b121 +b020.

For example,
1 ·25 +1 ·23 +1 ·21 +1 ·20 = 43.

The bit representation of a number is either signed or unsigned. Usually
a signed representation is used, which means that both negative and positive
numbers can be represented. A signed variable of n bits can contain any integer
between −2n−1 and 2n−1 −1. For example, the int type in C++ is a signed type,
so an int variable can contain any integer between −231 and 231 −1.

The first bit in a signed representation is the sign of the number (0 for
nonnegative numbers and 1 for negative numbers), and the remaining n−1 bits
contain the magnitude of the number. Two’s complement is used, which means
that the opposite number of a number is calculated by first inverting all the bits
in the number, and then increasing the number by one.

For example, the bit representation of the int number −43 is

11111111111111111111111111010101.

95

In an unsigned representation, only nonnegative numbers can be used, but
the upper bound for the values is larger. An unsigned variable of n bits can
contain any integer between 0 and 2n −1. For example, in C++, an unsigned int

variable can contain any integer between 0 and 232 −1.
There is a connection between the representations: a signed number −x

equals an unsigned number 2n − x. For example, the following code shows that
the signed number x =−43 equals the unsigned number y= 232 −43:

int x = -43;

unsigned int y = x;

cout << x << "\n"; // -43

cout << y << "\n"; // 4294967253

If a number is larger than the upper bound of the bit representation, the
number will overflow. In a signed representation, the next number after 2n−1−1
is −2n−1, and in an unsigned representation, the next number after 2n −1 is 0.
For example, consider the following code:

int x = 2147483647

cout << x << "\n"; // 2147483647

x++;

cout << x << "\n"; // -2147483648

Initially, the value of x is 231−1. This is the largest value that can be stored
in an int variable, so the next number after 231 −1 is −231.

Bit operations

And operation

The and operation x & y produces a number that has one bits in positions where
both x and y have one bits. For example, 22 & 26 = 18, because

10110 (22)
& 11010 (26)
= 10010 (18)

Using the and operation, we can check if a number x is even because x & 1 =
0 if x is even, and x & 1 = 1 if x is odd. More generally, x is divisible by 2k exactly
when x & (2k −1) = 0.

Or operation

The or operation x | y produces a number that has one bits in positions where at
least one of x and y have one bits. For example, 22 | 26 = 30, because

10110 (22)
| 11010 (26)
= 11110 (30)

96

Xor operation

The xor operation x ^ y produces a number that has one bits in positions where
exactly one of x and y have one bits. For example, 22 ^ 26 = 12, because

10110 (22)
^ 11010 (26)
= 01100 (12)

Not operation

The not operation ~x produces a number where all the bits of x have been
inverted. The formula ~x =−x−1 holds, for example, ~29=−30.

The result of the not operation at the bit level depends on the length of the
bit representation, because the operation inverts all bits. For example, if the
numbers are 32-bit int numbers, the result is as follows:

x = 29 00000000000000000000000000011101
~x = −30 11111111111111111111111111100010

Bit shifts

The left bit shift x << k appends k zero bits to the number, and the right bit
shift x >> k removes the k last bits from the number. For example, 14<< 2= 56,
because 14 and 56 correspond to 1110 and 111000. Similarly, 49>> 3= 6, because
49 and 6 correspond to 110001 and 110.

Note that x << k corresponds to multiplying x by 2k, and x >> k corresponds
to dividing x by 2k rounded down to an integer.

Applications

A number of the form 1<< k has a one bit in position k and all other bits are zero,
so we can use such numbers to access single bits of numbers. In particular, the
kth bit of a number is one exactly when x & (1<< k) is not zero. The following
code prints the bit representation of an int number x:

for (int i = 31; i >= 0; i--) {

if (x&(1<<i)) cout << "1";

else cout << "0";

}

It is also possible to modify single bits of numbers using similar ideas. For
example, the formula x | (1 << k) sets the kth bit of x to one, the formula x &
~(1 << k) sets the kth bit of x to zero, and the formula x ^ (1 << k) inverts the
kth bit of x.

The formula x & (x−1) sets the last one bit of x to zero, and the formula x &
−x sets all the one bits to zero, except for the last one bit. The formula x | (x−1)
inverts all the bits after the last one bit. Also note that a positive number x is a
power of two exactly when x & (x−1)= 0.

97

Additional functions

The g++ compiler provides the following functions for counting bits:

• __builtin_clz(x): the number of zeros at the beginning of the number

• __builtin_ctz(x): the number of zeros at the end of the number

• __builtin_popcount(x): the number of ones in the number

• __builtin_parity(x): the parity (even or odd) of the number of ones

The functions can be used as follows:

int x = 5328; // 00000000000000000001010011010000

cout << __builtin_clz(x) << "\n"; // 19

cout << __builtin_ctz(x) << "\n"; // 4

cout << __builtin_popcount(x) << "\n"; // 5

cout << __builtin_parity(x) << "\n"; // 1

While the above functions only support int numbers, there are also long long

versions of the functions available with the suffix ll.

Representing sets

Every subset of a set {0,1,2, . . . ,n−1} can be represented as an n bit integer whose
one bits indicate which elements belong to the subset. This is an efficient way to
represent sets, because every element requires only one bit of memory, and set
operations can be implemented as bit operations.

For example, since int is a 32-bit type, an int number can represent any
subset of the set {0,1,2, . . . ,31}. The bit representation of the set {1,3,4,8} is

00000000000000000000000100011010,

which corresponds to the number 28 +24 +23 +21 = 282.

Set implementation

The following code declares an int variable x that can contain a subset of
{0,1,2, . . . ,31}. After this, the code adds the elements 1, 3, 4 and 8 to the set
and prints the size of the set.

int x = 0;

x |= (1<<1);

x |= (1<<3);

x |= (1<<4);

x |= (1<<8);

cout << __builtin_popcount(x) << "\n"; // 4

98

Then, the following code prints all elements that belong to the set:

for (int i = 0; i < 32; i++) {

if (x&(1<<i)) cout << i << " ";

}

// output: 1 3 4 8

Set operations

Set operations can be implemented as follows as bit operations:

set syntax bit syntax
intersection a∩b a & b
union a∪b a | b
complement ā ~a
difference a \ b a & (~b)

For example, the following code first constructs the sets x = {1,3,4,8} and
y= {3,6,8,9}, and then constructs the set z = x∪ y= {1,3,4,6,8,9}:

int x = (1<<1)|(1<<3)|(1<<4)|(1<<8);

int y = (1<<3)|(1<<6)|(1<<8)|(1<<9);

int z = x|y;

cout << __builtin_popcount(z) << "\n"; // 6

Iterating through subsets

The following code goes through the subsets of {0,1, . . . ,n−1}:

for (int b = 0; b < (1<<n); b++) {

// process subset b

}

The following code goes through the subsets with exactly k elements:

for (int b = 0; b < (1<<n); b++) {

if (__builtin_popcount(b) == k) {

// process subset b

}

}

The following code goes through the subsets of a set x:

int b = 0;

do {

// process subset b

} while (b=(b-x)&x);

99

Bit optimizations
Many algorithms can be optimized using bit operations. Such optimizations
do not change the time complexity of the algorithm, but they may have a large
impact on the actual running time of the code. In this section we discuss examples
of such situations.

Hamming distances

The Hamming distance hamming(a,b) between two strings a and b of equal
length is the number of positions where the strings differ. For example,

hamming(01101,11001)= 2.

Consider the following problem: Given a list of n bit strings, each of length k,
calculate the minimum Hamming distance between two strings in the list. For
example, the answer for [00111,01101,11110] is 2, because

• hamming(00111,01101)= 2,
• hamming(00111,11110)= 3, and
• hamming(01101,11110)= 3.

A straightforward way to solve the problem is to go through all pairs of strings
and calculate their Hamming distances, which yields an O(n2k) time algorithm.
The following function can be used to calculate distances:

int hamming(string a, string b) {

int d = 0;

for (int i = 0; i < k; i++) {

if (a[i] != b[i]) d++;

}

return d;

}

However, if k is small, we can optimize the code by storing the bit strings
as integers and calculating the Hamming distances using bit operations. In
particular, if k ≤ 32, we can just store the strings as int values and use the
following function to calculate distances:

int hamming(int a, int b) {

return __builtin_popcount(a^b);

}

In the above function, the xor operation constructs a bit string that has one bits
in positions where a and b differ. Then, the number of bits is calculated using
the __builtin_popcount function.

To compare the implementations, we generated a list of 10000 random bit
strings of length 30. Using the first approach, the search took 13.5 seconds, and
after the bit optimization, it only took 0.5 seconds. Thus, the bit optimized code
was almost 30 times faster than the original code.

100

Counting subgrids

As another example, consider the following problem: Given an n×n grid whose
each square is either black (1) or white (0), calculate the number of subgrids
whose all corners are black. For example, the grid

contains two such subgrids:

There is an O(n3) time algorithm for solving the problem: go through all
O(n2) pairs of rows and for each pair (a,b) calculate the number of columns that
contain a black square in both rows in O(n) time. The following code assumes
that color[y][x] denotes the color in row y and column x:

int count = 0;

for (int i = 0; i < n; i++) {

if (color[a][i] == 1 && color[b][i] == 1) count++;

}

Then, those columns account for count(count−1)/2 subgrids with black corners,
because we can choose any two of them to form a subgrid.

To optimize this algorithm, we divide the grid into blocks of columns such that
each block consists of N consecutive columns. Then, each row is stored as a list
of N-bit numbers that describe the colors of the squares. Now we can process N
columns at the same time using bit operations. In the following code, color[y][k]
represents a block of N colors as bits.

int count = 0;

for (int i = 0; i <= n/N; i++) {

count += __builtin_popcount(color[a][i]&color[b][i]);

}

The resulting algorithm works in O(n3/N) time.
We generated a random grid of size 2500×2500 and compared the original

and bit optimized implementation. While the original code took 29.6 seconds, the
bit optimized version only took 3.1 seconds with N = 32 (int numbers) and 1.7
seconds with N = 64 (long long numbers).

101

Dynamic programming

Bit operations provide an efficient and convenient way to implement dynamic
programming algorithms whose states contain subsets of elements, because such
states can be stored as integers. Next we discuss examples of combining bit
operations and dynamic programming.

Optimal selection

As a first example, consider the following problem: We are given the prices of k
products over n days, and we want to buy each product exactly once. However,
we are allowed to buy at most one product in a day. What is the minimum total
price? For example, consider the following scenario (k = 3 and n = 8):

product 0

product 1

product 2

0 1 2 3 4 5 6 7

6 9 5 2 8 9 1 6

8 2 6 2 7 5 7 2

5 3 9 7 3 5 1 4

In this scenario, the minimum total price is 5:

product 0

product 1

product 2

0 1 2 3 4 5 6 7

6 9 5 2 8 9 1 6

8 2 6 2 7 5 7 2

5 3 9 7 3 5 1 4

Let price[x][d] denote the price of product x on day d. For example, in the
above scenario price[2][3]= 7. Then, let total(S,d) denote the minimum total
price for buying a subset S of products by day d. Using this function, the solution
to the problem is total({0 . . .k−1},n−1).

First, total(;,d)= 0, because it does not cost anything to buy an empty set,
and total({x},0) = price[x][0], because there is one way to buy one product on
the first day. Then, the following recurrence can be used:

total(S,d)=min(total(S,d−1),
min
x∈S

(total(S \ x,d−1)+price[x][d]))

This means that we either do not buy any product on day d or buy a product x
that belongs to S. In the latter case, we remove x from S and add the price of x
to the total price.

The next step is to calculate the values of the function using dynamic pro-
gramming. To store the function values, we declare an array

int total[1<<K][N];

102

where K and N are suitably large constants. The first dimension of the array
corresponds to a bit representation of a subset.

First, the cases where d = 0 can be processed as follows:

for (int x = 0; x < k; x++) {

total[1<<x][0] = price[x][0];

}

Then, the recurrence translates into the following code:

for (int d = 1; d < n; d++) {

for (int s = 0; s < (1<<k); s++) {

total[s][d] = total[s][d-1];

for (int x = 0; x < k; x++) {

if (s&(1<<x)) {

total[s][d] = min(total[s][d],

total[s^(1<<x)][d-1]+price[x][d]);

}

}

}

}

The time complexity of the algorithm is O(n2kk).

From permutations to subsets

Using dynamic programming, it is often possible to change an iteration over
permutations into an iteration over subsets1. The benefit of this is that n!, the
number of permutations, is much larger than 2n, the number of subsets. For
example, if n = 20, then n!≈ 2.4 ·1018 and 2n ≈ 106. Thus, for certain values of n,
we can efficiently go through the subsets but not through the permutations.

As an example, consider the following problem: There is an elevator with
maximum weight x, and n people with known weights who want to get from the
ground floor to the top floor. What is the minimum number of rides needed if the
people enter the elevator in an optimal order?

For example, suppose that x = 10, n = 5 and the weights are as follows:

person weight
0 2
1 3
2 3
3 5
4 6

In this case, the minimum number of rides is 2. One optimal order is {0,2,3,1,4},
which partitions the people into two rides: first {0,2,3} (total weight 10), and then
{1,4} (total weight 9).

1This technique was introduced in 1962 by M. Held and R. M. Karp [34].

103

The problem can be easily solved in O(n!n) time by testing all possible permu-
tations of n people. However, we can use dynamic programming to get a more
efficient O(2nn) time algorithm. The idea is to calculate for each subset of people
two values: the minimum number of rides needed and the minimum weight of
people who ride in the last group.

Let weight[p] denote the weight of person p. We define two functions: rides(S)
is the minimum number of rides for a subset S, and last(S) is the minimum
weight of the last ride. For example, in the above scenario

rides({1,3,4})= 2 and last({1,3,4})= 5,

because the optimal rides are {1,4} and {3}, and the second ride has weight 5. Of
course, our final goal is to calculate the value of rides({0 . . .n−1}).

We can calculate the values of the functions recursively and then apply
dynamic programming. The idea is to go through all people who belong to S and
optimally choose the last person p who enters the elevator. Each such choice
yields a subproblem for a smaller subset of people. If last(S \ p)+weight[p]≤ x,
we can add p to the last ride. Otherwise, we have to reserve a new ride that
initially only contains p.

To implement dynamic programming, we declare an array

pair<int,int> best[1<<N];

that contains for each subset S a pair (rides(S),last(S)). We set the value for an
empty group as follows:

best[0] = {1,0};

Then, we can fill the array as follows:

for (int s = 1; s < (1<<n); s++) {

// initial value: n+1 rides are needed

best[s] = {n+1,0};

for (int p = 0; p < n; p++) {

if (s&(1<<p)) {

auto option = best[s^(1<<p)];

if (option.second+weight[p] <= x) {

// add p to an existing ride

option.second += weight[p];

} else {

// reserve a new ride for p

option.first++;

option.second = weight[p];

}

best[s] = min(best[s], option);

}

}

}

104

Note that the above loop guarantees that for any two subsets S1 and S2 such
that S1 ⊂ S2, we process S1 before S2. Thus, the dynamic programming values
are calculated in the correct order.

Counting subsets

Our last problem in this chapter is as follows: Let X = {0 . . .n−1}, and each subset
S ⊂ X is assigned an integer value[S]. Our task is to calculate for each S

sum(S)= ∑
A⊂S

value[A],

i.e., the sum of values of subsets of S.
For example, suppose that n = 3 and the values are as follows:

• value[;]= 3

• value[{0}]= 1

• value[{1}]= 4

• value[{0,1}]= 5

• value[{2}]= 5

• value[{0,2}]= 1

• value[{1,2}]= 3

• value[{0,1,2}]= 3

In this case, for example,

sum({0,2})= value[;]+value[{0}]+value[{2}]+value[{0,2}]
= 3+1+5+1= 10.

Because there are a total of 2n subsets, one possible solution is to go through
all pairs of subsets in O(22n) time. However, using dynamic programming, we
can solve the problem in O(2nn) time. The idea is to focus on sums where the
elements that may be removed from S are restricted.

Let partial(S,k) denote the sum of values of subsets of S with the restriction
that only elements 0 . . .k may be removed from S. For example,

partial({0,2},1)= value[{2}]+value[{0,2}],

because we may only remove elements 0 . . .1. We can calculate values of sum using
values of partial, because

sum(S)= partial(S,n−1).

The base cases for the function are

partial(S,−1)= value[S],

because in this case no elements can be removed from S. Then, in the general
case we can use the following recurrence:

partial(S,k)=
{
partial(S,k−1) k ∉ S
partial(S,k−1)+partial(S \{k},k−1) k ∈ S

105

Here we focus on the element k. If k ∈ S, we have two options: we may either
keep k in S or remove it from S.

There is a particularly clever way to implement the calculation of sums. We
can declare an array

int sum[1<<N];

that will contain the sum of each subset. The array is initialized as follows:

for (int s = 0; s < (1<<n); s++) {

sum[s] = value[s];

}

Then, we can fill the array as follows:

for (int k = 0; k < n; k++) {

for (int s = 0; s < (1<<n); s++) {

if (s&(1<<k)) sum[s] += sum[s^(1<<k)];

}

}

This code calculates the values of partial(S,k) for k = 0 . . .n−1 to the array sum.
Since partial(S,k) is always based on partial(S,k−1), we can reuse the array
sum, which yields a very efficient implementation.

106

Part II

Graph algorithms

107

Chapter 11

Basics of graphs

Many programming problems can be solved by modeling the problem as a graph
problem and using an appropriate graph algorithm. A typical example of a graph
is a network of roads and cities in a country. Sometimes, though, the graph is
hidden in the problem and it may be difficult to detect it.

This part of the book discusses graph algorithms, especially focusing on topics
that are important in competitive programming. In this chapter, we go through
concepts related to graphs, and study different ways to represent graphs in
algorithms.

Graph terminology
A graph consists of nodes and edges. In this book, the variable n denotes the
number of nodes in a graph, and the variable m denotes the number of edges.
The nodes are numbered using integers 1,2, . . . ,n.

For example, the following graph consists of 5 nodes and 7 edges:

1 2

3 4

5

A path leads from node a to node b through edges of the graph. The length
of a path is the number of edges in it. For example, the above graph contains a
path 1→ 3→ 4→ 5 of length 3 from node 1 to node 5:

1 2

3 4

5

A path is a cycle if the first and last node is the same. For example, the above
graph contains a cycle 1→ 3→ 4→ 1. A path is simple if each node appears at
most once in the path.

109

Connectivity

A graph is connected if there is a path between any two nodes. For example,
the following graph is connected:

1 2

3 4

The following graph is not connected, because it is not possible to get from
node 4 to any other node:

1 2

3 4

The connected parts of a graph are called its components. For example, the
following graph contains three components: {1, 2, 3}, {4, 5, 6, 7} and {8}.

1 2

3 6 7

4 5

8

A tree is a connected graph that consists of n nodes and n−1 edges. There is
a unique path between any two nodes of a tree. For example, the following graph
is a tree:

1 2

3 4

5

Edge directions

A graph is directed if the edges can be traversed in one direction only. For
example, the following graph is directed:

1 2

3 4

5

The above graph contains a path 3 → 1 → 2 → 5 from node 3 to node 5, but
there is no path from node 5 to node 3.

110

Edge weights

In a weighted graph, each edge is assigned a weight. The weights are often
interpreted as edge lengths. For example, the following graph is weighted:

1 2

3 4

5

5

1

7

6

7

3

The length of a path in a weighted graph is the sum of the edge weights on
the path. For example, in the above graph, the length of the path 1→ 2→ 5 is 12,
and the length of the path 1→ 3→ 4→ 5 is 11. The latter path is the shortest
path from node 1 to node 5.

Neighbors and degrees

Two nodes are neighbors or adjacent if there is an edge between them. The
degree of a node is the number of its neighbors. For example, in the following
graph, the neighbors of node 2 are 1, 4 and 5, so its degree is 3.

1 2

3 4

5

The sum of degrees in a graph is always 2m, where m is the number of edges,
because each edge increases the degree of exactly two nodes by one. For this
reason, the sum of degrees is always even.

A graph is regular if the degree of every node is a constant d. A graph is
complete if the degree of every node is n−1, i.e., the graph contains all possible
edges between the nodes.

In a directed graph, the indegree of a node is the number of edges that end
at the node, and the outdegree of a node is the number of edges that start at
the node. For example, in the following graph, the indegree of node 2 is 2, and
the outdegree of node 2 is 1.

1 2

3 4

5

111

Colorings

In a coloring of a graph, each node is assigned a color so that no adjacent nodes
have the same color.

A graph is bipartite if it is possible to color it using two colors. It turns out
that a graph is bipartite exactly when it does not contain a cycle with an odd
number of edges. For example, the graph

2 3

5 64

1

is bipartite, because it can be colored as follows:

2 3

5 64

1

However, the graph

2 3

5 64

1

is not bipartite, because it is not possible to color the following cycle of three
nodes using two colors:

2 3

5 64

1

Simplicity

A graph is simple if no edge starts and ends at the same node, and there are no
multiple edges between two nodes. Often we assume that graphs are simple. For
example, the following graph is not simple:

2 3

5 64

1

112

Graph representation
There are several ways to represent graphs in algorithms. The choice of a data
structure depends on the size of the graph and the way the algorithm processes
it. Next we will go through three common representations.

Adjacency list representation

In the adjacency list representation, each node x in the graph is assigned an
adjacency list that consists of nodes to which there is an edge from x. Adjacency
lists are the most popular way to represent graphs, and most algorithms can be
efficiently implemented using them.

A convenient way to store the adjacency lists is to declare an array of vectors
as follows:

vector<int> adj[N];

The constant N is chosen so that all adjacency lists can be stored. For example,
the graph

1 2 3

4

can be stored as follows:

adj[1].push_back(2);

adj[2].push_back(3);

adj[2].push_back(4);

adj[3].push_back(4);

adj[4].push_back(1);

If the graph is undirected, it can be stored in a similar way, but each edge is
added in both directions.

For a weighted graph, the structure can be extended as follows:

vector<pair<int,int>> adj[N];

In this case, the adjacency list of node a contains the pair (b,w) always when
there is an edge from node a to node b with weight w. For example, the graph

1 2 3

4

5 7

6 52

113

can be stored as follows:

adj[1].push_back({2,5});

adj[2].push_back({3,7});

adj[2].push_back({4,6});

adj[3].push_back({4,5});

adj[4].push_back({1,2});

The benefit of using adjacency lists is that we can efficiently find the nodes
to which we can move from a given node through an edge. For example, the
following loop goes through all nodes to which we can move from node s:

for (auto u : adj[s]) {

// process node u

}

Adjacency matrix representation

An adjacency matrix is a two-dimensional array that indicates which edges
the graph contains. We can efficiently check from an adjacency matrix if there is
an edge between two nodes. The matrix can be stored as an array

int adj[N][N];

where each value adj[a][b] indicates whether the graph contains an edge from
node a to node b. If the edge is included in the graph, then adj[a][b] = 1, and
otherwise adj[a][b]= 0. For example, the graph

1 2 3

4

can be represented as follows:

1 0 0 0

0 0 0 1

0 0 1 1

0 1 0 0

4

3

2

1

1 2 3 4

If the graph is weighted, the adjacency matrix representation can be extended
so that the matrix contains the weight of the edge if the edge exists. Using this
representation, the graph

114

1 2 3

4

5 7

6 52

corresponds to the following matrix:

2 0 0 0

0 0 0 5

0 0 7 6

0 5 0 0

4

3

2

1

1 2 3 4

The drawback of the adjacency matrix representation is that the matrix
contains n2 elements, and usually most of them are zero. For this reason, the
representation cannot be used if the graph is large.

Edge list representation

An edge list contains all edges of a graph in some order. This is a convenient
way to represent a graph if the algorithm processes all edges of the graph and it
is not needed to find edges that start at a given node.

The edge list can be stored in a vector

vector<pair<int,int>> edges;

where each pair (a,b) denotes that there is an edge from node a to node b. Thus,
the graph

1 2 3

4

can be represented as follows:

edges.push_back({1,2});

edges.push_back({2,3});

edges.push_back({2,4});

edges.push_back({3,4});

edges.push_back({4,1});

If the graph is weighted, the structure can be extended as follows:

115

vector<tuple<int,int,int>> edges;

Each element in this list is of the form (a,b,w), which means that there is an
edge from node a to node b with weight w. For example, the graph

1 2 3

4

5 7

6 52

can be represented as follows1:

edges.push_back({1,2,5});

edges.push_back({2,3,7});

edges.push_back({2,4,6});

edges.push_back({3,4,5});

edges.push_back({4,1,2});

1In some older compilers, the function make_tuple must be used instead of the braces (for
example, make_tuple(1,2,5) instead of {1,2,5}).

116

Chapter 12

Graph traversal

This chapter discusses two fundamental graph algorithms: depth-first search and
breadth-first search. Both algorithms are given a starting node in the graph, and
they visit all nodes that can be reached from the starting node. The difference in
the algorithms is the order in which they visit the nodes.

Depth-first search
Depth-first search (DFS) is a straightforward graph traversal technique. The
algorithm begins at a starting node, and proceeds to all other nodes that are
reachable from the starting node using the edges of the graph.

Depth-first search always follows a single path in the graph as long as it
finds new nodes. After this, it returns to previous nodes and begins to explore
other parts of the graph. The algorithm keeps track of visited nodes, so that it
processes each node only once.

Example

Let us consider how depth-first search processes the following graph:

1 2

3

4 5

We may begin the search at any node of the graph; now we will begin the search
at node 1.

The search first proceeds to node 2:

1 2

3

4 5

117

After this, nodes 3 and 5 will be visited:

1 2

3

4 5

The neighbors of node 5 are 2 and 3, but the search has already visited both of
them, so it is time to return to the previous nodes. Also the neighbors of nodes 3
and 2 have been visited, so we next move from node 1 to node 4:

1 2

3

4 5

After this, the search terminates because it has visited all nodes.
The time complexity of depth-first search is O(n+m) where n is the number

of nodes and m is the number of edges, because the algorithm processes each
node and edge once.

Implementation

Depth-first search can be conveniently implemented using recursion. The fol-
lowing function dfs begins a depth-first search at a given node. The function
assumes that the graph is stored as adjacency lists in an array

vector<int> adj[N];

and also maintains an array

bool visited[N];

that keeps track of the visited nodes. Initially, each array value is false, and
when the search arrives at node s, the value of visited[s] becomes true. The
function can be implemented as follows:

void dfs(int s) {

if (visited[s]) return;

visited[s] = true;

// process node s

for (auto u: adj[s]) {

dfs(u);

}

}

118

Breadth-first search

Breadth-first search (BFS) visits the nodes in increasing order of their distance
from the starting node. Thus, we can calculate the distance from the starting
node to all other nodes using breadth-first search. However, breadth-first search
is more difficult to implement than depth-first search.

Breadth-first search goes through the nodes one level after another. First the
search explores the nodes whose distance from the starting node is 1, then the
nodes whose distance is 2, and so on. This process continues until all nodes have
been visited.

Example

Let us consider how breadth-first search processes the following graph:

1 2 3

4 5 6

Suppose that the search begins at node 1. First, we process all nodes that can be
reached from node 1 using a single edge:

1 2 3

4 5 6

After this, we proceed to nodes 3 and 5:

1 2 3

4 5 6

Finally, we visit node 6:

1 2 3

4 5 6

119

Now we have calculated the distances from the starting node to all nodes of the
graph. The distances are as follows:

node distance
1 0
2 1
3 2
4 1
5 2
6 3

Like in depth-first search, the time complexity of breadth-first search is
O(n+m), where n is the number of nodes and m is the number of edges.

Implementation

Breadth-first search is more difficult to implement than depth-first search, be-
cause the algorithm visits nodes in different parts of the graph. A typical imple-
mentation is based on a queue that contains nodes. At each step, the next node
in the queue will be processed.

The following code assumes that the graph is stored as adjacency lists and
maintains the following data structures:

queue<int> q;

bool visited[N];

int distance[N];

The queue q contains nodes to be processed in increasing order of their
distance. New nodes are always added to the end of the queue, and the node at
the beginning of the queue is the next node to be processed. The array visited

indicates which nodes the search has already visited, and the array distance will
contain the distances from the starting node to all nodes of the graph.

The search can be implemented as follows, starting at node x:

visited[x] = true;

distance[x] = 0;

q.push(x);

while (!q.empty()) {

int s = q.front(); q.pop();

// process node s

for (auto u : adj[s]) {

if (visited[u]) continue;

visited[u] = true;

distance[u] = distance[s]+1;

q.push(u);

}

}

120

Applications

Using the graph traversal algorithms, we can check many properties of graphs.
Usually, both depth-first search and breadth-first search may be used, but in
practice, depth-first search is a better choice, because it is easier to implement.
In the following applications we will assume that the graph is undirected.

Connectivity check

A graph is connected if there is a path between any two nodes of the graph. Thus,
we can check if a graph is connected by starting at an arbitrary node and finding
out if we can reach all other nodes.

For example, in the graph

21

3

54

a depth-first search from node 1 visits the following nodes:

21

3

54

Since the search did not visit all the nodes, we can conclude that the graph
is not connected. In a similar way, we can also find all connected components of
a graph by iterating through the nodes and always starting a new depth-first
search if the current node does not belong to any component yet.

Finding cycles

A graph contains a cycle if during a graph traversal, we find a node whose
neighbor (other than the previous node in the current path) has already been
visited. For example, the graph

21

3

54

contains two cycles and we can find one of them as follows:

121

21

3

54

After moving from node 2 to node 5 we notice that the neighbor 3 of node 5 has
already been visited. Thus, the graph contains a cycle that goes through node 3,
for example, 3→ 2→ 5→ 3.

Another way to find out whether a graph contains a cycle is to simply calculate
the number of nodes and edges in every component. If a component contains c
nodes and no cycle, it must contain exactly c−1 edges (so it has to be a tree). If
there are c or more edges, the component surely contains a cycle.

Bipartiteness check

A graph is bipartite if its nodes can be colored using two colors so that there are
no adjacent nodes with the same color. It is surprisingly easy to check if a graph
is bipartite using graph traversal algorithms.

The idea is to color the starting node blue, all its neighbors red, all their
neighbors blue, and so on. If at some point of the search we notice that two
adjacent nodes have the same color, this means that the graph is not bipartite.
Otherwise the graph is bipartite and one coloring has been found.

For example, the graph

21

3

54

is not bipartite, because a search from node 1 proceeds as follows:

21

3

54

We notice that the color or both nodes 2 and 5 is red, while they are adjacent
nodes in the graph. Thus, the graph is not bipartite.

This algorithm always works, because when there are only two colors avail-
able, the color of the starting node in a component determines the colors of all
other nodes in the component. It does not make any difference whether the
starting node is red or blue.

Note that in the general case, it is difficult to find out if the nodes in a graph
can be colored using k colors so that no adjacent nodes have the same color. Even
when k = 3, no efficient algorithm is known but the problem is NP-hard.

122

Chapter 13

Shortest paths

Finding a shortest path between two nodes of a graph is an important problem
that has many practical applications. For example, a natural problem related to
a road network is to calculate the shortest possible length of a route between two
cities, given the lengths of the roads.

In an unweighted graph, the length of a path equals the number of its edges,
and we can simply use breadth-first search to find a shortest path. However, in
this chapter we focus on weighted graphs where more sophisticated algorithms
are needed for finding shortest paths.

Bellman–Ford algorithm

The Bellman–Ford algorithm1 finds shortest paths from a starting node to all
nodes of the graph. The algorithm can process all kinds of graphs, provided that
the graph does not contain a cycle with negative length. If the graph contains a
negative cycle, the algorithm can detect this.

The algorithm keeps track of distances from the starting node to all nodes
of the graph. Initially, the distance to the starting node is 0 and the distance to
all other nodes in infinite. The algorithm reduces the distances by finding edges
that shorten the paths until it is not possible to reduce any distance.

Example

Let us consider how the Bellman–Ford algorithm works in the following graph:

1 2

3 4

6

0 ∞

∞ ∞

∞

5

3

1

3

2

2

7

1The algorithm is named after R. E. Bellman and L. R. Ford who published it independently
in 1958 and 1956, respectively [5, 24].

123

Each node of the graph is assigned a distance. Initially, the distance to the
starting node is 0, and the distance to all other nodes is infinite.

The algorithm searches for edges that reduce distances. First, all edges from
node 1 reduce distances:

1 2

3 4

5

0 5

3 7

∞

5

3

1

3

2

2

7

After this, edges 2→ 5 and 3→ 4 reduce distances:

1 2

3 4

5

0 5

3 4

7

5

3

1

3

2

2

7

Finally, there is one more change:

1 2

3 4

5

0 5

3 4

6

5

3

1

3

2

2

7

After this, no edge can reduce any distance. This means that the distances
are final, and we have successfully calculated the shortest distances from the
starting node to all nodes of the graph.

For example, the shortest distance 3 from node 1 to node 5 corresponds to the
following path:

1 2

3 4

5

0 5

3 4

6

5

3

1

3

2

2

7

124

Implementation

The following implementation of the Bellman–Ford algorithm determines the
shortest distances from a node x to all nodes of the graph. The code assumes
that the graph is stored as an edge list edges that consists of tuples of the form
(a,b,w), meaning that there is an edge from node a to node b with weight w.

The algorithm consists of n−1 rounds, and on each round the algorithm goes
through all edges of the graph and tries to reduce the distances. The algorithm
constructs an array distance that will contain the distances from x to all nodes
of the graph. The constant INF denotes an infinite distance.

for (int i = 1; i <= n; i++) distance[i] = INF;

distance[x] = 0;

for (int i = 1; i <= n-1; i++) {

for (auto e : edges) {

int a, b, w;

tie(a, b, w) = e;

distance[b] = min(distance[b], distance[a]+w);

}

}

The time complexity of the algorithm is O(nm), because the algorithm consists
of n−1 rounds and iterates through all m edges during a round. If there are no
negative cycles in the graph, all distances are final after n−1 rounds, because
each shortest path can contain at most n−1 edges.

In practice, the final distances can usually be found faster than in n−1 rounds.
Thus, a possible way to make the algorithm more efficient is to stop the algorithm
if no distance can be reduced during a round.

Negative cycles

The Bellman–Ford algorithm can also be used to check if the graph contains a
cycle with negative length. For example, the graph

1

2

3

4

3 1

5 −7

2

contains a negative cycle 2→ 3→ 4→ 2 with length −4.
If the graph contains a negative cycle, we can shorten infinitely many times

any path that contains the cycle by repeating the cycle again and again. Thus,
the concept of a shortest path is not meaningful in this situation.

A negative cycle can be detected using the Bellman–Ford algorithm by running
the algorithm for n rounds. If the last round reduces any distance, the graph
contains a negative cycle. Note that this algorithm can be used to search for a
negative cycle in the whole graph regardless of the starting node.

125

SPFA algorithm

The SPFA algorithm (”Shortest Path Faster Algorithm”) [20] is a variant of the
Bellman–Ford algorithm, that is often more efficient than the original algorithm.
The SPFA algorithm does not go through all the edges on each round, but instead,
it chooses the edges to be examined in a more intelligent way.

The algorithm maintains a queue of nodes that might be used for reducing
the distances. First, the algorithm adds the starting node x to the queue. Then,
the algorithm always processes the first node in the queue, and when an edge
a → b reduces a distance, node b is added to the queue.

The efficiency of the SPFA algorithm depends on the structure of the graph:
the algorithm is often efficient, but its worst case time complexity is still O(nm)
and it is possible to create inputs that make the algorithm as slow as the original
Bellman–Ford algorithm.

Dijkstra’s algorithm

Dijkstra’s algorithm2 finds shortest paths from the starting node to all nodes of
the graph, like the Bellman–Ford algorithm. The benefit of Dijsktra’s algorithm
is that it is more efficient and can be used for processing large graphs. However,
the algorithm requires that there are no negative weight edges in the graph.

Like the Bellman–Ford algorithm, Dijkstra’s algorithm maintains distances
to the nodes and reduces them during the search. Dijkstra’s algorithm is efficient,
because it only processes each edge in the graph once, using the fact that there
are no negative edges.

Example

Let us consider how Dijkstra’s algorithm works in the following graph when the
starting node is node 1:

3 4

2 1

5

∞ ∞

∞ 0

∞

6

2

5

9

2

1

Like in the Bellman–Ford algorithm, initially the distance to the starting node is
0 and the distance to all other nodes is infinite.

At each step, Dijkstra’s algorithm selects a node that has not been processed
yet and whose distance is as small as possible. The first such node is node 1 with
distance 0.

2E. W. Dijkstra published the algorithm in 1959 [14]; however, his original paper does not
mention how to implement the algorithm efficiently.

126

When a node is selected, the algorithm goes through all edges that start at
the node and reduces the distances using them:

3 4

2 1

5

∞ 9

5 0

1

6

2

5

9

2

1

In this case, the edges from node 1 reduced the distances of nodes 2, 4 and 5,
whose distances are now 5, 9 and 1.

The next node to be processed is node 5 with distance 1. This reduces the
distance to node 4 from 9 to 3:

3 4

2 1

5

∞ 3

5 0

1

6

2

5

9

2

1

After this, the next node is node 4, which reduces the distance to node 3 to 9:

3 4

2 1

5

9 3

5 0

1

6

2

5

9

2

1

A remarkable property in Dijkstra’s algorithm is that whenever a node is
selected, its distance is final. For example, at this point of the algorithm, the
distances 0, 1 and 3 are the final distances to nodes 1, 5 and 4.

After this, the algorithm processes the two remaining nodes, and the final
distances are as follows:

3 4

2 1

5

7 3

5 0

1

6

2

5

9

2

1

127

Negative edges

The efficiency of Dijkstra’s algorithm is based on the fact that the graph does
not contain negative edges. If there is a negative edge, the algorithm may give
incorrect results. As an example, consider the following graph:

1

2

3

4

2 3

6 −5

The shortest path from node 1 to node 4 is 1→ 3→ 4 and its length is 1. However,
Dijkstra’s algorithm finds the path 1→ 2→ 4 by following the minimum weight
edges. The algorithm does not take into account that on the other path, the
weight −5 compensates the previous large weight 6.

Implementation

The following implementation of Dijkstra’s algorithm calculates the minimum
distances from a node x to other nodes of the graph. The graph is stored as
adjacency lists so that adj[a] contains a pair (b,w) always when there is an edge
from node a to node b with weight w.

An efficient implementation of Dijkstra’s algorithm requires that it is possible
to efficiently find the minimum distance node that has not been processed. An
appropriate data structure for this is a priority queue that contains the nodes
ordered by their distances. Using a priority queue, the next node to be processed
can be retrieved in logarithmic time.

In the following code, the priority queue q contains pairs of the form (−d, x),
meaning that the current distance to node x is d. The array distance contains
the distance to each node, and the array processed indicates whether a node has
been processed. Initially the distance is 0 to x and ∞ to all other nodes.

for (int i = 1; i <= n; i++) distance[i] = INF;

distance[x] = 0;

q.push({0,x});

while (!q.empty()) {

int a = q.top().second; q.pop();

if (processed[a]) continue;

processed[a] = true;

for (auto u : adj[a]) {

int b = u.first, w = u.second;

if (distance[a]+w < distance[b]) {

distance[b] = distance[a]+w;

q.push({-distance[b],b});

}

}

}

128

Note that the priority queue contains negative distances to nodes. The reason
for this is that the default version of the C++ priority queue finds maximum
elements, while we want to find minimum elements. By using negative distances,
we can directly use the default priority queue3. Also note that there may be
several instances of the same node in the priority queue; however, only the
instance with the minimum distance will be processed.

The time complexity of the above implementation is O(n+m logm), because
the algorithm goes through all nodes of the graph and adds for each edge at most
one distance to the priority queue.

Floyd–Warshall algorithm

The Floyd–Warshall algorithm4 provides an alternative way to approach the
problem of finding shortest paths. Unlike the other algorithms of this chapter, it
finds all shortest paths between the nodes in a single run.

The algorithm maintains a two-dimensional array that contains distances
between the nodes. First, distances are calculated only using direct edges between
the nodes, and after this, the algorithm reduces distances by using intermediate
nodes in paths.

Example

Let us consider how the Floyd–Warshall algorithm works in the following graph:

3 4

2 1

5

7

2

5

9

2

1

Initially, the distance from each node to itself is 0, and the distance between
nodes a and b is x if there is an edge between nodes a and b with weight x. All
other distances are infinite.

In this graph, the initial array is as follows:

1 2 3 4 5
1 0 5 ∞ 9 1
2 5 0 2 ∞ ∞
3 ∞ 2 0 7 ∞
4 9 ∞ 7 0 2
5 1 ∞ ∞ 2 0

3Of course, we could also declare the priority queue as in Chapter 4.5 and use positive distances,
but the implementation would be a bit longer.

4The algorithm is named after R. W. Floyd and S. Warshall who published it independently in
1962 [23, 70].

129

The algorithm consists of consecutive rounds. On each round, the algorithm
selects a new node that can act as an intermediate node in paths from now on,
and distances are reduced using this node.

On the first round, node 1 is the new intermediate node. There is a new path
between nodes 2 and 4 with length 14, because node 1 connects them. There is
also a new path between nodes 2 and 5 with length 6.

1 2 3 4 5
1 0 5 ∞ 9 1
2 5 0 2 14 6
3 ∞ 2 0 7 ∞
4 9 14 7 0 2
5 1 6 ∞ 2 0

On the second round, node 2 is the new intermediate node. This creates new
paths between nodes 1 and 3 and between nodes 3 and 5:

1 2 3 4 5
1 0 5 7 9 1
2 5 0 2 14 6
3 7 2 0 7 8
4 9 14 7 0 2
5 1 6 8 2 0

On the third round, node 3 is the new intermediate round. There is a new
path between nodes 2 and 4:

1 2 3 4 5
1 0 5 7 9 1
2 5 0 2 9 6
3 7 2 0 7 8
4 9 9 7 0 2
5 1 6 8 2 0

The algorithm continues like this, until all nodes have been appointed inter-
mediate nodes. After the algorithm has finished, the array contains the minimum
distances between any two nodes:

1 2 3 4 5
1 0 5 7 3 1
2 5 0 2 8 6
3 7 2 0 7 8
4 3 8 7 0 2
5 1 6 8 2 0

For example, the array tells us that the shortest distance between nodes 2
and 4 is 8. This corresponds to the following path:

130

3 4

2 1

5

7

2

5

9

2

1

Implementation

The advantage of the Floyd–Warshall algorithm that it is easy to implement. The
following code constructs a distance matrix where distance[a][b] is the shortest
distance between nodes a and b. First, the algorithm initializes distance using
the adjacency matrix adj of the graph:

for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {

if (i == j) distance[i][j] = 0;

else if (adj[i][j]) distance[i][j] = adj[i][j];

else distance[i][j] = INF;

}

}

After this, the shortest distances can be found as follows:

for (int k = 1; k <= n; k++) {

for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {

distance[i][j] = min(distance[i][j],

distance[i][k]+distance[k][j]);

}

}

}

The time complexity of the algorithm is O(n3), because it contains three
nested loops that go through the nodes of the graph.

Since the implementation of the Floyd–Warshall algorithm is simple, the
algorithm can be a good choice even if it is only needed to find a single shortest
path in the graph. However, the algorithm can only be used when the graph is so
small that a cubic time complexity is fast enough.

131

132

Chapter 14

Tree algorithms

A tree is a connected, acyclic graph that consists of n nodes and n−1 edges.
Removing any edge from a tree divides it into two components, and adding any
edge to a tree creates a cycle. Moreover, there is always a unique path between
any two nodes of a tree.

For example, the following tree consists of 8 nodes and 7 edges:

1 4

2 3 7

5

68

The leaves of a tree are the nodes with degree 1, i.e., with only one neighbor.
For example, the leaves of the above tree are nodes 3, 5, 7 and 8.

In a rooted tree, one of the nodes is appointed the root of the tree, and all
other nodes are placed underneath the root. For example, in the following tree,
node 1 is the root node.

1

42 3

75 6

8

In a rooted tree, the children of a node are its lower neighbors, and the
parent of a node is its upper neighbor. Each node has exactly one parent, except
for the root that does not have a parent. For example, in the above tree, the
children of node 2 are nodes 5 and 6, and its parent is node 1.

133

The structure of a rooted tree is recursive: each node of the tree acts as the
root of a subtree that contains the node itself and all nodes that are in the
subtrees of its children. For example, in the above tree, the subtree of node 2
consists of nodes 2, 5, 6 and 8:

2

5 6

8

Tree traversal

General graph traversal algorithms can be used to traverse the nodes of a tree.
However, the traversal of a tree is easier to implement than that of a general
graph, because there are no cycles in the tree and it is not possible to reach a
node from multiple directions.

The typical way to traverse a tree is to start a depth-first search at an arbitrary
node. The following recursive function can be used:

void dfs(int s, int e) {

// process node s

for (auto u : adj[s]) {

if (u != e) dfs(u, s);

}

}

The function is given two parameters: the current node s and the previous
node e. The purpose of the parameter e is to make sure that the search only
moves to nodes that have not been visited yet.

The following function call starts the search at node x:

dfs(x, 0);

In the first call e = 0, because there is no previous node, and it is allowed to
proceed to any direction in the tree.

Dynamic programming

Dynamic programming can be used to calculate some information during a tree
traversal. Using dynamic programming, we can, for example, calculate in O(n)
time for each node of a rooted tree the number of nodes in its subtree or the
length of the longest path from the node to a leaf.

134

As an example, let us calculate for each node s a value count[s]: the number
of nodes in its subtree. The subtree contains the node itself and all nodes in
the subtrees of its children, so we can calculate the number of nodes recursively
using the following code:

void dfs(int s, int e) {

count[s] = 1;

for (auto u : adj[s]) {

if (u == e) continue;

dfs(u, s);

count[s] += count[u];

}

}

Diameter

The diameter of a tree is the maximum length of a path between two nodes. For
example, consider the following tree:

1 4

2 3 7

5

6

The diameter of this tree is 4, which corresponds to the following path:

1 4

2 3 7

5

6

Note that there may be several maximum-length paths. In the above path, we
could replace node 6 with node 5 to obtain another path with length 4.

Next we will discuss two O(n) time algorithms for calculating the diameter
of a tree. The first algorithm is based on dynamic programming, and the second
algorithm uses two depth-first searches.

Algorithm 1

A general way to approach many tree problems is to first root the tree arbitrarily.
After this, we can try to solve the problem separately for each subtree. Our first
algorithm for calculating the diameter is based on this idea.

An important observation is that every path in a rooted tree has a highest
point: the highest node that belongs to the path. Thus, we can calculate for each

135

node the length of the longest path whose highest point is the node. One of those
paths corresponds to the diameter of the tree.

For example, in the following tree, node 1 is the highest point on the path
that corresponds to the diameter:

1

42 3

75 6

We calculate for each node x two values:

• toLeaf(x): the maximum length of a path from x to any leaf

• maxLength(x): the maximum length of a path whose highest point is x

For example, in the above tree, toLeaf(1)= 2, because there is a path 1→ 2→ 6,
and maxLength(1) = 4, because there is a path 6 → 2 → 1 → 4 → 7. In this case,
maxLength(1) equals the diameter.

Dynamic programming can be used to calculate the above values for all nodes
in O(n) time. First, to calculate toLeaf(x), we go through the children of x,
choose a child c with maximum toLeaf(c) and add one to this value. Then, to
calculate maxLength(x), we choose two distinct children a and b such that the sum
toLeaf(a)+toLeaf(b) is maximum and add two to this sum.

Algorithm 2

Another efficient way to calculate the diameter of a tree is based on two depth-
first searches. First, we choose an arbitrary node a in the tree and find the
farthest node b from a. Then, we find the farthest node c from b. The diameter
of the tree is the distance between b and c.

In the following graph, a, b and c could be:

1 4

2 3 7

5

6
ab c

This is an elegant method, but why does it work?
It helps to draw the tree differently so that the path that corresponds to the

diameter is horizontal, and all other nodes hang from it:

136

1 42

3

7

5

6

a

b cx

Node x indicates the place where the path from node a joins the path that
corresponds to the diameter. The farthest node from a is node b, node c or some
other node that is at least as far from node x. Thus, this node is always a valid
choice for an endpoint of a path that corresponds to the diameter.

All longest paths
Our next problem is to calculate for every node in the tree the maximum length
of a path that begins at the node. This can be seen as a generalization of the tree
diameter problem, because the largest of those lengths equals the diameter of
the tree. Also this problem can be solved in O(n) time.

As an example, consider the following tree:

1

4

2

3

6

5

Let maxLength(x) denote the maximum length of a path that begins at node
x. For example, in the above tree, maxLength(4) = 3, because there is a path
4→ 1→ 2→ 6. Here is a complete table of the values:

node x 1 2 3 4 5 6
maxLength(x) 2 2 3 3 3 3

Also in this problem, a good starting point for solving the problem is to root
the tree arbitrarily:

1

42 3

5 6

The first part of the problem is to calculate for every node x the maximum
length of a path that goes through a child of x. For example, the longest path
from node 1 goes through its child 2:

137

1

42 3

5 6

This part is easy to solve in O(n) time, because we can use dynamic programming
as we have done previously.

Then, the second part of the problem is to calculate for every node x the
maximum length of a path through its parent p. For example, the longest path
from node 3 goes through its parent 1:

1

42 3

5 6

At first glance, it seems that we should choose the longest path from p.
However, this does not always work, because the longest path from p may go
through x. Here is an example of this situation:

1

42 3

5 6

Still, we can solve the second part in O(n) time by storing two maximum
lengths for each node x:

• maxLength1(x): the maximum length of a path from x

• maxLength2(x) the maximum length of a path from x in another direction
than the first path

For example, in the above graph, maxLength1(1)= 2 using the path 1→ 2→ 5, and
maxLength2(1)= 1 using the path 1→ 3.

Finally, if the path that corresponds to maxLength1(p) goes through x, we con-
clude that the maximum length is maxLength2(p)+1, and otherwise the maximum
length is maxLength1(p)+1.

138

Binary trees
A binary tree is a rooted tree where each node has a left and right subtree. It is
possible that a subtree of a node is empty. Thus, every node in a binary tree has
zero, one or two children.

For example, the following tree is a binary tree:

1

2 3

4 5

6

7

The nodes of a binary tree have three natural orderings that correspond to
different ways to recursively traverse the tree:

• pre-order: first process the root, then traverse the left subtree, then
traverse the right subtree

• in-order: first traverse the left subtree, then process the root, then traverse
the right subtree

• post-order: first traverse the left subtree, then traverse the right subtree,
then process the root

For the above tree, the nodes in pre-order are [1,2,4,5,6,3,7], in in-order
[4,2,6,5,1,3,7] and in post-order [4,6,5,2,7,3,1].

If we know the pre-order and in-order of a tree, we can reconstruct the exact
structure of the tree. For example, the above tree is the only possible tree with
pre-order [1,2,4,5,6,3,7] and in-order [4,2,6,5,1,3,7]. In a similar way, the
post-order and in-order also determine the structure of a tree.

However, the situation is different if we only know the pre-order and post-
order of a tree. In this case, there may be more than one tree that match the
orderings. For example, in both of the trees

1

2

1

2

the pre-order is [1,2] and the post-order is [2,1], but the structures of the trees
are different.

139

140

Chapter 15

Spanning trees

A spanning tree of a graph consists of all nodes of the graph and some of the
edges of the graph so that there is a path between any two nodes. Like trees
in general, spanning trees are connected and acyclic. Usually there are several
ways to construct a spanning tree.

For example, consider the following graph:

1

2 3

4

5 6

3
5

9

5
2

7

6 3

One spanning tree for the graph is as follows:

1

2 3

4

5 6

3
5

9

2

3

The weight of a spanning tree is the sum of its edge weights. For example,
the weight of the above spanning tree is 3+5+9+3+2= 22.

A minimum spanning tree is a spanning tree whose weight is as small as
possible. The weight of a minimum spanning tree for the example graph is 20,
and such a tree can be constructed as follows:

1

2 3

4

5 6

3

5
2

7

3

141

In a similar way, a maximum spanning tree is a spanning tree whose
weight is as large as possible. The weight of a maximum spanning tree for the
example graph is 32:

1

2 3

4

5 6

5
9

5 7

6

Note that a graph may have several minimum and maximum spanning trees,
so the trees are not unique.

It turns out that several greedy methods can be used to construct minimum
and maximum spanning trees. In this chapter, we discuss two algorithms that
process the edges of the graph ordered by their weights. We focus on finding
minimum spanning trees, but the same algorithms can find maximum spanning
trees by processing the edges in reverse order.

Kruskal’s algorithm

In Kruskal’s algorithm1, the initial spanning tree only contains the nodes of
the graph and does not contain any edges. Then the algorithm goes through the
edges ordered by their weights, and always adds an edge to the tree if it does not
create a cycle.

The algorithm maintains the components of the tree. Initially, each node of
the graph belongs to a separate component. Always when an edge is added to the
tree, two components are joined. Finally, all nodes belong to the same component,
and a minimum spanning tree has been found.

Example

Let us consider how Kruskal’s algorithm processes the following graph:

1

2 3

4

5 6

3
5

9

5
2

7

6 3

The first step of the algorithm is to sort the edges in increasing order of their
weights. The result is the following list:

1The algorithm was published in 1956 by J. B. Kruskal [48].

142

edge weight
5–6 2
1–2 3
3–6 3
1–5 5
2–3 5
2–5 6
4–6 7
3–4 9

After this, the algorithm goes through the list and adds each edge to the tree
if it joins two separate components.

Initially, each node is in its own component:

1

2 3

4

5 6

The first edge to be added to the tree is the edge 5–6 that creates a component
{5,6} by joining the components {5} and {6}:

1

2 3

4

5 6
2

After this, the edges 1–2, 3–6 and 1–5 are added in a similar way:

1

2 3

4

5 6

3

5
2

3

After those steps, most components have been joined and there are two
components in the tree: {1,2,3,5,6} and {4}.

The next edge in the list is the edge 2–3, but it will not be included in the tree,
because nodes 2 and 3 are already in the same component. For the same reason,
the edge 2–5 will not be included in the tree.

143

Finally, the edge 4–6 will be included in the tree:

1

2 3

4

5 6

3

5
2

7

3

After this, the algorithm will not add any new edges, because the graph is
connected and there is a path between any two nodes. The resulting graph is a
minimum spanning tree with weight 2+3+3+5+7= 20.

Why does this work?

It is a good question why Kruskal’s algorithm works. Why does the greedy
strategy guarantee that we will find a minimum spanning tree?

Let us see what happens if the minimum weight edge of the graph is not
included in the spanning tree. For example, suppose that a spanning tree for the
previous graph would not contain the minimum weight edge 5–6. We do not know
the exact structure of such a spanning tree, but in any case it has to contain some
edges. Assume that the tree would be as follows:

1

2 3

4

5 6

However, it is not possible that the above tree would be a minimum spanning
tree for the graph. The reason for this is that we can remove an edge from the
tree and replace it with the minimum weight edge 5–6. This produces a spanning
tree whose weight is smaller:

1

2 3

4

5 6
2

For this reason, it is always optimal to include the minimum weight edge in
the tree to produce a minimum spanning tree. Using a similar argument, we
can show that it is also optimal to add the next edge in weight order to the tree,
and so on. Hence, Kruskal’s algorithm works correctly and always produces a
minimum spanning tree.

144

Implementation

When implementing Kruskal’s algorithm, it is convenient to use the edge list
representation of the graph. The first phase of the algorithm sorts the edges in
the list in O(m logm) time. After this, the second phase of the algorithm builds
the minimum spanning tree as follows:

for (...) {

if (!same(a,b)) unite(a,b);

}

The loop goes through the edges in the list and always processes an edge
a–b where a and b are two nodes. Two functions are needed: the function same

determines if a and b are in the same component, and the function unite joins
the components that contain a and b.

The problem is how to efficiently implement the functions same and unite.
One possibility is to implement the function same as a graph traversal and check
if we can get from node a to node b. However, the time complexity of such a
function would be O(n+m) and the resulting algorithm would be slow, because
the function same will be called for each edge in the graph.

We will solve the problem using a union-find structure that implements both
functions in O(logn) time. Thus, the time complexity of Kruskal’s algorithm will
be O(m logn) after sorting the edge list.

Union-find structure

A union-find structure maintains a collection of sets. The sets are disjoint,
so no element belongs to more than one set. Two O(logn) time operations are
supported: the unite operation joins two sets, and the find operation finds the
representative of the set that contains a given element2.

Structure

In a union-find structure, one element in each set is the representative of the set,
and there is a chain from any other element of the set to the representative. For
example, assume that the sets are {1,4,7}, {5} and {2,3,6,8}:

1

2

3

4 5

6

7

8

2The structure presented here was introduced in 1971 by J. D. Hopcroft and J. D. Ullman [38].
Later, in 1975, R. E. Tarjan studied a more sophisticated variant of the structure [64] that is
discussed in many algorithm textbooks nowadays.

145

In this case the representatives of the sets are 4, 5 and 2. We can find the
representative of any element by following the chain that begins at the element.
For example, the element 2 is the representative for the element 6, because we
follow the chain 6→ 3→ 2. Two elements belong to the same set exactly when
their representatives are the same.

Two sets can be joined by connecting the representative of one set to the
representative of the other set. For example, the sets {1,4,7} and {2,3,6,8} can be
joined as follows:

1

2

3

4

6

7

8

The resulting set contains the elements {1,2,3,4,6,7,8}. From this on, the
element 2 is the representative for the entire set and the old representative 4
points to the element 2.

The efficiency of the union-find structure depends on how the sets are joined.
It turns out that we can follow a simple strategy: always connect the representa-
tive of the smaller set to the representative of the larger set (or if the sets are
of equal size, we can make an arbitrary choice). Using this strategy, the length
of any chain will be O(logn), so we can find the representative of any element
efficiently by following the corresponding chain.

Implementation

The union-find structure can be implemented using arrays. In the following
implementation, the array link contains for each element the next element in the
chain or the element itself if it is a representative, and the array size indicates
for each representative the size of the corresponding set.

Initially, each element belongs to a separate set:

for (int i = 1; i <= n; i++) link[i] = i;

for (int i = 1; i <= n; i++) size[i] = 1;

The function find returns the representative for an element x. The represen-
tative can be found by following the chain that begins at x.

int find(int x) {

while (x != link[x]) x = link[x];

return x;

}

The function same checks whether elements a and b belong to the same set.
This can easily be done by using the function find:

146

bool same(int a, int b) {

return find(a) == find(b);

}

The function unite joins the sets that contain elements a and b (the elements
have to be in different sets). The function first finds the representatives of the
sets and then connects the smaller set to the larger set.

void unite(int a, int b) {

a = find(a);

b = find(b);

if (size[a] < size[b]) swap(a,b);

size[a] += size[b];

link[b] = a;

}

The time complexity of the function find is O(logn) assuming that the length
of each chain is O(logn). In this case, the functions same and unite also work in
O(logn) time. The function unite makes sure that the length of each chain is
O(logn) by connecting the smaller set to the larger set.

Prim’s algorithm

Prim’s algorithm3 is an alternative method for finding a minimum spanning
tree. The algorithm first adds an arbitrary node to the tree. After this, the
algorithm always chooses a minimum-weight edge that adds a new node to the
tree. Finally, all nodes have been added to the tree and a minimum spanning
tree has been found.

Prim’s algorithm resembles Dijkstra’s algorithm. The difference is that Dijk-
stra’s algorithm always selects an edge whose distance from the starting node is
minimum, but Prim’s algorithm simply selects the minimum weight edge that
adds a new node to the tree.

Example

Let us consider how Prim’s algorithm works in the following graph:

1

2 3

4

5 6

3
5

9

5
2

7

6 3

3The algorithm is named after R. C. Prim who published it in 1957 [54]. However, the same
algorithm was discovered already in 1930 by V. Jarník.

147

Initially, there are no edges between the nodes:

1

2 3

4

5 6

An arbitrary node can be the starting node, so let us choose node 1. First, we add
node 2 that is connected by an edge of weight 3:

1

2 3

4

5 6

3

After this, there are two edges with weight 5, so we can add either node 3 or
node 5 to the tree. Let us add node 3 first:

1

2 3

4

5 6

3
5

The process continues until all nodes have been included in the tree:

1

2 3

4

5 6

3
5

2
7

3

Implementation

Like Dijkstra’s algorithm, Prim’s algorithm can be efficiently implemented using a
priority queue. The priority queue should contain all nodes that can be connected
to the current component using a single edge, in increasing order of the weights
of the corresponding edges.

The time complexity of Prim’s algorithm is O(n+m logm) that equals the time
complexity of Dijkstra’s algorithm. In practice, Prim’s and Kruskal’s algorithms
are both efficient, and the choice of the algorithm is a matter of taste. Still, most
competitive programmers use Kruskal’s algorithm.

148

Chapter 16

Directed graphs

In this chapter, we focus on two classes of directed graphs:

• Acyclic graphs: There are no cycles in the graph, so there is no path from
any node to itself1.

• Successor graphs: The outdegree of each node is 1, so each node has a
unique successor.

It turns out that in both cases, we can design efficient algorithms that are based
on the special properties of the graphs.

Topological sorting

A topological sort is an ordering of the nodes of a directed graph such that if
there is a path from node a to node b, then node a appears before node b in the
ordering. For example, for the graph

1 2 3

4 5 6

one topological sort is [4,1,5,2,3,6]:

1 2 34 5 6

An acyclic graph always has a topological sort. However, if the graph contains
a cycle, it is not possible to form a topological sort, because no node of the cycle
can appear before the other nodes of the cycle in the ordering. It turns out that
depth-first search can be used to both check if a directed graph contains a cycle
and, if it does not contain a cycle, to construct a topological sort.

1Directed acyclic graphs are sometimes called DAGs.

149

Algorithm

The idea is to go through the nodes of the graph and always begin a depth-first
search at the current node if it has not been processed yet. During the searches,
the nodes have three possible states:

• state 0: the node has not been processed (white)

• state 1: the node is under processing (light gray)

• state 2: the node has been processed (dark gray)

Initially, the state of each node is 0. When a search reaches a node for the
first time, its state becomes 1. Finally, after all successors of the node have been
processed, its state becomes 2.

If the graph contains a cycle, we will find this out during the search, because
sooner or later we will arrive at a node whose state is 1. In this case, it is not
possible to construct a topological sort.

If the graph does not contain a cycle, we can construct a topological sort by
adding each node to a list when the state of the node becomes 2. This list in
reverse order is a topological sort.

Example 1

In the example graph, the search first proceeds from node 1 to node 6:

1 2 3

4 5 6

Now node 6 has been processed, so it is added to the list. After this, also nodes
3, 2 and 1 are added to the list:

1 2 3

4 5 6

At this point, the list is [6,3,2,1]. The next search begins at node 4:

1 2 3

4 5 6

150

Thus, the final list is [6,3,2,1,5,4]. We have processed all nodes, so a topologi-
cal sort has been found. The topological sort is the reverse list [4,5,1,2,3,6]:

1 2 34 5 6

Note that a topological sort is not unique, and there can be several topological
sorts for a graph.

Example 2

Let us now consider a graph for which we cannot construct a topological sort,
because the graph contains a cycle:

1 2 3

4 5 6

The search proceeds as follows:

1 2 3

4 5 6

The search reaches node 2 whose state is 1, which means that the graph contains
a cycle. In this example, there is a cycle 2→ 3→ 5→ 2.

Dynamic programming

If a directed graph is acyclic, dynamic programming can be applied to it. For
example, we can efficiently solve the following problems concerning paths from a
starting node to an ending node:

• how many different paths are there?

• what is the shortest/longest path?

• what is the minimum/maximum number of edges in a path?

• which nodes certainly appear in any path?

151

Counting the number of paths

As an example, let us calculate the number of paths from node 1 to node 6 in the
following graph:

1 2 3

4 5 6

There are a total of three such paths:

• 1→ 2→ 3→ 6

• 1→ 4→ 5→ 2→ 3→ 6

• 1→ 4→ 5→ 3→ 6

Let paths(x) denote the number of paths from node 1 to node x. As a base
case, paths(1) = 1. Then, to calculate other values of paths(x), we may use the
recursion

paths(x)= paths(a1)+paths(a2)+·· ·+paths(ak)

where a1,a2, . . . ,ak are the nodes from which there is an edge to x. Since the graph
is acyclic, the values of paths(x) can be calculated in the order of a topological
sort. A topological sort for the above graph is as follows:

1 2 34 5 6

Hence, the numbers of paths are as follows:

1 2 3

4 5 6

1 1 3

1 2 3

For example, to calculate the value of paths(3), we can use the formula
paths(2)+paths(5), because there are edges from nodes 2 and 5 to node 3. Since
paths(2)= 2 and paths(5)= 1, we conclude that paths(3)= 3.

152

Extending Dijkstra’s algorithm

A by-product of Dijkstra’s algorithm is a directed, acyclic graph that indicates
for each node of the original graph the possible ways to reach the node using a
shortest path from the starting node. Dynamic programming can be applied to
that graph. For example, in the graph

1 2

3 4

5

3

5 4

8

2
1

2

the shortest paths from node 1 may use the following edges:

1 2

3 4

5

3

5 4

2
1

2

Now we can, for example, calculate the number of shortest paths from node 1
to node 5 using dynamic programming:

1 2

3 4

5

3

5 4

2
1

2

1 1

2 3

3

Representing problems as graphs

Actually, any dynamic programming problem can be represented as a directed,
acyclic graph. In such a graph, each node corresponds to a dynamic programming
state and the edges indicate how the states depend on each other.

As an example, consider the problem of forming a sum of money n using
coins {c1, c2, . . . , ck}. In this problem, we can construct a graph where each node
corresponds to a sum of money, and the edges show how the coins can be chosen.
For example, for coins {1,3,4} and n = 6, the graph is as follows:

153

0 1 2 3 4 5 6

Using this representation, the shortest path from node 0 to node n corresponds
to a solution with the minimum number of coins, and the total number of paths
from node 0 to node n equals the total number of solutions.

Successor paths
For the rest of the chapter, we will focus on successor graphs. In those graphs,
the outdegree of each node is 1, i.e., exactly one edge starts at each node. A
successor graph consists of one or more components, each of which contains one
cycle and some paths that lead to it.

Successor graphs are sometimes called functional graphs. The reason for
this is that any successor graph corresponds to a function that defines the edges
of the graph. The parameter for the function is a node of the graph, and the
function gives the successor of that node.

For example, the function

x 1 2 3 4 5 6 7 8 9
succ(x) 3 5 7 6 2 2 1 6 3

defines the following graph:

1 23

4

5

67

8

9

Since each node of a successor graph has a unique successor, we can also
define a function succ(x,k) that gives the node that we will reach if we begin at
node x and walk k steps forward. For example, in the above graph succ(4,6)= 2,
because we will reach node 2 by walking 6 steps from node 4:

4 6 2 5 2 5 2

A straightforward way to calculate a value of succ(x,k) is to start at node x
and walk k steps forward, which takes O(k) time. However, using preprocessing,
any value of succ(x,k) can be calculated in only O(logk) time.

The idea is to precalculate all values of succ(x,k) where k is a power of two
and at most u, where u is the maximum number of steps we will ever walk. This
can be efficiently done, because we can use the following recursion:

154

succ(x,k)=
{
succ(x) k = 1
succ(succ(x,k/2),k/2) k > 1

Precalculating the values takes O(n logu) time, because O(logu) values are
calculated for each node. In the above graph, the first values are as follows:

x 1 2 3 4 5 6 7 8 9
succ(x,1) 3 5 7 6 2 2 1 6 3
succ(x,2) 7 2 1 2 5 5 3 2 7
succ(x,4) 3 2 7 2 5 5 1 2 3
succ(x,8) 7 2 1 2 5 5 3 2 7

· · ·
After this, any value of succ(x,k) can be calculated by presenting the number

of steps k as a sum of powers of two. For example, if we want to calculate the
value of succ(x,11), we first form the representation 11= 8+2+1. Using that,

succ(x,11)= succ(succ(succ(x,8),2),1).

For example, in the previous graph

succ(4,11)= succ(succ(succ(4,8),2),1)= 5.

Such a representation always consists of O(logk) parts, so calculating a value
of succ(x,k) takes O(logk) time.

Cycle detection
Consider a successor graph that only contains a path that ends in a cycle. We
may ask the following questions: if we begin our walk at the starting node, what
is the first node in the cycle and how many nodes does the cycle contain?

For example, in the graph

54

6

321

we begin our walk at node 1, the first node that belongs to the cycle is node 4,
and the cycle consists of three nodes (4, 5 and 6).

A simple way to detect the cycle is to walk in the graph and keep track of all
nodes that have been visited. Once a node is visited for the second time, we can
conclude that the node is the first node in the cycle. This method works in O(n)
time and also uses O(n) memory.

However, there are better algorithms for cycle detection. The time complexity
of such algorithms is still O(n), but they only use O(1) memory. This is an
important improvement if n is large. Next we will discuss Floyd’s algorithm that
achieves these properties.

155

Floyd’s algorithm

Floyd’s algorithm2 walks forward in the graph using two pointers a and b.
Both pointers begin at a node x that is the starting node of the graph. Then,
on each turn, the pointer a walks one step forward and the pointer b walks two
steps forward. The process continues until the pointers meet each other:

a = succ(x);

b = succ(succ(x));

while (a != b) {

a = succ(a);

b = succ(succ(b));

}

At this point, the pointer a has walked k steps and the pointer b has walked
2k steps, so the length of the cycle divides k. Thus, the first node that belongs
to the cycle can be found by moving the pointer a to node x and advancing the
pointers step by step until they meet again.

a = x;

while (a != b) {

a = succ(a);

b = succ(b);

}

first = a;

After this, the length of the cycle can be calculated as follows:

b = succ(a);

length = 1;

while (a != b) {

b = succ(b);

length++;

}

2The idea of the algorithm is mentioned in [46] and attributed to R. W. Floyd; however, it is
not known if Floyd actually discovered the algorithm.

156

Chapter 17

Strong connectivity

In a directed graph, the edges can be traversed in one direction only, so even if
the graph is connected, this does not guarantee that there would be a path from
a node to another node. For this reason, it is meaningful to define a new concept
that requires more than connectivity.

A graph is strongly connected if there is a path from any node to all other
nodes in the graph. For example, in the following picture, the left graph is
strongly connected while the right graph is not.

1 2

3 4

1 2

3 4

The right graph is not strongly connected because, for example, there is no
path from node 2 to node 1.

The strongly connected components of a graph divide the graph into
strongly connected parts that are as large as possible. The strongly connected
components form an acyclic component graph that represents the deep struc-
ture of the original graph.

For example, for the graph

7

321

654

the strongly connected components are as follows:

7

321

654

157

The corresponding component graph is as follows:

B

A

DC

The components are A = {1,2}, B = {3,6,7}, C = {4} and D = {5}.
A component graph is an acyclic, directed graph, so it is easier to process

than the original graph. Since the graph does not contain cycles, we can always
construct a topological sort and use dynamic programming techniques like those
presented in Chapter 16.

Kosaraju’s algorithm

Kosaraju’s algorithm1 is an efficient method for finding the strongly connected
components of a directed graph. The algorithm performs two depth-first searches:
the first search constructs a list of nodes according to the structure of the graph,
and the second search forms the strongly connected components.

Search 1

The first phase of Kosaraju’s algorithm constructs a list of nodes in the order
in which a depth-first search processes them. The algorithm goes through the
nodes, and begins a depth-first search at each unprocessed node. Each node will
be added to the list after it has been processed.

In the example graph, the nodes are processed in the following order:

7

321

654

1/8 2/7 9/14

4/5 3/6 11/12

10/13

The notation x/y means that processing the node started at time x and finished
at time y. Thus, the corresponding list is as follows:

1According to [1], S. R. Kosaraju invented this algorithm in 1978 but did not publish it. In
1981, the same algorithm was rediscovered and published by M. Sharir [57].

158

node processing time
4 5
5 6
2 7
1 8
6 12
7 13
3 14

Search 2

The second phase of the algorithm forms the strongly connected components of
the graph. First, the algorithm reverses every edge in the graph. This guarantees
that during the second search, we will always find strongly connected components
that do not have extra nodes.

After reversing the edges, the example graph is as follows:

7

321

654

After this, the algorithm goes through the list of nodes created by the first
search, in reverse order. If a node does not belong to a component, the algorithm
creates a new component and starts a depth-first search that adds all new nodes
found during the search to the new component.

In the example graph, the first component begins at node 3:

7

321

654

Note that since all edges are reversed, the component does not ”leak” to other
parts in the graph.

159

The next nodes in the list are nodes 7 and 6, but they already belong to a
component, so the next new component begins at node 1:

7

321

654

Finally, the algorithm processes nodes 5 and 4 that create the remaining
strongly connected components:

7

321

654

The time complexity of the algorithm is O(n+ m), because the algorithm
performs two depth-first searches.

2SAT problem

Strong connectivity is also linked with the 2SAT problem2. In this problem, we
are given a logical formula

(a1 ∨b1)∧ (a2 ∨b2)∧·· ·∧ (am ∨bm),

where each ai and bi is either a logical variable (x1, x2, . . . , xn) or a negation of
a logical variable (¬x1,¬x2, . . . ,¬xn). The symbols ”∧” and ”∨” denote logical
operators ”and” and ”or”. Our task is to assign each variable a value so that the
formula is true, or state that this is not possible.

For example, the formula

L1 = (x2 ∨¬x1)∧ (¬x1 ∨¬x2)∧ (x1 ∨ x3)∧ (¬x2 ∨¬x3)∧ (x1 ∨ x4)

is true when the variables are assigned as follows:
x1 = false
x2 = false
x3 = true
x4 = true

2The algorithm presented here was introduced in [4]. There is also another well-known
linear-time algorithm [19] that is based on backtracking.

160

However, the formula

L2 = (x1 ∨ x2)∧ (x1 ∨¬x2)∧ (¬x1 ∨ x3)∧ (¬x1 ∨¬x3)

is always false, regardless of how we assign the values. The reason for this is
that we cannot choose a value for x1 without creating a contradiction. If x1 is
false, both x2 and ¬x2 should be true which is impossible, and if x1 is true, both
x3 and ¬x3 should be true which is also impossible.

The 2SAT problem can be represented as a graph whose nodes correspond to
variables xi and negations ¬xi, and edges determine the connections between
the variables. Each pair (ai ∨ bi) generates two edges: ¬ai → bi and ¬bi → ai.
This means that if ai does not hold, bi must hold, and vice versa.

The graph for the formula L1 is:

¬x3 x2

¬x4 x1

¬x1 x4

¬x2 x3

And the graph for the formula L2 is:

x3 x2 ¬x2 ¬x3

¬x1

x1

The structure of the graph tells us whether it is possible to assign the values
of the variables so that the formula is true. It turns out that this can be done
exactly when there are no nodes xi and ¬xi such that both nodes belong to the
same strongly connected component. If there are such nodes, the graph contains
a path from xi to ¬xi and also a path from ¬xi to xi, so both xi and ¬xi should be
true which is not possible.

In the graph of the formula L1 there are no nodes xi and ¬xi such that both
nodes belong to the same strongly connected component, so a solution exists. In
the graph of the formula L2 all nodes belong to the same strongly connected
component, so a solution does not exist.

If a solution exists, the values for the variables can be found by going through
the nodes of the component graph in a reverse topological sort order. At each step,
we process a component that does not contain edges that lead to an unprocessed
component. If the variables in the component have not been assigned values,
their values will be determined according to the values in the component, and if

161

they already have values, they remain unchanged. The process continues until
each variable has been assigned a value.

The component graph for the formula L1 is as follows:

A B C D

The components are A = {¬x4}, B = {x1, x2,¬x3}, C = {¬x1,¬x2, x3} and D = {x4}.
When constructing the solution, we first process the component D where x4
becomes true. After this, we process the component C where x1 and x2 become
false and x3 becomes true. All variables have been assigned values, so the
remaining components A and B do not change the variables.

Note that this method works, because the graph has a special structure: if
there are paths from node xi to node x j and from node x j to node ¬x j, then node
xi never becomes true. The reason for this is that there is also a path from node
¬x j to node ¬xi, and both xi and x j become false.

A more difficult problem is the 3SAT problem, where each part of the formula
is of the form (ai ∨bi ∨ ci). This problem is NP-hard, so no efficient algorithm for
solving the problem is known.

162

Chapter 18

Tree queries

This chapter discusses techniques for processing queries on subtrees and paths
of a rooted tree. For example, such queries are:

• what is the kth ancestor of a node?

• what is the sum of values in the subtree of a node?

• what is the sum of values on a path between two nodes?

• what is the lowest common ancestor of two nodes?

Finding ancestors

The kth ancestor of a node x in a rooted tree is the node that we will reach
if we move k levels up from x. Let ancestor(x,k) denote the kth ancestor of a
node x (or 0 if there is no such an ancestor). For example, in the following tree,
ancestor(2,1)= 1 and ancestor(8,2)= 4.

1

24 5

63 7

8

An easy way to calculate any value of ancestor(x,k) is to perform a sequence
of k moves in the tree. However, the time complexity of this method is O(k),
which may be slow, because a tree of n nodes may have a chain of n nodes.

163

Fortunately, using a technique similar to that used in Chapter 16.3, any value
of ancestor(x,k) can be efficiently calculated in O(logk) time after preprocessing.
The idea is to precalculate all values ancestor(x,k) where k ≤ n is a power of two.
For example, the values for the above tree are as follows:

x 1 2 3 4 5 6 7 8
ancestor(x,1) 0 1 4 1 1 2 4 7
ancestor(x,2) 0 0 1 0 0 1 1 4
ancestor(x,4) 0 0 0 0 0 0 0 0

· · ·

The preprocessing takes O(n logn) time, because O(logn) values are calculated
for each node. After this, any value of ancestor(x,k) can be calculated in O(logk)
time by representing k as a sum where each term is a power of two.

Subtrees and paths

A tree traversal array contains the nodes of a rooted tree in the order in which
a depth-first search from the root node visits them. For example, in the tree

1

2 3 4 5

6 7 8 9

a depth-first search proceeds as follows:

1

2 3 4 5

6 7 8 9

Hence, the corresponding tree traversal array is as follows:

1 2 6 3 4 7 8 9 5

164

Subtree queries

Each subtree of a tree corresponds to a subarray of the tree traversal array such
that the first element of the subarray is the root node. For example, the following
subarray contains the nodes of the subtree of node 4:

1 2 6 3 4 7 8 9 5

Using this fact, we can efficiently process queries that are related to subtrees of
a tree. As an example, consider a problem where each node is assigned a value,
and our task is to support the following queries:

• update the value of a node

• calculate the sum of values in the subtree of a node

Consider the following tree where the blue numbers are the values of the
nodes. For example, the sum of the subtree of node 4 is 3+4+3+1= 11.

1

2 3 4 5

6 7 8 9

2

3 5 3 1

4 4 3 1

The idea is to construct a tree traversal array that contains three values for
each node: the identifier of the node, the size of the subtree, and the value of the
node. For example, the array for the above tree is as follows:

node id

subtree size

node value

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

2 3 4 5 3 4 3 1 1

Using this array, we can calculate the sum of values in any subtree by first
finding out the size of the subtree and then the values of the corresponding nodes.
For example, the values in the subtree of node 4 can be found as follows:

node id

subtree size

node value

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

2 3 4 5 3 4 3 1 1

To answer the queries efficiently, it suffices to store the values of the nodes
in a binary indexed or segment tree. After this, we can both update a value and
calculate the sum of values in O(logn) time.

165

Path queries

Using a tree traversal array, we can also efficiently calculate sums of values on
paths from the root node to any node of the tree. Consider a problem where our
task is to support the following queries:

• change the value of a node

• calculate the sum of values on a path from the root to a node

For example, in the following tree, the sum of values from the root node to
node 7 is 4+5+5= 14:

1

2 3 4 5

6 7 8 9

4

5 3 5 2

3 5 3 1

We can solve this problem like before, but now each value in the last row of
the array is the sum of values on a path from the root to the node. For example,
the following array corresponds to the above tree:

node id

subtree size

path sum

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

4 9 12 7 9 14 12 10 6

When the value of a node increases by x, the sums of all nodes in its subtree
increase by x. For example, if the value of node 4 increases by 1, the array
changes as follows:

node id

subtree size

path sum

1 2 6 3 4 7 8 9 5

9 2 1 1 4 1 1 1 1

4 9 12 7 10 15 13 11 6

Thus, to support both the operations, we should be able to increase all values
in a range and retrieve a single value. This can be done in O(logn) time using a
binary indexed or segment tree (see Chapter 9.4).

166

Lowest common ancestor
The lowest common ancestor of two nodes of a rooted tree is the lowest node
whose subtree contains both the nodes. A typical problem is to efficiently process
queries that ask to find the lowest common ancestor of two nodes.

For example, in the following tree, the lowest common ancestor of nodes 5 and
8 is node 2:

1

42 3

75 6

8

Next we will discuss two efficient techniques for finding the lowest common
ancestor of two nodes.

Method 1

One way to solve the problem is to use the fact that we can efficiently find the
kth ancestor of any node in the tree. Using this, we can divide the problem of
finding the lowest common ancestor into two parts.

We use two pointers that initially point to the two nodes whose lowest common
ancestor we should find. First, we move one of the pointers upwards so that both
pointers point to nodes at the same level.

In the example scenario, we move the second pointer one level up so that it
points to node 6 which is at the same level with node 5:

1

42 3

75 6

8

167

After this, we determine the minimum number of steps needed to move both
pointers upwards so that they will point to the same node. The node to which the
pointers point after this is the lowest common ancestor.

In the example scenario, it suffices to move both pointers one step upwards to
node 2, which is the lowest common ancestor:

1

42 3

75 6

8

Since both parts of the algorithm can be performed in O(logn) time using
precomputed information, we can find the lowest common ancestor of any two
nodes in O(logn) time.

Method 2

Another way to solve the problem is based on a tree traversal array1. Once again,
the idea is to traverse the nodes using a depth-first search:

1

42 3

75 6

8

However, we use a different tree traversal array than before: we add each
node to the array always when the depth-first search walks through the node,
and not only at the first visit. Hence, a node that has k children appears k+1
times in the array and there are a total of 2n−1 nodes in the array.

1This lowest common ancestor algorithm was presented in [7]. This technique is sometimes
called the Euler tour technique [66].

168

We store two values in the array: the identifier of the node and the depth of
the node in the tree. The following array corresponds to the above tree:

node id

depth

1 2 5 2 6 8 6 2 1 3 1 4 7 4 1

1 2 3 2 3 4 3 2 1 2 1 2 3 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Now we can find the lowest common ancestor of nodes a and b by finding the
node with the minimum depth between nodes a and b in the array. For example,
the lowest common ancestor of nodes 5 and 8 can be found as follows:

node id

depth

↑

1 2 5 2 6 8 6 2 1 3 1 4 7 4 1

1 2 3 2 3 4 3 2 1 2 1 2 3 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node 5 is at position 2, node 8 is at position 5, and the node with minimum
depth between positions 2 . . .5 is node 2 at position 3 whose depth is 2. Thus, the
lowest common ancestor of nodes 5 and 8 is node 2.

Thus, to find the lowest common ancestor of two nodes it suffices to process a
range minimum query. Since the array is static, we can process such queries in
O(1) time after an O(n logn) time preprocessing.

Distances of nodes

The distance between nodes a and b equals the length of the path from a to b. It
turns out that the problem of calculating the distance between nodes reduces to
finding their lowest common ancestor.

First, we root the tree arbitrarily. After this, the distance of nodes a and b
can be calculated using the formula

depth(a)+depth(b)−2 ·depth(c),

where c is the lowest common ancestor of a and b and depth(s) denotes the depth
of node s. For example, consider the distance of nodes 5 and 8:

1

42 3

75 6

8

169

The lowest common ancestor of nodes 5 and 8 is node 2. The depths of the
nodes are depth(5) = 3, depth(8) = 4 and depth(2) = 2, so the distance between
nodes 5 and 8 is 3+4−2 ·2= 3.

Offline algorithms

So far, we have discussed online algorithms for tree queries. Those algorithms
are able to process queries one after another so that each query is answered
before receiving the next query.

However, in many problems, the online property is not necessary. In this
section, we focus on offline algorithms. Those algorithms are given a set of
queries which can be answered in any order. It is often easier to design an offline
algorithm compared to an online algorithm.

Merging data structures

One method to construct an offline algorithm is to perform a depth-first tree
traversal and maintain data structures in nodes. At each node s, we create a
data structure d[s] that is based on the data structures of the children of s. Then,
using this data structure, all queries related to s are processed.

As an example, consider the following problem: We are given a tree where
each node has some value. Our task is to process queries of the form ”calculate
the number of nodes with value x in the subtree of node s”. For example, in the
following tree, the subtree of node 4 contains two nodes whose value is 3.

1

2 3 4 5

6 7 8 9

2

3 5 3 1

4 4 3 1

In this problem, we can use map structures to answer the queries. For
example, the maps for node 4 and its children are as follows:

4
1

3
1

1
1

1 3 4
1 2 1

170

If we create such a data structure for each node, we can easily process all
given queries, because we can handle all queries related to a node immediately
after creating its data structure. For example, the above map structure for node
4 tells us that its subtree contains two nodes whose value is 3.

However, it would be too slow to create all data structures from scratch.
Instead, at each node s, we create an initial data structure d[s] that only contains
the value of s. After this, we go through the children of s and merge d[s] and all
data structures d[u] where u is a child of s.

For example, in the above tree, the map for node 4 is created by merging the
following maps:

4
1

3
1

1
1

3
1

Here the first map is the initial data structure for node 4, and the other three
maps correspond to nodes 7, 8 and 9.

The merging at node s can be done as follows: We go through the children
of s and at each child u merge d[s] and d[u]. We always copy the contents from
d[u] to d[s]. However, before this, we swap the contents of d[s] and d[u] if d[s] is
smaller than d[u]. By doing this, each value is copied only O(logn) times during
the tree traversal, which ensures that the algorithm is efficient.

To swap the contents of two data structures a and b efficiently, we can just
use the following code:

swap(a,b);

It is guaranteed that the above code works in constant time when a and b are
C++ standard library data structures.

Lowest common ancestors

There is also an offline algorithm for processing a set of lowest common ancestor
queries2. The algorithm is based on the union-find data structure (see Chapter
15.2), and the benefit of the algorithm is that it is easier to implement than the
algorithms discussed earlier in this chapter.

The algorithm is given as input a set of pairs of nodes, and it determines for
each such pair the lowest common ancestor of the nodes. The algorithm performs
a depth-first tree traversal and maintains disjoint sets of nodes. Initially, each
node belongs to a separate set. For each set, we also store the highest node in the
tree that belongs to the set.

When the algorithm visits a node x, it goes through all nodes y such that the
lowest common ancestor of x and y has to be found. If y has already been visited,
the algorithm reports that the lowest common ancestor of x and y is the highest
node in the set of y. Then, after processing node x, the algorithm joins the sets of
x and its parent.

2This algorithm was published by R. E. Tarjan in 1979 [65].

171

For example, suppose that we want to find the lowest common ancestors of
node pairs (5,8) and (2,7) in the following tree:

1

42 3

75 6

8

In the following trees, gray nodes denote visited nodes and dashed groups of
nodes belong to the same set. When the algorithm visits node 8, it notices that
node 5 has been visited and the highest node in its set is 2. Thus, the lowest
common ancestor of nodes 5 and 8 is 2:

1

42 3

75 6

8

Later, when visiting node 7, the algorithm determines that the lowest common
ancestor of nodes 2 and 7 is 1:

1

42 3

75 6

8

172

Chapter 19

Paths and circuits

This chapter focuses on two types of paths in graphs:

• An Eulerian path is a path that goes through each edge exactly once.

• A Hamiltonian path is a path that visits each node exactly once.

While Eulerian and Hamiltonian paths look like similar concepts at first
glance, the computational problems related to them are very different. It turns
out that there is a simple rule that determines whether a graph contains an
Eulerian path, and there is also an efficient algorithm to find such a path if
it exists. On the contrary, checking the existence of a Hamiltonian path is a
NP-hard problem, and no efficient algorithm is known for solving the problem.

Eulerian paths

An Eulerian path1 is a path that goes exactly once through each edge of the
graph. For example, the graph

1 2

3

4 5

has an Eulerian path from node 2 to node 5:

1 2

3

4 5

1.

2.

3.

4.

5.

6.

1L. Euler studied such paths in 1736 when he solved the famous Königsberg bridge problem.
This was the birth of graph theory.

173

An Eulerian circuit is an Eulerian path that starts and ends at the same node.
For example, the graph

1 2

3

4 5

has an Eulerian circuit that starts and ends at node 1:

1 2

3

4 5

1.
2.

3.

4.

5.
6.

Existence

The existence of Eulerian paths and circuits depends on the degrees of the nodes.
First, an undirected graph has an Eulerian path exactly when all the edges
belong to the same connected component and

• the degree of each node is even or

• the degree of exactly two nodes is odd, and the degree of all other nodes is
even.

In the first case, each Eulerian path is also an Eulerian circuit. In the second
case, the odd-degree nodes are the starting and ending nodes of an Eulerian path
which is not an Eulerian circuit.

For example, in the graph

1 2

3

4 5

nodes 1, 3 and 4 have a degree of 2, and nodes 2 and 5 have a degree of 3. Exactly
two nodes have an odd degree, so there is an Eulerian path between nodes 2 and
5, but the graph does not contain an Eulerian circuit.

In a directed graph, we focus on indegrees and outdegrees of the nodes. A
directed graph contains an Eulerian path exactly when all the edges belong to
the same connected component and

• in each node, the indegree equals the outdegree, or

174

• in one node, the indegree is one larger than the outdegree, in another node,
the outdegree is one larger than the indegree, and in all other nodes, the
indegree equals the outdegree.

In the first case, each Eulerian path is also an Eulerian circuit, and in the
second case, the graph contains an Eulerian path that begins at the node whose
outdegree is larger and ends at the node whose indegree is larger.

For example, in the graph

1 2

3

4 5

nodes 1, 3 and 4 have both indegree 1 and outdegree 1, node 2 has indegree 1
and outdegree 2, and node 5 has indegree 2 and outdegree 1. Hence, the graph
contains an Eulerian path from node 2 to node 5:

1 2

3

4 5

1.

2.
3.

4.

5.

6.

Hierholzer’s algorithm

Hierholzer’s algorithm2 is an efficient method for constructing an Eulerian
circuit. The algorithm consists of several rounds, each of which adds new edges
to the circuit. Of course, we assume that the graph contains an Eulerian circuit;
otherwise Hierholzer’s algorithm cannot find it.

First, the algorithm constructs a circuit that contains some (not necessarily
all) of the edges of the graph. After this, the algorithm extends the circuit step by
step by adding subcircuits to it. The process continues until all edges have been
added to the circuit.

The algorithm extends the circuit by always finding a node x that belongs
to the circuit but has an outgoing edge that is not included in the circuit. The
algorithm constructs a new path from node x that only contains edges that are
not yet in the circuit. Sooner or later, the path will return to node x, which creates
a subcircuit.

If the graph only contains an Eulerian path, we can still use Hierholzer’s
algorithm to find it by adding an extra edge to the graph and removing the edge
after the circuit has been constructed. For example, in an undirected graph, we
add the extra edge between the two odd-degree nodes.

Next we will see how Hierholzer’s algorithm constructs an Eulerian circuit
for an undirected graph.

2The algorithm was published in 1873 after Hierholzer’s death [35].

175

Example

Let us consider the following graph:

1

2 3 4

5 6 7

Suppose that the algorithm first creates a circuit that begins at node 1. A
possible circuit is 1→ 2→ 3→ 1:

1

2 3 4

5 6 7

1.

2.
3.

After this, the algorithm adds the subcircuit 2→ 5→ 6→ 2 to the circuit:

1

2 3 4

5 6 7

1.

2.

3.

4.

5.
6.

Finally, the algorithm adds the subcircuit 6→ 3→ 4→ 7→ 6 to the circuit:

1

2 3 4

5 6 7

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

176

Now all edges are included in the circuit, so we have successfully constructed an
Eulerian circuit.

Hamiltonian paths
A Hamiltonian path is a path that visits each node of the graph exactly once.
For example, the graph

1 2

3

4 5

contains a Hamiltonian path from node 1 to node 3:

1 2

3

4 5

1.

2.

3.

4.

If a Hamiltonian path begins and ends at the same node, it is called a Hamil-
tonian circuit. The graph above also has an Hamiltonian circuit that begins
and ends at node 1:

1 2

3

4 5

1.
2.

3.
4.

5.

Existence

No efficient method is known for testing if a graph contains a Hamiltonian path,
and the problem is NP-hard. Still, in some special cases, we can be certain that a
graph contains a Hamiltonian path.

A simple observation is that if the graph is complete, i.e., there is an edge
between all pairs of nodes, it also contains a Hamiltonian path. Also stronger
results have been achieved:

• Dirac’s theorem: If the degree of each node is at least n/2, the graph
contains a Hamiltonian path.

• Ore’s theorem: If the sum of degrees of each non-adjacent pair of nodes is
at least n, the graph contains a Hamiltonian path.

177

A common property in these theorems and other results is that they guarantee
the existence of a Hamiltonian path if the graph has a large number of edges. This
makes sense, because the more edges the graph contains, the more possibilities
there is to construct a Hamiltonian path.

Construction

Since there is no efficient way to check if a Hamiltonian path exists, it is clear
that there is also no method to efficiently construct the path, because otherwise
we could just try to construct the path and see whether it exists.

A simple way to search for a Hamiltonian path is to use a backtracking
algorithm that goes through all possible ways to construct the path. The time
complexity of such an algorithm is at least O(n!), because there are n! different
ways to choose the order of n nodes.

A more efficient solution is based on dynamic programming (see Chapter
10.5). The idea is to calculate values of a function possible(S, x), where S is a
subset of nodes and x is one of the nodes. The function indicates whether there is
a Hamiltonian path that visits the nodes of S and ends at node x. It is possible to
implement this solution in O(2nn2) time.

De Bruijn sequences
A De Bruijn sequence is a string that contains every string of length n exactly
once as a substring, for a fixed alphabet of k characters. The length of such a
string is kn +n−1 characters. For example, when n = 3 and k = 2, an example of
a De Bruijn sequence is

0001011100.

The substrings of this string are all combinations of three bits: 000, 001, 010,
011, 100, 101, 110 and 111.

It turns out that each De Bruijn sequence corresponds to an Eulerian path in
a graph. The idea is to construct a graph where each node contains a string of
n−1 characters and each edge adds one character to the string. The following
graph corresponds to the above scenario:

00 11

01

10

1 1

00

01
0 1

An Eulerian path in this graph corresponds to a string that contains all
strings of length n. The string contains the characters of the starting node and
all characters of the edges. The starting node has n−1 characters and there are
kn characters in the edges, so the length of the string is kn +n−1.

178

Knight’s tours
A knight’s tour is a sequence of moves of a knight on an n× n chessboard
following the rules of chess such that the knight visits each square exactly once.
A knight’s tour is called a closed tour if the knight finally returns to the starting
square and otherwise it is called an open tour.

For example, here is an open knight’s tour on a 5×5 board:

1 4 11 16 25

12 17 2 5 10

3 20 7 24 15

18 13 22 9 6

21 8 19 14 23

A knight’s tour corresponds to a Hamiltonian path in a graph whose nodes
represent the squares of the board, and two nodes are connected with an edge if
a knight can move between the squares according to the rules of chess.

A natural way to construct a knight’s tour is to use backtracking. The search
can be made more efficient by using heuristics that attempt to guide the knight
so that a complete tour will be found quickly.

Warnsdorf’s rule

Warnsdorf’s rule is a simple and effective heuristic for finding a knight’s tour3.
Using the rule, it is possible to efficiently construct a tour even on a large board.
The idea is to always move the knight so that it ends up in a square where the
number of possible moves is as small as possible.

For example, in the following situation, there are five possible squares to
which the knight can move (squares a . . . e):

1

2

a

b e

c d

In this situation, Warnsdorf ’s rule moves the knight to square a, because after
this choice, there is only a single possible move. The other choices would move
the knight to squares where there would be three moves available.

3This heuristic was proposed in Warnsdorf ’s book [69] in 1823. There are also polynomial
algorithms for finding knight’s tours [52], but they are more complicated.

179

180

Chapter 20

Flows and cuts

In this chapter, we focus on the following two problems:

• Finding a maximum flow: What is the maximum amount of flow we can
send from a node to another node?

• Finding a minimum cut: What is a minimum-weight set of edges that
separates two nodes of the graph?

The input for both these problems is a directed, weighted graph that contains
two special nodes: the source is a node with no incoming edges, and the sink is a
node with no outgoing edges.

As an example, we will use the following graph where node 1 is the source
and node 6 is the sink:

1

2 3

6

4 5

5
6

5

4
1

2

3 8

Maximum flow

In the maximum flow problem, our task is to send as much flow as possible
from the source to the sink. The weight of each edge is a capacity that restricts
the flow that can go through the edge. In each intermediate node, the incoming
and outgoing flow has to be equal.

For example, the maximum size of a flow in the example graph is 7. The
following picture shows how we can route the flow:

1

2 3

6

4 5

3/5
6/6

5/5

4/4
1/1

2/2

3/3 1/8

181

The notation v/k means that a flow of v units is routed through an edge whose
capacity is k units. The size of the flow is 7, because the source sends 3+4 units
of flow and the sink receives 5+2 units of flow. It is easy see that this flow is
maximum, because the total capacity of the edges leading to the sink is 7.

Minimum cut

In the minimum cut problem, our task is to remove a set of edges from the graph
such that there will be no path from the source to the sink after the removal and
the total weight of the removed edges is minimum.

The minimum size of a cut in the example graph is 7. It suffices to remove
the edges 2→ 3 and 4→ 5:

1

2 3

6

4 5

5
6

5

4
1

2

3 8

After removing the edges, there will be no path from the source to the sink.
The size of the cut is 7, because the weights of the removed edges are 6 and 1.
The cut is minimum, because there is no valid way to remove edges from the
graph such that their total weight would be less than 7.

It is not a coincidence that the maximum size of a flow and the minimum size
of a cut are the same in the above example. It turns out that a maximum flow
and a minimum cut are always equally large, so the concepts are two sides of the
same coin.

Next we will discuss the Ford–Fulkerson algorithm that can be used to find
the maximum flow and minimum cut of a graph. The algorithm also helps us to
understand why they are equally large.

Ford–Fulkerson algorithm

The Ford–Fulkerson algorithm [25] finds the maximum flow in a graph. The
algorithm begins with an empty flow, and at each step finds a path from the
source to the sink that generates more flow. Finally, when the algorithm cannot
increase the flow anymore, the maximum flow has been found.

The algorithm uses a special representation of the graph where each original
edge has a reverse edge in another direction. The weight of each edge indicates
how much more flow we could route through it. At the beginning of the algorithm,
the weight of each original edge equals the capacity of the edge and the weight of
each reverse edge is zero.

182

The new representation for the example graph is as follows:

1

2 3

6

4 5

5

0

6

0 5

0
4

0 1

0

2

0

3 0 80

Algorithm description

The Ford–Fulkerson algorithm consists of several rounds. On each round, the
algorithm finds a path from the source to the sink such that each edge on the
path has a positive weight. If there is more than one possible path available, we
can choose any of them.

For example, suppose we choose the following path:

1

2 3

6

4 5

5

0

6

0 5

0
4

0 1

0

2

0

3 0 80

After choosing the path, the flow increases by x units, where x is the smallest
edge weight on the path. In addition, the weight of each edge on the path
decreases by x and the weight of each reverse edge increases by x.

In the above path, the weights of the edges are 5, 6, 8 and 2. The smallest
weight is 2, so the flow increases by 2 and the new graph is as follows:

1

2 3

6

4 5

3

2

4

2 5

0
4

0 1

0

0

2

3 0 62

The idea is that increasing the flow decreases the amount of flow that can
go through the edges in the future. On the other hand, it is possible to cancel
flow later using the reverse edges of the graph if it turns out that it would be
beneficial to route the flow in another way.

The algorithm increases the flow as long as there is a path from the source to
the sink through positive-weight edges. In the present example, our next path
can be as follows:

183

1

2 3

6

4 5

3

2

4

2 5

0
4

0 1

0

0

2

3 0 62

The minimum edge weight on this path is 3, so the path increases the flow by
3, and the total flow after processing the path is 5.

The new graph will be as follows:

1

2 3

6

4 5

3

2

1

5 2

3
1

3 1

0

0

2

0 3 62

We still need two more rounds before reaching the maximum flow. For exam-
ple, we can choose the paths 1 → 2 → 3 → 6 and 1 → 4 → 5 → 3 → 6. Both paths
increase the flow by 1, and the final graph is as follows:

1

2 3

6

4 5

2

3

0

6 0

5
0

4 0

1

0

2

0 3 71

It is not possible to increase the flow anymore, because there is no path
from the source to the sink with positive edge weights. Hence, the algorithm
terminates and the maximum flow is 7.

Finding paths

The Ford–Fulkerson algorithm does not specify how we should choose the paths
that increase the flow. In any case, the algorithm will terminate sooner or later
and correctly find the maximum flow. However, the efficiency of the algorithm
depends on the way the paths are chosen.

A simple way to find paths is to use depth-first search. Usually, this works
well, but in the worst case, each path only increases the flow by 1 and the
algorithm is slow. Fortunately, we can avoid this situation by using one of the
following techniques:

184

The Edmonds–Karp algorithm [18] chooses each path so that the number
of edges on the path is as small as possible. This can be done by using breadth-
first search instead of depth-first search for finding paths. It can be proven that
this guarantees that the flow increases quickly, and the time complexity of the
algorithm is O(m2n).

The scaling algorithm [2] uses depth-first search to find paths where each
edge weight is at least a threshold value. Initially, the threshold value is some
large number, for example the sum of all edge weights of the graph. Always when
a path cannot be found, the threshold value is divided by 2. The time complexity
of the algorithm is O(m2 log c), where c is the initial threshold value.

In practice, the scaling algorithm is easier to implement, because depth-first
search can be used for finding paths. Both algorithms are efficient enough for
problems that typically appear in programming contests.

Minimum cuts

It turns out that once the Ford–Fulkerson algorithm has found a maximum flow,
it has also determined a minimum cut. Let A be the set of nodes that can be
reached from the source using positive-weight edges. In the example graph, A
contains nodes 1, 2 and 4:

1

2 3

6

4 5

2

3

0

6 0

5
0

4 0

1

0

2

0 3 71

Now the minimum cut consists of the edges of the original graph that start at
some node in A, end at some node outside A, and whose capacity is fully used
in the maximum flow. In the above graph, such edges are 2→ 3 and 4→ 5, that
correspond to the minimum cut 6+1= 7.

Why is the flow produced by the algorithm maximum and why is the cut
minimum? The reason is that a graph cannot contain a flow whose size is larger
than the weight of any cut of the graph. Hence, always when a flow and a cut are
equally large, they are a maximum flow and a minimum cut.

Let us consider any cut of the graph such that the source belongs to A, the
sink belongs to B and there are some edges between the sets:

A B

185

The size of the cut is the sum of the edges that go from A to B. This is an
upper bound for the flow in the graph, because the flow has to proceed from A to
B. Thus, the size of a maximum flow is smaller than or equal to the size of any
cut in the graph.

On the other hand, the Ford–Fulkerson algorithm produces a flow whose size
is exactly as large as the size of a cut in the graph. Thus, the flow has to be a
maximum flow and the cut has to be a minimum cut.

Disjoint paths

Many graph problems can be solved by reducing them to the maximum flow
problem. Our first example of such a problem is as follows: we are given a
directed graph with a source and a sink, and our task is to find the maximum
number of disjoint paths from the source to the sink.

Edge-disjoint paths

We will first focus on the problem of finding the maximum number of edge-
disjoint paths from the source to the sink. This means that we should construct
a set of paths such that each edge appears in at most one path.

For example, consider the following graph:

1

2 3

4 5

6

In this graph, the maximum number of edge-disjoint paths is 2. We can choose
the paths 1→ 2→ 4→ 3→ 6 and 1→ 4→ 5→ 6 as follows:

1

2 3

4 5

6

It turns out that the maximum number of edge-disjoint paths equals the
maximum flow of the graph, assuming that the capacity of each edge is one. After
the maximum flow has been constructed, the edge-disjoint paths can be found
greedily by following paths from the source to the sink.

Node-disjoint paths

Let us now consider another problem: finding the maximum number of node-
disjoint paths from the source to the sink. In this problem, every node, except

186

for the source and sink, may appear in at most one path. The number of node-
disjoint paths may be smaller than the number of edge-disjoint paths.

For example, in the previous graph, the maximum number of node-disjoint
paths is 1:

1

2 3

4 5

6

We can reduce also this problem to the maximum flow problem. Since each
node can appear in at most one path, we have to limit the flow that goes through
the nodes. A standard method for this is to divide each node into two nodes such
that the first node has the incoming edges of the original node, the second node
has the outgoing edges of the original node, and there is a new edge from the first
node to the second node.

In our example, the graph becomes as follows:

1

2 3

4 5

2 3

4 5

6

The maximum flow for the graph is as follows:

1

2 3

4 5

2 3

4 5

6

Thus, the maximum number of node-disjoint paths from the source to the
sink is 1.

Maximum matchings
The maximum matching problem asks to find a maximum-size set of node
pairs in an undirected graph such that each pair is connected with an edge and
each node belongs to at most one pair.

There are polynomial algorithms for finding maximum matchings in general
graphs [17], but such algorithms are complex and rarely seen in programming
contests. However, in bipartite graphs, the maximum matching problem is much
easier to solve, because we can reduce it to the maximum flow problem.

187

Finding maximum matchings

The nodes of a bipartite graph can be always divided into two groups such that
all edges of the graph go from the left group to the right group. For example, in
the following bipartite graph, the groups are {1,2,3,4} and {5,6,7,8}.

1

2

3

4

5

6

7

8

The size of a maximum matching of this graph is 3:

1

2

3

4

5

6

7

8

We can reduce the bipartite maximum matching problem to the maximum
flow problem by adding two new nodes to the graph: a source and a sink. We also
add edges from the source to each left node and from each right node to the sink.
After this, the size of a maximum flow in the graph equals the size of a maximum
matching in the original graph.

For example, the reduction for the above graph is as follows:

1

2

3

4

5

6

7

8

The maximum flow of this graph is as follows:

1

2

3

4

5

6

7

8

188

Hall’s theorem

Hall’s theorem can be used to find out whether a bipartite graph has a matching
that contains all left or right nodes. If the number of left and right nodes is the
same, Hall’s theorem tells us if it is possible to construct a perfect matching
that contains all nodes of the graph.

Assume that we want to find a matching that contains all left nodes. Let X
be any set of left nodes and let f (X) be the set of their neighbors. According to
Hall’s theorem, a matching that contains all left nodes exists exactly when for
each X , the condition |X | ≤ | f (X)| holds.

Let us study Hall’s theorem in the example graph. First, let X = {1,3} which
yields f (X)= {5,6,8}:

1

2

3

4

5

6

7

8

The condition of Hall’s theorem holds, because |X | = 2 and | f (X)| = 3. Next,
let X = {2,4} which yields f (X)= {7}:

1

2

3

4

5

6

7

8

In this case, |X | = 2 and | f (X)| = 1, so the condition of Hall’s theorem does
not hold. This means that it is not possible to form a perfect matching for the
graph. This result is not surprising, because we already know that the maximum
matching of the graph is 3 and not 4.

If the condition of Hall’s theorem does not hold, the set X provides an expla-
nation why we cannot form such a matching. Since X contains more nodes than
f (X), there are no pairs for all nodes in X . For example, in the above graph, both
nodes 2 and 4 should be connected with node 7 which is not possible.

Kőnig’s theorem

A minimum node cover of a graph is a minimum set of nodes such that each
edge of the graph has at least one endpoint in the set. In a general graph, finding
a minimum node cover is a NP-hard problem. However, if the graph is bipartite,
Kőnig’s theorem tells us that the size of a minimum node cover and the size

189

of a maximum matching are always equal. Thus, we can calculate the size of a
minimum node cover using a maximum flow algorithm.

Let us consider the following graph with a maximum matching of size 3:

1

2

3

4

5

6

7

8

Now Kőnig’s theorem tells us that the size of a minimum node cover is also 3.
Such a cover can be constructed as follows:

1

2

3

4

5

6

7

8

The nodes that do not belong to a minimum node cover form a maximum
independent set. This is the largest possible set of nodes such that no two
nodes in the set are connected with an edge. Once again, finding a maximum
independent set in a general graph is a NP-hard problem, but in a bipartite graph
we can use Kőnig’s theorem to solve the problem efficiently. In the example graph,
the maximum independent set is as follows:

1

2

3

4

5

6

7

8

Path covers

A path cover is a set of paths in a graph such that each node of the graph
belongs to at least one path. It turns out that in directed, acyclic graphs, we can
reduce the problem of finding a minimum path cover to the problem of finding a
maximum flow in another graph.

190

Node-disjoint path cover

In a node-disjoint path cover, each node belongs to exactly one path. As an
example, consider the following graph:

1 2 3 4

5 6 7

A minimum node-disjoint path cover of this graph consists of three paths. For
example, we can choose the following paths:

1 2 3 4

5 6 7

Note that one of the paths only contains node 2, so it is possible that a path
does not contain any edges.

We can find a minimum node-disjoint path cover by constructing a matching
graph where each node of the original graph is represented by two nodes: a left
node and a right node. There is an edge from a left node to a right node if there
is such an edge in the original graph. In addition, the matching graph contains a
source and a sink, and there are edges from the source to all left nodes and from
all right nodes to the sink.

A maximum matching in the resulting graph corresponds to a minimum node-
disjoint path cover in the original graph. For example, the following matching
graph for the above graph contains a maximum matching of size 4:

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Each edge in the maximum matching of the matching graph corresponds to
an edge in the minimum node-disjoint path cover of the original graph. Thus, the
size of the minimum node-disjoint path cover is n− c, where n is the number of
nodes in the original graph and c is the size of the maximum matching.

191

General path cover

A general path cover is a path cover where a node can belong to more than
one path. A minimum general path cover may be smaller than a minimum
node-disjoint path cover, because a node can be used multiple times in paths.
Consider again the following graph:

1 2 3 4

5 6 7

The minimum general path cover of this graph consists of two paths. For
example, the first path may be as follows:

1 2 3 4

5 6 7

And the second path may be as follows:

1 2 3 4

5 6 7

A minimum general path cover can be found almost like a minimum node-
disjoint path cover. It suffices to add some new edges to the matching graph
so that there is an edge a → b always when there is a path from a to b in the
original graph (possibly through several edges).

The matching graph for the above graph is as follows:

1

2

3

4

5

6

7

1

2

3

4

5

6

7

192

Dilworth’s theorem

An antichain is a set of nodes of a graph such that there is no path from any
node to another node using the edges of the graph. Dilworth’s theorem states
that in a directed acyclic graph, the size of a minimum general path cover equals
the size of a maximum antichain.

For example, nodes 3 and 7 form an antichain in the following graph:

1 2 3 4

5 6 7

This is a maximum antichain, because it is not possible to construct any
antichain that would contain three nodes. We have seen before that the size of a
minimum general path cover of this graph consists of two paths.

193

194

Part III

Advanced topics

195

Chapter 21

Number theory

Number theory is a branch of mathematics that studies integers. Number
theory is a fascinating field, because many questions involving integers are very
difficult to solve even if they seem simple at first glance.

As an example, consider the following equation:

x3 + y3 + z3 = 33

It is easy to find three real numbers x, y and z that satisfy the equation. For
example, we can choose

x = 3,
y= 3p3,
z = 3p3.

However, it is an open problem in number theory if there are any three integers
x, y and z that would satisfy the equation [6].

In this chapter, we will focus on basic concepts and algorithms in number
theory. Throughout the chapter, we will assume that all numbers are integers, if
not otherwise stated.

Primes and factors

A number a is called a factor or a divisor of a number b if a divides b. If a is a
factor of b, we write a | b, and otherwise we write a - b. For example, the factors
of 24 are 1, 2, 3, 4, 6, 8, 12 and 24.

A number n > 1 is a prime if its only positive factors are 1 and n. For example,
7, 19 and 41 are primes, but 35 is not a prime, because 5·7= 35. For every number
n > 1, there is a unique prime factorization

n = pα1
1 pα2

2 · · · pαk
k ,

where p1, p2, . . . , pk are distinct primes and α1,α2, . . . ,αk are positive numbers.
For example, the prime factorization for 84 is

84= 22 ·31 ·71.

197

The number of factors of a number n is

τ(n)=
k∏

i=1
(αi +1),

because for each prime pi, there are αi +1 ways to choose how many times it
appears in the factor. For example, the number of factors of 84 is τ(84)= 3·2·2= 12.
The factors are 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 and 84.

The sum of factors of n is

σ(n)=
k∏

i=1
(1+ pi + . . .+ pαi

i)=
k∏

i=1

pai+1
i −1

pi −1
,

where the latter formula is based on the geometric progression formula. For
example, the sum of factors of 84 is

σ(84)= 23 −1
2−1

· 32 −1
3−1

· 72 −1
7−1

= 7 ·4 ·8= 224.

The product of factors of n is

µ(n)= nτ(n)/2,

because we can form τ(n)/2 pairs from the factors, each with product n. For
example, the factors of 84 produce the pairs 1 ·84, 2 ·42, 3 ·28, etc., and the
product of the factors is µ(84)= 846 = 351298031616.

A number n is called a perfect number if n =σ(n)−n, i.e., n equals the sum
of its factors between 1 and n−1. For example, 28 is a perfect number, because
28= 1+2+4+7+14.

Number of primes

It is easy to show that there is an infinite number of primes. If the number of
primes would be finite, we could construct a set P = {p1, p2, . . . , pn} that would
contain all the primes. For example, p1 = 2, p2 = 3, p3 = 5, and so on. However,
using P, we could form a new prime

p1 p2 · · · pn +1

that is larger than all elements in P. This is a contradiction, and the number of
primes has to be infinite.

Density of primes

The density of primes means how often there are primes among the numbers.
Let π(n) denote the number of primes between 1 and n. For example, π(10)= 4,
because there are 4 primes between 1 and 10: 2, 3, 5 and 7.

It is possible to show that
π(n)≈ n

lnn
,

which means that primes are quite frequent. For example, the number of primes
between 1 and 106 is π(106)= 78498, and 106/ ln106 ≈ 72382.

198

Conjectures

There are many conjectures involving primes. Most people think that the con-
jectures are true, but nobody has been able to prove them. For example, the
following conjectures are famous:

• Goldbach’s conjecture: Each even integer n > 2 can be represented as a
sum n = a+b so that both a and b are primes.

• Twin prime conjecture: There is an infinite number of pairs of the form
{p, p+2}, where both p and p+2 are primes.

• Legendre’s conjecture: There is always a prime between numbers n2

and (n+1)2, where n is any positive integer.

Basic algorithms

If a number n is not prime, it can be represented as a product a ·b, where a ≤p
n

or b ≤p
n, so it certainly has a factor between 2 and bpnc. Using this observation,

we can both test if a number is prime and find the prime factorization of a number
in O(

p
n) time.

The following function prime checks if the given number n is prime. The
function attempts to divide n by all numbers between 2 and bpnc, and if none of
them divides n, then n is prime.

bool prime(int n) {

if (n < 2) return false;

for (int x = 2; x*x <= n; x++) {

if (n%x == 0) return false;

}

return true;

}

The following function factors constructs a vector that contains the prime factor-
ization of n. The function divides n by its prime factors, and adds them to the
vector. The process ends when the remaining number n has no factors between 2
and bpnc. If n > 1, it is prime and the last factor.

vector<int> factors(int n) {

vector<int> f;

for (int x = 2; x*x <= n; x++) {

while (n%x == 0) {

f.push_back(x);

n /= x;

}

}

if (n > 1) f.push_back(n);

return f;

}

199

Note that each prime factor appears in the vector as many times as it divides
the number. For example, 24= 23 ·3, so the result of the function is [2,2,2,3].

Sieve of Eratosthenes

The sieve of Eratosthenes is a preprocessing algorithm that builds an array
using which we can efficiently check if a given number between 2 . . .n is prime
and, if it is not, find one prime factor of the number.

The algorithm builds an array sieve whose positions 2,3, . . . ,n are used. The
value sieve[k]= 0 means that k is prime, and the value sieve[k] 6= 0 means that
k is not a prime and one of its prime factors is sieve[k].

The algorithm iterates through the numbers 2 . . .n one by one. Always when a
new prime x is found, the algorithm records that the multiples of x (2x,3x,4x, . . .)
are not primes, because the number x divides them.

For example, if n = 20, the array is as follows:

0 0 2 0 3 0 2 3 5 0 3 0 7 5 2 0 3 0 5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The following code implements the sieve of Eratosthenes. The code assumes
that each element of sieve is initially zero.

for (int x = 2; x <= n; x++) {

if (sieve[x]) continue;

for (int u = 2*x; u <= n; u += x) {

sieve[u] = x;

}

}

The inner loop of the algorithm is executed n/x times for each value of x. Thus,
an upper bound for the running time of the algorithm is the harmonic sum

n∑
x=2

n/x = n/2+n/3+n/4+·· ·+n/n =O(n logn).

In fact, the algorithm is more efficient, because the inner loop will be executed
only if the number x is prime. It can be shown that the running time of the
algorithm is only O(n loglogn), a complexity very near to O(n).

Euclid’s algorithm

The greatest common divisor of numbers a and b, gcd(a,b), is the greatest
number that divides both a and b, and the least common multiple of a and b,
lcm(a,b), is the smallest number that is divisible by both a and b. For example,
gcd(24,36)= 12 and lcm(24,36)= 72.

The greatest common divisor and the least common multiple are connected as
follows:

lcm(a,b)= ab
gcd(a,b)

200

Euclid’s algorithm1 provides an efficient way to find the greatest common
divisor of two numbers. The algorithm is based on the following formula:

gcd(a,b)=
{

a b = 0
gcd(b,a mod b) b 6= 0

For example,

gcd(24,36)= gcd(36,24)= gcd(24,12)= gcd(12,0)= 12.

The algorithm can be implemented as follows:

int gcd(int a, int b) {

if (b == 0) return a;

return gcd(b, a%b);

}

It can be shown that Euclid’s algorithm works in O(logn) time, where n =
min(a,b). The worst case for the algorithm is the case when a and b are consecu-
tive Fibonacci numbers. For example,

gcd(13,8)= gcd(8,5)= gcd(5,3)= gcd(3,2)= gcd(2,1)= gcd(1,0)= 1.

Euler’s totient function

Numbers a and b are coprime if gcd(a,b) = 1. Euler’s totient function ϕ(n)
gives the number of coprime numbers to n between 1 and n. For example,
ϕ(12)= 4, because 1, 5, 7 and 11 are coprime to 12.

The value of ϕ(n) can be calculated from the prime factorization of n using
the formula

ϕ(n)=
k∏

i=1
pαi−1

i (pi −1).

For example, ϕ(12)= 21 · (2−1) ·30 · (3−1)= 4. Note that ϕ(n)= n−1 if n is prime.

Modular arithmetic
In modular arithmetic, the set of numbers is limited so that only numbers
0,1,2, . . . ,m−1 are used, where m is a constant. Each number x is represented
by the number x mod m: the remainder after dividing x by m. For example, if
m = 17, then 75 is represented by 75 mod 17= 7.

Often we can take remainders before doing calculations. In particular, the
following formulas hold:

(x+ y) mod m = (x mod m+ y mod m) mod m
(x− y) mod m = (x mod m− y mod m) mod m
(x · y) mod m = (x mod m · y mod m) mod m

xn mod m = (x mod m)n mod m
1Euclid was a Greek mathematician who lived in about 300 BC. This is perhaps the first

known algorithm in history.

201

Modular exponentiation

There is often need to efficiently calculate the value of xn mod m. This can be
done in O(logn) time using the following recursion:

xn =


1 n = 0
xn/2 · xn/2 n is even
xn−1 · x n is odd

It is important that in the case of an even n, the value of xn/2 is calculated
only once. This guarantees that the time complexity of the algorithm is O(logn),
because n is always halved when it is even.

The following function calculates the value of xn mod m:

int modpow(int x, int n, int m) {

if (n == 0) return 1%m;

long long u = modpow(x,n/2,m);

u = (u*u)%m;

if (n%2 == 1) u = (u*x)%m;

return u;

}

Fermat’s theorem and Euler’s theorem

Fermat’s theorem states that

xm−1 mod m = 1

when m is prime and x and m are coprime. This also yields

xk mod m = xk mod (m−1) mod m.

More generally, Euler’s theorem states that

xϕ(m) mod m = 1

when x and m are coprime. Fermat’s theorem follows from Euler’s theorem,
because if m is a prime, then ϕ(m)= m−1.

Modular inverse

The inverse of x modulo m is a number x−1 such that

xx−1 mod m = 1.

For example, if x = 6 and m = 17, then x−1 = 3, because 6 ·3 mod 17= 1.
Using modular inverses, we can divide numbers modulo m, because division

by x corresponds to multiplication by x−1. For example, to evaluate the value

202

of 36/6 mod 17, we can use the formula 2 ·3 mod 17, because 36 mod 17= 2 and
6−1 mod 17= 3.

However, a modular inverse does not always exist. For example, if x = 2 and
m = 4, the equation

xx−1 mod m = 1

cannot be solved, because all multiples of 2 are even and the remainder can never
be 1 when m = 4. It turns out that the value of x−1 mod m can be calculated
exactly when x and m are coprime.

If a modular inverse exists, it can be calculated using the formula

x−1 = xϕ(m)−1.

If m is prime, the formula becomes

x−1 = xm−2.

For example,

6−1 mod 17= 617−2 mod 17= 3.

This formula allows us to efficiently calculate modular inverses using the
modular exponentation algorithm. The formula can be derived using Euler’s
theorem. First, the modular inverse should satisfy the following equation:

xx−1 mod m = 1.

On the other hand, according to Euler’s theorem,

xϕ(m) mod m = xxϕ(m)−1 mod m = 1,

so the numbers x−1 and xϕ(m)−1 are equal.

Computer arithmetic

In programming, unsigned integers are represented modulo 2k, where k is the
number of bits of the data type. A usual consequence of this is that a number
wraps around if it becomes too large.

For example, in C++, numbers of type unsigned int are represented mod-
ulo 232. The following code declares an unsigned int variable whose value is
123456789. After this, the value will be multiplied by itself, and the result is
1234567892 mod 232 = 2537071545.

unsigned int x = 123456789;

cout << x*x << "\n"; // 2537071545

203

Solving equations

Diophantine equations

A Diophantine equation is an equation of the form

ax+by= c,

where a, b and c are constants and the values of x and y should be found. Each
number in the equation has to be an integer. For example, one solution for the
equation 5x+2y= 11 is x = 3 and y=−2.

We can efficiently solve a Diophantine equation by using Euclid’s algorithm.
It turns out that we can extend Euclid’s algorithm so that it will find numbers x
and y that satisfy the following equation:

ax+by= gcd(a,b)

A Diophantine equation can be solved if c is divisible by gcd(a,b), and other-
wise it cannot be solved.

As an example, let us find numbers x and y that satisfy the following equation:

39x+15y= 12

The equation can be solved, because gcd(39,15) = 3 and 3 | 12. When Euclid’s
algorithm calculates the greatest common divisor of 39 and 15, it produces the
following sequence of function calls:

gcd(39,15)= gcd(15,9)= gcd(9,6)= gcd(6,3)= gcd(3,0)= 3

This corresponds to the following equations:

39−2 ·15 = 9
15−1 ·9 = 6
9−1 ·6 = 3

Using these equations, we can derive

39 ·2+15 · (−5)= 3

and by multiplying this by 4, the result is

39 ·8+15 · (−20)= 12,

so a solution to the equation is x = 8 and y=−20.
A solution to a Diophantine equation is not unique, because we can form an

infinite number of solutions if we know one solution. If a pair (x, y) is a solution,
then also all pairs

(x+ kb
gcd(a,b)

, y− ka
gcd(a,b)

)

are solutions, where k is any integer.

204

Chinese remainder theorem

The Chinese remainder theorem solves a group of equations of the form

x = a1 mod m1
x = a2 mod m2
· · ·
x = an mod mn

where all pairs of m1,m2, . . . ,mn are coprime.
Let x−1

m be the inverse of x modulo m, and

Xk =
m1m2 · · ·mn

mk
.

Using this notation, a solution to the equations is

x = a1X1X1
−1
m1

+a2X2X2
−1
m2

+·· ·+anXnXn
−1
mn

.

In this solution, for each k = 1,2, . . . ,n,

ak Xk Xk
−1
mk

mod mk = ak,

because
Xk Xk

−1
mk

mod mk = 1.

Since all other terms in the sum are divisible by mk, they have no effect on the
remainder, and x mod mk = ak.

For example, a solution for

x = 3 mod 5
x = 4 mod 7
x = 2 mod 3

is
3 ·21 ·1+4 ·15 ·1+2 ·35 ·2= 263.

Once we have found a solution x, we can create an infinite number of other
solutions, because all numbers of the form

x+m1m2 · · ·mn

are solutions.

Other results

Lagrange’s theorem

Lagrange’s theorem states that every positive integer can be represented as a
sum of four squares, i.e., a2 +b2 + c2 +d2. For example, the number 123 can be
represented as the sum 82 +52 +52 +32.

205

Zeckendorf’s theorem

Zeckendorf’s theorem states that every positive integer has a unique repre-
sentation as a sum of Fibonacci numbers such that no two numbers are equal or
consecutive Fibonacci numbers. For example, the number 74 can be represented
as the sum 55+13+5+1.

Pythagorean triples

A Pythagorean triple is a triple (a,b, c) that satisfies the Pythagorean theorem
a2+b2 = c2, which means that there is a right triangle with side lengths a, b and
c. For example, (3,4,5) is a Pythagorean triple.

If (a,b, c) is a Pythagorean triple, all triples of the form (ka,kb,kc) are also
Pythagorean triples where k > 1. A Pythagorean triple is primitive if a, b and
c are coprime, and all Pythagorean triples can be constructed from primitive
triples using a multiplier k.

Euclid’s formula can be used to produce all primitive Pythagorean triples.
Each such triple is of the form

(n2 −m2,2nm,n2 +m2),

where 0< m < n, n and m are coprime and at least one of n and m is even. For
example, when m = 1 and n = 2, the formula produces the smallest Pythagorean
triple

(22 −12,2 ·2 ·1,22 +12)= (3,4,5).

Wilson’s theorem

Wilson’s theorem states that a number n is prime exactly when

(n−1)! mod n = n−1.

For example, the number 11 is prime, because

10! mod 11= 10,

and the number 12 is not prime, because

11! mod 12= 0 6= 11.

Hence, Wilson’s theorem can be used to find out whether a number is prime.
However, in practice, the theorem cannot be applied to large values of n, because
it is difficult to calculate values of (n−1)! when n is large.

206

Chapter 22

Combinatorics

Combinatorics studies methods for counting combinations of objects. Usually,
the goal is to find a way to count the combinations efficiently without generating
each combination separately.

As an example, consider the problem of counting the number of ways to
represent an integer n as a sum of positive integers. For example, there are 8
representations for 4:

• 1+1+1+1

• 1+1+2

• 1+2+1

• 2+1+1

• 2+2

• 3+1

• 1+3

• 4

A combinatorial problem can often be solved using a recursive function. In this
problem, we can define a function f (n) that gives the number of representations
for n. For example, f (4) = 8 according to the above example. The values of the
function can be recursively calculated as follows:

f (n)=
{

1 n = 0
f (0)+ f (1)+·· ·+ f (n−1) n > 0

The base case is f (0)= 1, because the empty sum represents the number 0. Then,
if n > 0, we consider all ways to choose the first number of the sum. If the first
number is k, there are f (n−k) representations for the remaining part of the sum.
Thus, we calculate the sum of all values of the form f (n−k) where k < n.

The first values for the function are:
f (0) = 1
f (1) = 1
f (2) = 2
f (3) = 4
f (4) = 8

Sometimes, a recursive formula can be replaced with a closed-form formula.
In this problem,

f (n)= 2n−1,

207

which is based on the fact that there are n−1 possible positions for +-signs in the
sum and we can choose any subset of them.

Binomial coefficients

The binomial coefficient
(n

k
)

equals the number of ways we can choose a subset
of k elements from a set of n elements. For example,

(5
3

) = 10, because the set
{1,2,3,4,5} has 10 subsets of 3 elements:

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}

Formula 1

Binomial coefficients can be recursively calculated as follows:(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
The idea is to fix an element x in the set. If x is included in the subset, we

have to choose k−1 elements from n−1 elements, and if x is not included in the
subset, we have to choose k elements from n−1 elements.

The base cases for the recursion are(
n
0

)
=

(
n
n

)
= 1,

because there is always exactly one way to construct an empty subset and a
subset that contains all the elements.

Formula 2

Another way to calculate binomial coefficients is as follows:(
n
k

)
= n!

k!(n−k)!
.

There are n! permutations of n elements. We go through all permutations
and always include the first k elements of the permutation in the subset. Since
the order of the elements in the subset and outside the subset does not matter,
the result is divided by k! and (n−k)!

Properties

For binomial coefficients, (
n
k

)
=

(
n

n−k

)
,

208

because we actually divide a set of n elements into two subsets: the first contains
k elements and the second contains n−k elements.

The sum of binomial coefficients is(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ . . .+

(
n
n

)
= 2n.

The reason for the name ”binomial coefficient” can be seen when the binomial
(a+b) is raised to the nth power:

(a+b)n =
(
n
0

)
anb0 +

(
n
1

)
an−1b1 + . . .+

(
n

n−1

)
a1bn−1 +

(
n
n

)
a0bn.

Binomial coefficients also appear in Pascal’s triangle where each value
equals the sum of two above values:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
.

Boxes and balls

”Boxes and balls” is a useful model, where we count the ways to place k balls in n
boxes. Let us consider three scenarios:

Scenario 1: Each box can contain at most one ball. For example, when n = 5
and k = 2, there are 10 solutions:

In this scenario, the answer is directly the binomial coefficient
(n

k
)
.

Scenario 2: A box can contain multiple balls. For example, when n = 5 and
k = 2, there are 15 solutions:

209

The process of placing the balls in the boxes can be represented as a string
that consists of symbols ”o” and ”→”. Initially, assume that we are standing at
the leftmost box. The symbol ”o” means that we place a ball in the current box,
and the symbol ”→” means that we move to the next box to the right.

Using this notation, each solution is a string that contains k times the symbol
”o” and n−1 times the symbol ”→”. For example, the upper-right solution in the
above picture corresponds to the string ”→ → o → o →”. Thus, the number of
solutions is

(k+n−1
k

)
.

Scenario 3: Each box may contain at most one ball, and in addition, no two
adjacent boxes may both contain a ball. For example, when n = 5 and k = 2, there
are 6 solutions:

In this scenario, we can assume that k balls are initially placed in boxes and
there is an empty box between each two adjacent boxes. The remaining task is
to choose the positions for the remaining empty boxes. There are n−2k+1 such
boxes and k+1 positions for them. Thus, using the formula of scenario 2, the
number of solutions is

(n−k+1
n−2k+1

)
.

Multinomial coefficients

The multinomial coefficient(
n

k1,k2, . . . ,km

)
= n!

k1!k2! · · ·km!
,

equals the number of ways we can divide n elements into subsets of sizes
k1,k2, . . . ,km, where k1+k2+·· ·+km = n. Multinomial coefficients can be seen as
a generalization of binomial cofficients; if m = 2, the above formula corresponds
to the binomial coefficient formula.

Catalan numbers

The Catalan number Cn equals the number of valid parenthesis expressions
that consist of n left parentheses and n right parentheses.

For example, C3 = 5, because we can construct the following parenthesis
expressions using three left and right parentheses:

• ()()()

• (())()

• ()(())

• ((()))

• (()())

210

Parenthesis expressions

What is exactly a valid parenthesis expression? The following rules precisely
define all valid parenthesis expressions:

• An empty parenthesis expression is valid.

• If an expression A is valid, then also the expression (A) is valid.

• If expressions A and B are valid, then also the expression AB is valid.

Another way to characterize valid parenthesis expressions is that if we choose
any prefix of such an expression, it has to contain at least as many left parenthe-
ses as right parentheses. In addition, the complete expression has to contain an
equal number of left and right parentheses.

Formula 1

Catalan numbers can be calculated using the formula

Cn =
n−1∑
i=0

CiCn−i−1.

The sum goes through the ways to divide the expression into two parts such
that both parts are valid expressions and the first part is as short as possible but
not empty. For any i, the first part contains i+1 pairs of parentheses and the
number of expressions is the product of the following values:

• Ci: the number of ways to construct an expression using the parentheses of
the first part, not counting the outermost parentheses

• Cn−i−1: the number of ways to construct an expression using the parenthe-
ses of the second part

The base case is C0 = 1, because we can construct an empty parenthesis
expression using zero pairs of parentheses.

Formula 2

Catalan numbers can also be calculated using binomial coefficients:

Cn = 1
n+1

(
2n
n

)

The formula can be explained as follows:
There are a total of

(2n
n

)
ways to construct a (not necessarily valid) parenthesis

expression that contains n left parentheses and n right parentheses. Let us
calculate the number of such expressions that are not valid.

If a parenthesis expression is not valid, it has to contain a prefix where
the number of right parentheses exceeds the number of left parentheses. The

211

idea is to reverse each parenthesis that belongs to such a prefix. For example,
the expression ())()(contains a prefix ()), and after reversing the prefix, the
expression becomes)((()(.

The resulting expression consists of n+1 left parentheses and n−1 right
parentheses. The number of such expressions is

(2n
n+1

)
, which equals the number

of non-valid parenthesis expressions. Thus, the number of valid parenthesis
expressions can be calculated using the formula(

2n
n

)
−

(
2n

n+1

)
=

(
2n
n

)
− n

n+1

(
2n
n

)
= 1

n+1

(
2n
n

)
.

Counting trees

Catalan numbers are also related to trees:

• there are Cn binary trees of n nodes

• there are Cn−1 rooted trees of n nodes

For example, for C3 = 5, the binary trees are

and the rooted trees are

Inclusion-exclusion
Inclusion-exclusion is a technique that can be used for counting the size of a
union of sets when the sizes of the intersections are known, and vice versa. A
simple example of the technique is the formula

|A∪B| = |A|+ |B|− |A∩B|,
where A and B are sets and |X | denotes the size of X . The formula can be
illustrated as follows:

A BA∩B

212

Our goal is to calculate the size of the union A∪B that corresponds to the
area of the region that belongs to at least one circle. The picture shows that we
can calculate the area of A∪B by first summing the areas of A and B and then
subtracting the area of A∩B.

The same idea can be applied when the number of sets is larger. When there
are three sets, the inclusion-exclusion formula is

|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|

and the corresponding picture is

A B

C

A∩B

A∩C B∩C
A∩B∩C

In the general case, the size of the union X1 ∪ X2 ∪ ·· · ∪ Xn can be calcu-
lated by going through all possible intersections that contain some of the sets
X1, X2, . . . , Xn. If the intersection contains an odd number of sets, its size is added
to the answer, and otherwise its size is subtracted from the answer.

Note that there are similar formulas for calculating the size of an intersection
from the sizes of unions. For example,

|A∩B| = |A|+ |B|− |A∪B|

and

|A∩B∩C| = |A|+ |B|+ |C|− |A∪B|− |A∪C|− |B∪C|+ |A∪B∪C|.

Derangements

As an example, let us count the number of derangements of elements {1,2, . . . ,n},
i.e., permutations where no element remains in its original place. For example,
when n = 3, there are two derangements: (2,3,1) and (3,1,2).

One approach for solving the problem is to use inclusion-exclusion. Let Xk be
the set of permutations that contain the element k at position k. For example,
when n = 3, the sets are as follows:

X1 = {(1,2,3), (1,3,2)}
X2 = {(1,2,3), (3,2,1)}
X3 = {(1,2,3), (2,1,3)}

Using these sets, the number of derangements equals

n!−|X1 ∪ X2 ∪·· ·∪ Xn|,

213

so it suffices to calculate the size of the union. Using inclusion-exclusion, this
reduces to calculating sizes of intersections which can be done efficiently. For
example, when n = 3, the size of |X1 ∪ X2 ∪ X3| is

|X1|+ |X2|+ |X3|− |X1 ∩ X2|− |X1 ∩ X3|− |X2 ∩ X3|+ |X1 ∩ X2 ∩ X3|
= 2+2+2−1−1−1+1
= 4,

so the number of solutions is 3!−4= 2.
It turns out that the problem can also be solved without using inclusion-

exclusion. Let f (n) denote the number of derangements for {1,2, . . . ,n}. We can
use the following recursive formula:

f (n)=


0 n = 1
1 n = 2
(n−1)(f (n−2)+ f (n−1)) n > 2

The formula can be derived by considering the possibilities how the element 1
changes in the derangement. There are n−1 ways to choose an element x that
replaces the element 1. In each such choice, there are two options:

Option 1: We also replace the element x with the element 1. After this, the
remaining task is to construct a derangement of n−2 elements.

Option 2: We replace the element x with some other element than 1. Now we
have to construct a derangement of n−1 element, because we cannot replace the
element x with the element 1, and all other elements must be changed.

Burnside’s lemma

Burnside’s lemma can be used to count the number of combinations so that
only one representative is counted for each group of symmetric combinations.
Burnside’s lemma states that the number of combinations is

n∑
k=1

c(k)
n

,

where there are n ways to change the position of a combination, and there are
c(k) combinations that remain unchanged when the kth way is applied.

As an example, let us calculate the number of necklaces of n pearls, where
each pearl has m possible colors. Two necklaces are symmetric if they are similar
after rotating them. For example, the necklace

has the following symmetric necklaces:

214

There are n ways to change the position of a necklace, because we can rotate it
0,1, . . . ,n−1 steps clockwise. If the number of steps is 0, all mn necklaces remain
the same, and if the number of steps is 1, only the m necklaces where each pearl
has the same color remain the same.

More generally, when the number of steps is k, a total of

mgcd(k,n)

necklaces remain the same, where gcd(k,n) is the greatest common divisor of k
and n. The reason for this is that blocks of pearls of size gcd(k,n) will replace
each other. Thus, according to Burnside’s lemma, the number of necklaces is

n−1∑
i=0

mgcd(i,n)

n
.

For example, the number of necklaces of length 4 with 3 colors is

34 +3+32 +3
4

= 24.

Cayley’s formula

Cayley’s formula states that there are nn−2 labeled trees that contain n nodes.
The nodes are labeled 1,2, . . . ,n, and two trees are different if either their struc-
ture or labeling is different.

For example, when n = 4, the number of labeled trees is 44−2 = 16:

1

2 3 4

2

1 3 4

3

1 2 4

4

1 2 3

1 2 3 4 1 2 4 3 1 3 2 4

1 3 4 2 1 4 2 3 1 4 3 2

2 1 3 4 2 1 4 3 2 3 1 4

2 4 1 3 3 1 2 4 3 2 1 4

Next we will see how Cayley’s formula can be derived using Prüfer codes.

215

Prüfer code

A Prüfer code is a sequence of n−2 numbers that describes a labeled tree. The
code is constructed by following a process that removes n−2 leaves from the tree.
At each step, the leaf with the smallest label is removed, and the label of its only
neighbor is added to the code.

For example, let us calculate the Prüfer code of the following graph:

1 2

3 4

5

First we remove node 1 and add node 4 to the code:

2

3 4

5

Then we remove node 3 and add node 4 to the code:

2

4

5

Finally we remove node 4 and add node 2 to the code:

2

5

Thus, the Prüfer code of the graph is [4,4,2].
We can construct a Prüfer code for any tree, and more importantly, the original

tree can be reconstructed from a Prüfer code. Hence, the number of labeled trees
of n nodes equals nn−2, the number of Prüfer codes of size n.

216

Chapter 23

Matrices

A matrix is a mathematical concept that corresponds to a two-dimensional array
in programming. For example,

A =
6 13 7 4

7 0 8 2
9 5 4 18


is a matrix of size 3×4, i.e., it has 3 rows and 4 columns. The notation [i, j] refers
to the element in row i and column j in a matrix. For example, in the above
matrix, A[2,3]= 8 and A[3,1]= 9.

A special case of a matrix is a vector that is a one-dimensional matrix of size
n×1. For example,

V =
4

7
5


is a vector that contains three elements.

The transpose AT of a matrix A is obtained when the rows and columns of
A are swapped, i.e., AT[i, j]= A[j, i]:

AT =


6 7 9

13 0 5
7 8 4
4 2 18


A matrix is a square matrix if it has the same number of rows and columns.

For example, the following matrix is a square matrix:

S =
3 12 4

5 9 15
0 2 4



Operations
The sum A+B of matrices A and B is defined if the matrices are of the same
size. The result is a matrix where each element is the sum of the corresponding
elements in A and B.

217

For example,[
6 1 4
3 9 2

]
+

[
4 9 3
8 1 3

]
=

[
6+4 1+9 4+3
3+8 9+1 2+3

]
=

[
10 10 7
11 10 5

]
.

Multiplying a matrix A by a value x means that each element of A is multi-
plied by x. For example,

2 ·
[
6 1 4
3 9 2

]
=

[
2 ·6 2 ·1 2 ·4
2 ·3 2 ·9 2 ·2

]
=

[
12 2 8
6 18 4

]
.

Matrix multiplication

The product AB of matrices A and B is defined if A is of size a×n and B is of
size n× b, i.e., the width of A equals the height of B. The result is a matrix of
size a×b whose elements are calculated using the formula

AB[i, j]=
n∑

k=1
A[i,k] ·B[k, j].

The idea is that each element of AB is a sum of products of elements of A and
B according to the following picture:

A AB

B

For example,1 4
3 9
8 6

 ·
[
1 6
2 9

]
=

1 ·1+4 ·2 1 ·6+4 ·9
3 ·1+9 ·2 3 ·6+9 ·9
8 ·1+6 ·2 8 ·6+6 ·9

=
 9 42

21 99
20 102

 .

Matrix multiplication is associative, so A(BC) = (AB)C holds, but it is not
commutative, so AB = BA does not usually hold.

An identity matrix is a square matrix where each element on the diagonal
is 1 and all other elements are 0. For example, the following matrix is the 3×3
identity matrix:

I =
1 0 0

0 1 0
0 0 1



218

Multiplying a matrix by an identity matrix does not change it. For example,1 0 0
0 1 0
0 0 1

 ·
1 4

3 9
8 6

=
1 4

3 9
8 6

 and

1 4
3 9
8 6

 ·
[
1 0
0 1

]
=

1 4
3 9
8 6

 .

Using a straightforward algorithm, we can calculate the product of two n×n
matrices in O(n3) time. There are also more efficient algorithms for matrix
multiplication1, but they are mostly of theoretical interest and such algorithms
are not necessary in competitive programming.

Matrix power

The power Ak of a matrix A is defined if A is a square matrix. The definition is
based on matrix multiplication:

Ak = A · A · A · · ·A︸ ︷︷ ︸
k times

For example, [
2 5
1 4

]3

=
[
2 5
1 4

]
·
[
2 5
1 4

]
·
[
2 5
1 4

]
=

[
48 165
33 114

]
.

In addition, A0 is an identity matrix. For example,[
2 5
1 4

]0

=
[
1 0
0 1

]
.

The matrix Ak can be efficiently calculated in O(n3 logk) time using the
algorithm in Chapter 21.2. For example,[

2 5
1 4

]8

=
[
2 5
1 4

]4

·
[
2 5
1 4

]4

.

Determinant

The determinant det(A) of a matrix A is defined if A is a square matrix. If
A is of size 1×1, then det(A) = A[1,1]. The determinant of a larger matrix is
calculated recursively using the formula

det(A)=
n∑

j=1
A[1, j]C[1, j],

where C[i, j] is the cofactor of A at [i, j]. The cofactor is calculated using the
formula

C[i, j]= (−1)i+ j det(M[i, j]),
1The first such algorithm was Strassen’s algorithm, published in 1969 [63], whose time

complexity is O(n2.80735); the best current algorithm [27] works in O(n2.37286) time.

219

where M[i, j] is obtained by removing row i and column j from A. Due to the
coefficient (−1)i+ j in the cofactor, every other determinant is positive and negative.
For example,

det(
[
3 4
1 6

]
)= 3 ·6−4 ·1= 14

and

det(

2 4 3
5 1 6
7 2 4

)= 2 ·det(
[
1 6
2 4

]
)−4 ·det(

[
5 6
7 4

]
)+3 ·det(

[
5 1
7 2

]
)= 81.

The determinant of A tells us whether there is an inverse matrix A−1 such
that A ·A−1 = I, where I is an identity matrix. It turns out that A−1 exists exactly
when det(A) 6= 0, and it can be calculated using the formula

A−1[i, j]= C[j, i]
det(A)

.

For example, 2 4 3
5 1 6
7 2 4


︸ ︷︷ ︸

A

· 1
81

−8 −10 21
22 −13 3
3 24 −18


︸ ︷︷ ︸

A−1

=
1 0 0

0 1 0
0 0 1


︸ ︷︷ ︸

I

.

Linear recurrences

A linear recurrence is a function f (n) whose initial values are f (0), f (1), . . . , f (k−
1) and larger values are calculated recursively using the formula

f (n)= c1 f (n−1)+ c2 f (n−2)+ . . .+ ck f (n−k),

where c1, c2, . . . , ck are constant coefficients.
Dynamic programming can be used to calculate any value of f (n) in O(kn)

time by calculating all values of f (0), f (1), . . . , f (n) one after another. However,
if k is small, it is possible to calculate f (n) much more efficiently in O(k3 logn)
time using matrix operations.

Fibonacci numbers

A simple example of a linear recurrence is the following function that defines the
Fibonacci numbers:

f (0) = 0
f (1) = 1
f (n) = f (n−1)+ f (n−2)

In this case, k = 2 and c1 = c2 = 1.

220

To efficiently calculate Fibonacci numbers, we represent the Fibonacci formula
as a square matrix X of size 2×2, for which the following holds:

X ·
[

f (i)
f (i+1)

]
=

[
f (i+1)
f (i+2)

]
Thus, values f (i) and f (i+1) are given as ”input” for X , and X calculates values
f (i+1) and f (i+2) from them. It turns out that such a matrix is

X =
[
0 1
1 1

]
.

For example, [
0 1
1 1

]
·
[

f (5)
f (6)

]
=

[
0 1
1 1

]
·
[
5
8

]
=

[
8

13

]
=

[
f (6)
f (7)

]
.

Thus, we can calculate f (n) using the formula[
f (n)

f (n+1)

]
= X n ·

[
f (0)
f (1)

]
=

[
0 1
1 1

]n

·
[
0
1

]
.

The value of X n can be calculated in O(logn) time, so the value of f (n) can also
be calculated in O(logn) time.

General case

Let us now consider the general case where f (n) is any linear recurrence. Again,
our goal is to construct a matrix X for which

X ·


f (i)

f (i+1)
...

f (i+k−1)

=


f (i+1)
f (i+2)

...
f (i+k)

 .

Such a matrix is

X =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
0 0 0 0 · · · 1
ck ck−1 ck−2 ck−3 · · · c1


.

In the first k−1 rows, each element is 0 except that one element is 1. These rows
replace f (i) with f (i+1), f (i+1) with f (i+2), and so on. The last row contains
the coefficients of the recurrence to calculate the new value f (i+k).

Now, f (n) can be calculated in O(k3 logn) time using the formula
f (n)

f (n+1)
...

f (n+k−1)

= X n ·


f (0)
f (1)

...
f (k−1)

 .

221

Graphs and matrices

Counting paths

The powers of an adjacency matrix of a graph have an interesting property. When
V is an adjacency matrix of an unweighted graph, the matrix V n contains the
numbers of paths of n edges between the nodes in the graph.

For example, for the graph

1

4

2 3

5 6

the adjacency matrix is

V =



0 0 0 1 0 0
1 0 0 0 1 1
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 0

 .

Now, for example, the matrix

V 4 =



0 0 1 1 1 0
2 0 0 0 2 2
0 2 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 1 1 1 0


contains the numbers of paths of 4 edges between the nodes. For example,
V 4[2,5] = 2, because there are two paths of 4 edges from node 2 to node 5:
2→ 1→ 4→ 2→ 5 and 2→ 6→ 3→ 2→ 5.

Shortest paths

Using a similar idea in a weighted graph, we can calculate for each pair of nodes
the minimum length of a path between them that contains exactly n edges. To
calculate this, we have to define matrix multiplication in a new way, so that we
do not calculate the numbers of paths but minimize the lengths of paths.

222

As an example, consider the following graph:

1

4

2 3

5 6

4 1

2 4

1 2 3

2

Let us construct an adjacency matrix where ∞ means that an edge does not
exist, and other values correspond to edge weights. The matrix is

V =



∞ ∞ ∞ 4 ∞ ∞
2 ∞ ∞ ∞ 1 2
∞ 4 ∞ ∞ ∞ ∞
∞ 1 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 3 ∞ 2 ∞

 .

Instead of the formula

AB[i, j]=
n∑

k=1
A[i,k] ·B[k, j]

we now use the formula

AB[i, j]=
n

min
k=1

A[i,k]+B[k, j]

for matrix multiplication, so we calculate a minimum instead of a sum, and a
sum of elements instead of a product. After this modification, matrix powers
correspond to shortest paths in the graph.

For example, as

V 4 =



∞ ∞ 10 11 9 ∞
9 ∞ ∞ ∞ 8 9
∞ 11 ∞ ∞ ∞ ∞
∞ 8 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 12 13 11 ∞

 ,

we can conclude that the minimum length of a path of 4 edges from node 2 to
node 5 is 8. Such a path is 2→ 1→ 4→ 2→ 5.

Kirchhoff’s theorem

Kirchhoff’s theorem provides a way to calculate the number of spanning trees
of a graph as a determinant of a special matrix. For example, the graph

1 2

3 4

223

has three spanning trees:

1 2

3 4

1 2

3 4

1 2

3 4

To calculate the number of spanning trees, we construct a Laplacean matrix L,
where L[i, i] is the degree of node i and L[i, j]=−1 if there is an edge between
nodes i and j, and otherwise L[i, j] = 0. The Laplacean matrix for the above
graph is as follows:

L =


3 −1 −1 −1
−1 1 0 0
−1 0 2 −1
−1 0 −1 2


It can be shown that the number of spanning trees equals the determinant of

a matrix that is obtained when we remove any row and any column from L. For
example, if we remove the first row and column, the result is

det(

1 0 0
0 2 −1
0 −1 2

)= 3.

The determinant is always the same, regardless of which row and column we
remove from L.

Note that Cayley’s formula in Chapter 22.5 is a special case of Kirchhoff ’s
theorem, because in a complete graph of n nodes

det(


n−1 −1 · · · −1
−1 n−1 · · · −1
...

...
−1 −1 · · · n−1

)= nn−2.

224

Chapter 24

Probability

A probability is a real number between 0 and 1 that indicates how probable
an event is. If an event is certain to happen, its probability is 1, and if an event
is impossible, its probability is 0. The probability of an event is denoted P(· · ·)
where the three dots describe the event.

For example, when throwing a dice, the outcome is an integer between 1 and
6, and the probability of each outcome is 1/6. For example, we can calculate the
following probabilities:

• P(”the outcome is 4”)= 1/6
• P(”the outcome is not 6”)= 5/6
• P(”the outcome is even”)= 1/2

Calculation

To calculate the probability of an event, we can either use combinatorics or
simulate the process that generates the event. As an example, let us calculate
the probability of drawing three cards with the same value from a shuffled deck
of cards (for example, ♠8, ♣8 and ♦8).

Method 1

We can calculate the probability using the formula

number of desired outcomes
total number of outcomes

.

In this problem, the desired outcomes are those in which the value of each
card is the same. There are 13

(4
3

)
such outcomes, because there are 13 possibilities

for the value of the cards and
(4
3

)
ways to choose 3 suits from 4 possible suits.

There are a total of
(52

3

)
outcomes, because we choose 3 cards from 52 cards.

Thus, the probability of the event is

13
(4
3

)(52
3

) = 1
425

.

225

Method 2

Another way to calculate the probability is to simulate the process that generates
the event. In this example, we draw three cards, so the process consists of three
steps. We require that each step of the process is successful.

Drawing the first card certainly succeeds, because there are no restrictions.
The second step succeeds with probability 3/51, because there are 51 cards left
and 3 of them have the same value as the first card. In a similar way, the third
step succeeds with probability 2/50.

The probability that the entire process succeeds is

1 · 3
51

· 2
50

= 1
425

.

Events
An event in probability theory can be represented as a set

A ⊂ X ,

where X contains all possible outcomes and A is a subset of outcomes. For
example, when drawing a dice, the outcomes are

X = {1,2,3,4,5,6}.

Now, for example, the event ”the outcome is even” corresponds to the set

A = {2,4,6}.

Each outcome x is assigned a probability p(x). Then, the probability P(A)
of an event A can be calculated as a sum of probabilities of outcomes using the
formula

P(A)= ∑
x∈A

p(x).

For example, when throwing a dice, p(x)= 1/6 for each outcome x, so the proba-
bility of the event ”the outcome is even” is

p(2)+ p(4)+ p(6)= 1/2.

The total probability of the outcomes in X must be 1, i.e., P(X)= 1.
Since the events in probability theory are sets, we can manipulate them using

standard set operations:

• The complement Ā means ”A does not happen”. For example, when
throwing a dice, the complement of A = {2,4,6} is Ā = {1,3,5}.

• The union A ∪B means ”A or B happen”. For example, the union of
A = {2,5} and B = {4,5,6} is A∪B = {2,4,5,6}.

• The intersection A∩B means ”A and B happen”. For example, the inter-
section of A = {2,5} and B = {4,5,6} is A∩B = {5}.

226

Complement

The probability of the complement Ā is calculated using the formula

P(Ā)= 1−P(A).

Sometimes, we can solve a problem easily using complements by solving the
opposite problem. For example, the probability of getting at least one six when
throwing a dice ten times is

1− (5/6)10.

Here 5/6 is the probability that the outcome of a single throw is not six, and
(5/6)10 is the probability that none of the ten throws is a six. The complement of
this is the answer to the problem.

Union

The probability of the union A∪B is calculated using the formula

P(A∪B)= P(A)+P(B)−P(A∩B).

For example, when throwing a dice, the union of the events

A = ”the outcome is even”

and
B = ”the outcome is less than 4”

is
A∪B = ”the outcome is even or less than 4”,

and its probability is

P(A∪B)= P(A)+P(B)−P(A∩B)= 1/2+1/2−1/6= 5/6.

If the events A and B are disjoint, i.e., A∩B is empty, the probability of the
event A∪B is simply

P(A∪B)= P(A)+P(B).

Conditional probability

The conditional probability

P(A|B)= P(A∩B)
P(B)

is the probability of A assuming that B happens. Hence, when calculating the
probability of A, we only consider the outcomes that also belong to B.

Using the previous sets,
P(A|B)= 1/3,

because the outcomes of B are {1,2,3}, and one of them is even. This is the
probability of an even outcome if we know that the outcome is between 1 . . .3.

227

Intersection

Using conditional probability, the probability of the intersection A ∩B can be
calculated using the formula

P(A∩B)= P(A)P(B|A).

Events A and B are independent if

P(A|B)= P(A) and P(B|A)= P(B),

which means that the fact that B happens does not change the probability of A,
and vice versa. In this case, the probability of the intersection is

P(A∩B)= P(A)P(B).

For example, when drawing a card from a deck, the events

A = ”the suit is clubs”

and

B = ”the value is four”

are independent. Hence the event

A∩B = ”the card is the four of clubs”

happens with probability

P(A∩B)= P(A)P(B)= 1/4 ·1/13= 1/52.

Random variables

A random variable is a value that is generated by a random process. For
example, when throwing two dice, a possible random variable is

X = ”the sum of the outcomes”.

For example, if the outcomes are [4,6] (meaning that we first throw a four and
then a six), then the value of X is 10.

We denote P(X = x) the probability that the value of a random variable X
is x. For example, when throwing two dice, P(X = 10)= 3/36, because the total
number of outcomes is 36 and there are three possible ways to obtain the sum 10:
[4,6], [5,5] and [6,4].

228

Expected value

The expected value E[X] indicates the average value of a random variable X .
The expected value can be calculated as the sum∑

x
P(X = x)x,

where x goes through all possible values of X .
For example, when throwing a dice, the expected outcome is

1/6 ·1+1/6 ·2+1/6 ·3+1/6 ·4+1/6 ·5+1/6 ·6= 7/2.

A useful property of expected values is linearity. It means that the sum
E[X1 + X2 + ·· · + Xn] always equals the sum E[X1]+E[X2]+ ·· · +E[Xn]. This
formula holds even if random variables depend on each other.

For example, when throwing two dice, the expected sum is

E[X1 + X2]= E[X1]+E[X2]= 7/2+7/2= 7.

Let us now consider a problem where n balls are randomly placed in n boxes,
and our task is to calculate the expected number of empty boxes. Each ball has
an equal probability to be placed in any of the boxes. For example, if n = 2, the
possibilities are as follows:

In this case, the expected number of empty boxes is

0+0+1+1
4

= 1
2

.

In the general case, the probability that a single box is empty is(n−1
n

)n
,

because no ball should be placed in it. Hence, using linearity, the expected
number of empty boxes is

n ·
(n−1

n

)n
.

Distributions

The distribution of a random variable X shows the probability of each value
that X may have. The distribution consists of values P(X = x). For example,
when throwing two dice, the distribution for their sum is:

x 2 3 4 5 6 7 8 9 10 11 12
P(X = x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

229

In a uniform distribution, the random variable X has n possible values
a,a+1, . . . ,b and the probability of each value is 1/n. For example, when throwing
a dice, a = 1, b = 6 and P(X = x)= 1/6 for each value x.

The expected value of X in a uniform distribution is

E[X]= a+b
2

.

In a binomial distribution, n attempts are made and the probability that
a single attempt succeeds is p. The random variable X counts the number of
successful attempts, and the probability of a value x is

P(X = x)= px(1− p)n−x

(
n
x

)
,

where px and (1− p)n−x correspond to successful and unsuccessful attemps, and(n
x
)

is the number of ways we can choose the order of the attempts.
For example, when throwing a dice ten times, the probability of throwing a

six exactly three times is (1/6)3(5/6)7(10
3

)
.

The expected value of X in a binomial distribution is

E[X]= pn.

In a geometric distribution, the probability that an attempt succeeds is p,
and we continue until the first success happens. The random variable X counts
the number of attempts needed, and the probability of a value x is

P(X = x)= (1− p)x−1 p,

where (1− p)x−1 corresponds to the unsuccessful attemps and p corresponds to
the first successful attempt.

For example, if we throw a dice until we throw a six, the probability that the
number of throws is exactly 4 is (5/6)31/6.

The expected value of X in a geometric distribution is

E[X]= 1
p

.

Markov chains
A Markov chain is a random process that consists of states and transitions
between them. For each state, we know the probabilities for moving to other
states. A Markov chain can be represented as a graph whose nodes are states
and edges are transitions.

As an example, consider a problem where we are in floor 1 in an n floor
building. At each step, we randomly walk either one floor up or one floor down,
except that we always walk one floor up from floor 1 and one floor down from
floor n. What is the probability of being in floor m after k steps?

In this problem, each floor of the building corresponds to a state in a Markov
chain. For example, if n = 5, the graph is as follows:

230

1 2 3 4 5

1 1/2 1/2 1/2

11/21/21/2

The probability distribution of a Markov chain is a vector [p1, p2, . . . , pn],
where pk is the probability that the current state is k. The formula p1+ p2+·· ·+
pn = 1 always holds.

In the above scenario, the initial distribution is [1,0,0,0,0], because we always
begin in floor 1. The next distribution is [0,1,0,0,0], because we can only move
from floor 1 to floor 2. After this, we can either move one floor up or one floor
down, so the next distribution is [1/2,0,1/2,0,0], and so on.

An efficient way to simulate the walk in a Markov chain is to use dynamic
programming. The idea is to maintain the probability distribution, and at each
step go through all possibilities how we can move. Using this method, we can
simulate a walk of m steps in O(n2m) time.

The transitions of a Markov chain can also be represented as a matrix that
updates the probability distribution. In the above scenario, the matrix is

0 1/2 0 0 0
1 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1
0 0 0 1/2 0

 .

When we multiply a probability distribution by this matrix, we get the new
distribution after moving one step. For example, we can move from the distribu-
tion [1,0,0,0,0] to the distribution [0,1,0,0,0] as follows:

0 1/2 0 0 0
1 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1
0 0 0 1/2 0




1
0
0
0
0

=


0
1
0
0
0

 .

By calculating matrix powers efficiently, we can calculate the distribution
after m steps in O(n3 logm) time.

Randomized algorithms

Sometimes we can use randomness for solving a problem, even if the problem is
not related to probabilities. A randomized algorithm is an algorithm that is
based on randomness.

A Monte Carlo algorithm is a randomized algorithm that may sometimes
give a wrong answer. For such an algorithm to be useful, the probability of a
wrong answer should be small.

231

A Las Vegas algorithm is a randomized algorithm that always gives the
correct answer, but its running time varies randomly. The goal is to design an
algorithm that is efficient with high probability.

Next we will go through three example problems that can be solved using
randomness.

Order statistics

The kth order statistic of an array is the element at position k after sorting the
array in increasing order. It is easy to calculate any order statistic in O(n logn)
time by first sorting the array, but is it really needed to sort the entire array just
to find one element?

It turns out that we can find order statistics using a randomized algorithm
without sorting the array. The algorithm, called quickselect1, is a Las Vegas
algorithm: its running time is usually O(n) but O(n2) in the worst case.

The algorithm chooses a random element x of the array, and moves elements
smaller than x to the left part of the array, and all other elements to the right
part of the array. This takes O(n) time when there are n elements. Assume that
the left part contains a elements and the right part contains b elements. If a = k,
element x is the kth order statistic. Otherwise, if a > k, we recursively find the
kth order statistic for the left part, and if a < k, we recursively find the rth order
statistic for the right part where r = k−a. The search continues in a similar way,
until the element has been found.

When each element x is randomly chosen, the size of the array about halves
at each step, so the time complexity for finding the kth order statistic is about

n+n/2+n/4+n/8+·· · < 2n =O(n).

The worst case of the algorithm requires still O(n2) time, because it is possible
that x is always chosen in such a way that it is one of the smallest or largest
elements in the array and O(n) steps are needed. However, the probability for
this is so small that this never happens in practice.

Verifying matrix multiplication

Our next problem is to verify if AB = C holds when A, B and C are matrices of
size n×n. Of course, we can solve the problem by calculating the product AB
again (in O(n3) time using the basic algorithm), but one could hope that verifying
the answer would by easier than to calculate it from scratch.

It turns out that we can solve the problem using a Monte Carlo algorithm2

whose time complexity is only O(n2). The idea is simple: we choose a random
vector X of n elements, and calculate the matrices ABX and CX . If ABX = CX ,
we report that AB = C, and otherwise we report that AB 6= C.

1In 1961, C. A. R. Hoare published two algorithms that are efficient on average: quicksort
[36] for sorting arrays and quickselect [37] for finding order statistics.

2R. M. Freivalds published this algorithm in 1977 [26], and it is sometimes called Freivalds’
algorithm.

232

The time complexity of the algorithm is O(n2), because we can calculate
the matrices ABX and CX in O(n2) time. We can calculate the matrix ABX
efficiently by using the representation A(BX), so only two multiplications of n×n
and n×1 size matrices are needed.

The drawback of the algorithm is that there is a small chance that the
algorithm makes a mistake when it reports that AB = C. For example,[

6 8
1 3

]
6=

[
8 7
3 2

]
,

but [
6 8
1 3

][
3
6

]
=

[
8 7
3 2

][
3
6

]
.

However, in practice, the probability that the algorithm makes a mistake is
small, and we can decrease the probability by verifying the result using multiple
random vectors X before reporting that AB = C.

Graph coloring

Given a graph that contains n nodes and m edges, our task is to find a way to
color the nodes of the graph using two colors so that for at least m/2 edges, the
endpoints have different colors. For example, in the graph

1 2

3 4

5

a valid coloring is as follows:

1 2

3 4

5

The above graph contains 7 edges, and for 5 of them, the endpoints have different
colors, so the coloring is valid.

The problem can be solved using a Las Vegas algorithm that generates random
colorings until a valid coloring has been found. In a random coloring, the color of
each node is independently chosen so that the probability of both colors is 1/2.

In a random coloring, the probability that the endpoints of a single edge have
different colors is 1/2. Hence, the expected number of edges whose endpoints
have different colors is m/2. Since it is expected that a random coloring is valid,
we will quickly find a valid coloring in practice.

233

234

Chapter 25

Game theory

In this chapter, we will focus on two-player games that do not contain random
elements. Our goal is to find a strategy that we can follow to win the game no
matter what the opponent does, if such a strategy exists.

It turns out that there is a general strategy for such games, and we can
analyze the games using the nim theory. First, we will analyze simple games
where players remove sticks from heaps, and after this, we will generalize the
strategy used in those games to other games.

Game states

Let us consider a game where there is initially a heap of n sticks. Players A and
B move alternately, and player A begins. On each move, the player has to remove
1, 2 or 3 sticks from the heap, and the player who removes the last stick wins the
game.

For example, if n = 10, the game may proceed as follows:

• Player A removes 2 sticks (8 sticks left).
• Player B removes 3 sticks (5 sticks left).
• Player A removes 1 stick (4 sticks left).
• Player B removes 2 sticks (2 sticks left).
• Player A removes 2 sticks and wins.

This game consists of states 0,1,2, . . . ,n, where the number of the state corre-
sponds to the number of sticks left.

Winning and losing states

A winning state is a state where the player will win the game if they play
optimally, and a losing state is a state where the player will lose the game if the
opponent plays optimally. It turns out that we can classify all states of a game so
that each state is either a winning state or a losing state.

In the above game, state 0 is clearly a losing state, because the player cannot
make any moves. States 1, 2 and 3 are winning states, because we can remove 1,

235

2 or 3 sticks and win the game. State 4, in turn, is a losing state, because any
move leads to a state that is a winning state for the opponent.

More generally, if there is a move that leads from the current state to a losing
state, the current state is a winning state, and otherwise the current state is a
losing state. Using this observation, we can classify all states of a game starting
with losing states where there are no possible moves.

The states 0 . . .15 of the above game can be classified as follows (W denotes a
winning state and L denotes a losing state):

L W W W L W W W L W W W L W W W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It is easy to analyze this game: a state k is a losing state if k is divisible by
4, and otherwise it is a winning state. An optimal way to play the game is to
always choose a move after which the number of sticks in the heap is divisible by
4. Finally, there are no sticks left and the opponent has lost.

Of course, this strategy requires that the number of sticks is not divisible by
4 when it is our move. If it is, there is nothing we can do, and the opponent will
win the game if they play optimally.

State graph

Let us now consider another stick game, where in each state k, it is allowed to
remove any number x of sticks such that x is smaller than k and divides k. For
example, in state 8 we may remove 1, 2 or 4 sticks, but in state 7 the only allowed
move is to remove 1 stick.

The following picture shows the states 1 . . .9 of the game as a state graph,
whose nodes are the states and edges are the moves between them:

1 2

3

4

5

6

7

8

9

The final state in this game is always state 1, which is a losing state, because
there are no valid moves. The classification of states 1 . . .9 is as follows:

L W L W L W L W L

1 2 3 4 5 6 7 8 9

Surprisingly, in this game, all even-numbered states are winning states, and
all odd-numbered states are losing states.

236

Nim game
The nim game is a simple game that has an important role in game theory,
because many other games can be played using the same strategy. First, we focus
on nim, and then we generalize the strategy to other games.

There are n heaps in nim, and each heap contains some number of sticks.
The players move alternately, and on each turn, the player chooses a heap that
still contains sticks and removes any number of sticks from it. The winner is the
player who removes the last stick.

The states in nim are of the form [x1, x2, . . . , xn], where xk denotes the number
of sticks in heap k. For example, [10,12,5] is a game where there are three heaps
with 10, 12 and 5 sticks. The state [0,0, . . . ,0] is a losing state, because it is not
possible to remove any sticks, and this is always the final state.

Analysis

It turns out that we can easily classify any nim state by calculating the nim sum
s = x1⊕ x2⊕·· ·⊕ xn, where ⊕ is the xor operation1. The states whose nim sum is
0 are losing states, and all other states are winning states. For example, the nim
sum of [10,12,5] is 10⊕12⊕5= 3, so the state is a winning state.

But how is the nim sum related to the nim game? We can explain this by
looking at how the nim sum changes when the nim state changes.

Losing states: The final state [0,0, . . . ,0] is a losing state, and its nim sum is 0,
as expected. In other losing states, any move leads to a winning state, because
when a single value xk changes, the nim sum also changes, so the nim sum is
different from 0 after the move.

Winning states: We can move to a losing state if there is any heap k for which
xk ⊕ s < xk. In this case, we can remove sticks from heap k so that it will contain
xk⊕ s sticks, which will lead to a losing state. There is always such a heap, where
xk has a one bit at the position of the leftmost one bit of s.

As an example, consider the state [10,12,5]. This state is a winning state,
because its nim sum is 3. Thus, there has to be a move which leads to a losing
state. Next we will find out such a move.

The nim sum of the state is as follows:

10 1010

12 1100

5 0101

3 0011

In this case, the heap with 10 sticks is the only heap that has a one bit at the
position of the leftmost one bit of the nim sum:

10 1010

12 1100

5 0101

3 0011

1The optimal strategy for nim was published in 1901 by C. L. Bouton [10].

237

The new size of the heap has to be 10⊕3= 9, so we will remove just one stick.
After this, the state will be [9,12,5], which is a losing state:

9 1001

12 1100

5 0101

0 0000

Misère game

In a misère game, the goal of the game is opposite, so the player who removes
the last stick loses the game. It turns out that the misère nim game can be
optimally played almost like the standard nim game.

The idea is to first play the misère game like the standard game, but change
the strategy at the end of the game. The new strategy will be introduced in a
situation where each heap would contain at most one stick after the next move.

In the standard game, we should choose a move after which there is an even
number of heaps with one stick. However, in the misère game, we choose a move
so that there is an odd number of heaps with one stick.

This strategy works because a state where the strategy changes always
appears in the game, and this state is a winning state, because it contains exactly
one heap that has more than one stick so the nim sum is not 0.

Sprague–Grundy theorem

The Sprague–Grundy theorem2 generalizes the strategy used in nim to all
games that fulfil the following requirements:

• There are two players who move alternately.
• The game consists of states, and the possible moves in a state do not depend

on whose turn it is.
• The game ends when a player cannot make a move.
• The game surely ends sooner or later.
• The players have complete information about the states and allowed moves,

and there is no randomness in the game.

The idea is to calculate for each game state a Grundy number that corresponds
to the number of sticks in a nim heap. When we know the Grundy numbers of all
states, we can play the game like the nim game.

Grundy numbers

The Grundy number of a game state is

mex({g1, g2, . . . , gn}),

2The theorem was independently discovered by R. Sprague [61] and P. M. Grundy [31].

238

where g1, g2, . . . , gn are the Grundy numbers of the states to which we can move,
and the mex function gives the smallest nonnegative number that is not in the
set. For example, mex({0,1,3})= 2. If there are no possible moves in a state, its
Grundy number is 0, because mex(;)= 0.

For example, in the state graph

the Grundy numbers are as follows:

0 1 0

2 0 2

The Grundy number of a losing state is 0, and the Grundy number of a winning
state is a positive number.

The Grundy number of a state corresponds to the number of sticks in a nim
heap. If the Grundy number is 0, we can only move to states whose Grundy
numbers are positive, and if the Grundy number is x > 0, we can move to states
whose Grundy numbers include all numbers 0,1, . . . , x−1.

As an example, consider a game where the players move a figure in a maze.
Each square in the maze is either floor or wall. On each turn, the player has to
move the figure some number of steps left or up. The winner of the game is the
player who makes the last move.

The following picture shows a possible initial state of the game, where @
denotes the figure and * denotes a square where it can move.

@****

*

*

The states of the game are all floor squares of the maze. In the above maze,
the Grundy numbers are as follows:

0 1 0 1

0 1 2

0 2 1 0

3 0 4 1

0 4 1 3 2

239

Thus, each state of the maze game corresponds to a heap in the nim game. For
example, the Grundy number for the lower-right square is 2, so it is a winning
state. We can reach a losing state and win the game by moving either four steps
left or two steps up.

Note that unlike in the original nim game, it may be possible to move to a
state whose Grundy number is larger than the Grundy number of the current
state. However, the opponent can always choose a move that cancels such a move,
so it is not possible to escape from a losing state.

Subgames

Next we will assume that our game consists of subgames, and on each turn, the
player first chooses a subgame and then a move in the subgame. The game ends
when it is not possible to make any move in any subgame.

In this case, the Grundy number of a game is the nim sum of the Grundy
numbers of the subgames. The game can be played like a nim game by calculating
all Grundy numbers for subgames and then their nim sum.

As an example, consider a game that consists of three mazes. In this game,
on each turn, the player chooses one of the mazes and then moves the figure in
the maze. Assume that the initial state of the game is as follows:

@ @ @

The Grundy numbers for the mazes are as follows:

0 1 0 1
0 1 2

0 2 1 0
3 0 4 1

0 4 1 3 2

0 1 2 3
1 0 0 1
2 0 1 2
3 1 2 0
4 0 2 5 3

0 1 2 3 4
1 0
2 1
3 2
4 0 1 2 3

In the initial state, the nim sum of the Grundy numbers is 2⊕3⊕3= 2, so the
first player can win the game. One optimal move is to move two steps up in the
first maze, which produces the nim sum 0⊕3⊕3= 0.

Grundy’s game

Sometimes a move in a game divides the game into subgames that are indepen-
dent of each other. In this case, the Grundy number of the game is

mex({g1, g2, . . . , gn}),

240

where n is the number of possible moves and

gk = ak,1 ⊕ak,2 ⊕ . . .⊕ak,m,

where move k generates subgames with Grundy numbers ak,1,ak,2, . . . ,ak,m.
An example of such a game is Grundy’s game. Initially, there is a single

heap that contains n sticks. On each turn, the player chooses a heap and divides
it into two nonempty heaps such that the heaps are of different size. The player
who makes the last move wins the game.

Let f (n) be the Grundy number of a heap that contains n sticks. The Grundy
number can be calculated by going through all ways to divide the heap into two
heaps. For example, when n = 8, the possibilities are 1+7, 2+6 and 3+5, so

f (8)=mex({ f (1)⊕ f (7), f (2)⊕ f (6), f (3)⊕ f (5)}).

In this game, the value of f (n) is based on the values of f (1), . . . , f (n−1). The
base cases are f (1)= f (2)= 0, because it is not possible to divide the heaps of 1
and 2 sticks. The first Grundy numbers are:

f (1) = 0
f (2) = 0
f (3) = 1
f (4) = 0
f (5) = 2
f (6) = 1
f (7) = 0
f (8) = 2

The Grundy number for n = 8 is 2, so it is possible to win the game. The winning
move is to create heaps 1+7, because f (1)⊕ f (7)= 0.

241

242

Chapter 26

String algorithms

This chapter deals with efficient algorithms for string processing. Many string
problems can be easily solved in O(n2) time, but the challenge is to find algorithms
that work in O(n) or O(n logn) time.

For example, a fundamental string processing problem is the pattern match-
ing problem: given a string of length n and a pattern of length m, our task is to
find the occurrences of the pattern in the string. For example, the pattern ABC

occurs two times in the string ABABCBABC.
The pattern matching problem can be easily solved in O(nm) time by a brute

force algorithm that tests all positions where the pattern may occur in the string.
However, in this chapter, we will see that there are more efficient algorithms that
require only O(n+m) time.

String terminology

Throughout the chapter, we assume that zero-based indexing is used in strings.
Thus, a string s of length n consists of characters s[0],s[1], . . . ,s[n−1]. The set of
characters that may appear in strings is called an alphabet. For example, the
alphabet {A,B, . . . ,Z} consists of the capital letters of English.

A substring is a sequence of consecutive characters in a string. We use the
notation s[a . . .b] to refer to a substring of s that begins at position a and ends
at position b. A string of length n has n(n+1)/2 substrings. For example, the
substrings of ABCD are A, B, C, D, AB, BC, CD, ABC, BCD and ABCD.

A subsequence is a sequence of (not necessarily consecutive) characters in a
string in their original order. A string of length n has 2n −1 subsequences. For
example, the subsequences of ABCD are A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD,
ACD, BCD and ABCD.

A prefix is a substring that starts at the beginning of a string, and a suffix
is a substring that ends at the end of a string. For example, the prefixes of ABCD
are A, AB, ABC and ABCD, and the suffixes of ABCD are D, CD, BCD and ABCD.

A rotation can be generated by moving the characters of a string one by one
from the beginning to the end (or vice versa). For example, the rotations of ABCD
are ABCD, BCDA, CDAB and DABC.

243

A period is a prefix of a string such that the string can be constructed by
repeating the period. The last repetition may be partial and contain only a prefix
of the period. For example, the shortest period of ABCABCA is ABC.

A border is a string that is both a prefix and a suffix of a string. For example,
the borders of ABACABA are A, ABA and ABACABA.

Strings are compared using the lexicographical order (which corresponds
to the alphabetical order). It means that x < y if either x 6= y and x is a prefix of y,
or there is a position k such that x[i]= y[i] when i < k and x[k]< y[k].

Trie structure

A trie is a rooted tree that maintains a set of strings. Each string in the set
is stored as a chain of characters that starts at the root. If two strings have a
common prefix, they also have a common chain in the tree.

For example, consider the following trie:

* *

*

*

C T

A

N

A D

L Y

H

E

R

E

This trie corresponds to the set {CANAL,CANDY,THE,THERE}. The character * in a
node means that a string in the set ends at the node. Such a character is needed,
because a string may be a prefix of another string. For example, in the above trie,
THE is a prefix of THERE.

We can check in O(n) time whether a trie contains a string of length n, because
we can follow the chain that starts at the root node. We can also add a string of
length n to the trie in O(n) time by first following the chain and then adding new
nodes to the trie if necessary.

Using a trie, we can find the longest prefix of a given string such that the
prefix belongs to the set. Moreover, by storing additional information in each
node, we can calculate the number of strings that belong to the set and have a
given string as a prefix.

A trie can be stored in an array

int trie[N][A];

244

where N is the maximum number of nodes (the maximum total length of the
strings in the set) and A is the size of the alphabet. The nodes of a trie are
numbered 0,1,2, . . . so that the number of the root is 0, and trie[s][c] is the next
node in the chain when we move from node s using character c.

String hashing
String hashing is a technique that allows us to efficiently check whether two
strings are equal1. The idea in string hashing is to compare hash values of strings
instead of their individual characters.

Calculating hash values

A hash value of a string is a number that is calculated from the characters of
the string. If two strings are the same, their hash values are also the same, which
makes it possible to compare strings based on their hash values.

A usual way to implement string hashing is polynomial hashing, which
means that the hash value of a string s of length n is

(s[0]An−1 +s[1]An−2 +·· ·+s[n−1]A0) mod B,

where s[0], s[1], . . . , s[n−1] are interpreted as the codes of the characters of s, and
A and B are pre-chosen constants.

For example, the codes of the characters of ALLEY are:

A L L E Y

65 76 76 69 89

Thus, if A = 3 and B = 97, the hash value of ALLEY is

(65 ·34 +76 ·33 +76 ·32 +69 ·31 +89 ·30) mod 97= 52.

Preprocessing

Using polynomial hashing, we can calculate the hash value of any substring of a
string s in O(1) time after an O(n) time preprocessing. The idea is to construct
an array h such that h[k] contains the hash value of the prefix s[0 . . .k]. The array
values can be recursively calculated as follows:

h[0] = s[0]
h[k] = (h[k−1]A+s[k]) mod B

In addition, we construct an array p where p[k]= Ak mod B:

p[0] = 1
p[k] = (p[k−1]A) mod B.

1The technique was popularized by the Karp–Rabin pattern matching algorithm [42].

245

Constructing these arrays takes O(n) time. After this, the hash value of any
substring s[a . . .b] can be calculated in O(1) time using the formula

(h[b]−h[a−1]p[b−a+1]) mod B

assuming that a > 0. If a = 0, the hash value is simply h[b].

Using hash values

We can efficiently compare strings using hash values. Instead of comparing the
individual characters of the strings, the idea is to compare their hash values. If
the hash values are equal, the strings are probably equal, and if the hash values
are different, the strings are certainly different.

Using hashing, we can often make a brute force algorithm efficient. As an
example, consider the pattern matching problem: given a string s and a pattern
p, find the positions where p occurs in s. A brute force algorithm goes through
all positions where p may occur and compares the strings character by character.
The time complexity of such an algorithm is O(n2).

We can make the brute force algorithm more efficient by using hashing,
because the algorithm compares substrings of strings. Using hashing, each
comparison only takes O(1) time, because only hash values of substrings are
compared. This results in an algorithm with time complexity O(n), which is the
best possible time complexity for this problem.

By combining hashing and binary search, it is also possible to find out the
lexicographic order of two strings in logarithmic time. This can be done by
calculating the length of the common prefix of the strings using binary search.
Once we know the length of the common prefix, we can just check the next
character after the prefix, because this determines the order of the strings.

Collisions and parameters

An evident risk when comparing hash values is a collision, which means that
two strings have different contents but equal hash values. In this case, an
algorithm that relies on the hash values concludes that the strings are equal, but
in reality they are not, and the algorithm may give incorrect results.

Collisions are always possible, because the number of different strings is
larger than the number of different hash values. However, the probability of a
collision is small if the constants A and B are carefully chosen. A usual way is to
choose random constants near 109, for example as follows:

A = 911382323
B = 972663749

Using such constants, the long long type can be used when calculating hash
values, because the products AB and BB will fit in long long. But is it enough to
have about 109 different hash values?

Let us consider three scenarios where hashing can be used:

246

Scenario 1: Strings x and y are compared with each other. The probability of
a collision is 1/B assuming that all hash values are equally probable.

Scenario 2: A string x is compared with strings y1, y2, . . . , yn. The probability
of one or more collisions is

1− (1− 1
B

)n.

Scenario 3: All pairs of strings x1, x2, . . . , xn are compared with each other.
The probability of one or more collisions is

1− B · (B−1) · (B−2) · · · (B−n+1)
Bn .

The following table shows the collision probabilities when n = 106 and the
value of B varies:

constant B scenario 1 scenario 2 scenario 3
103 0.001000 1.000000 1.000000
106 0.000001 0.632121 1.000000
109 0.000000 0.001000 1.000000

1012 0.000000 0.000000 0.393469
1015 0.000000 0.000000 0.000500
1018 0.000000 0.000000 0.000001

The table shows that in scenario 1, the probability of a collision is negligible
when B ≈ 109. In scenario 2, a collision is possible but the probability is still
quite small. However, in scenario 3 the situation is very different: a collision will
almost always happen when B ≈ 109.

The phenomenon in scenario 3 is known as the birthday paradox: if there
are n people in a room, the probability that some two people have the same
birthday is large even if n is quite small. In hashing, correspondingly, when all
hash values are compared with each other, the probability that some two hash
values are equal is large.

We can make the probability of a collision smaller by calculating multiple
hash values using different parameters. It is unlikely that a collision would
occur in all hash values at the same time. For example, two hash values with
parameter B ≈ 109 correspond to one hash value with parameter B ≈ 1018, which
makes the probability of a collision very small.

Some people use constants B = 232 and B = 264, which is convenient, because
operations with 32 and 64 bit integers are calculated modulo 232 and 264. How-
ever, this is not a good choice, because it is possible to construct inputs that
always generate collisions when constants of the form 2x are used [51].

Z-algorithm

The Z-array z of a string s of length n contains for each k = 0,1, . . . ,n−1 the
length of the longest substring of s that begins at position k and is a prefix of

247

s. Thus, z[k] = p tells us that s[0 . . . p−1] equals s[k . . .k+ p−1]. Many string
processing problems can be efficiently solved using the Z-array.

For example, the Z-array of ACBACDACBACBACDA is as follows:

A C B A C D A C B A C B A C D A

– 0 0 2 0 0 5 0 0 7 0 0 2 0 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In this case, for example, z[6]= 5, because the substring ACBAC of length 5 is a
prefix of s, but the substring ACBACB of length 6 is not a prefix of s.

Algorithm description

Next we describe an algorithm, called the Z-algorithm2, that efficiently con-
structs the Z-array in O(n) time. The algorithm calculates the Z-array values
from left to right by both using information already stored in the Z-array and
comparing substrings character by character.

To efficiently calculate the Z-array values, the algorithm maintains a range
[x, y] such that s[x . . . y] is a prefix of s and y is as large as possible. Since we
know that s[0 . . . y− x] and s[x . . . y] are equal, we can use this information when
calculating Z-values for positions x+1, x+2, . . . , y.

At each position k, we first check the value of z[k− x]. If k+z[k− x]< y, we
know that z[k]= z[k− x]. However, if k+z[k− x]≥ y, s[0 . . . y−k] equals s[k . . . y],
and to determine the value of z[k] we need to compare the substrings character
by character. Still, the algorithm works in O(n) time, because we start comparing
at positions y−k+1 and y+1.

For example, let us construct the following Z-array:

A C B A C D A C B A C B A C D A
– ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

After calculating the value z[6]= 5, the current [x, y] range is [6,10]:

A C B A C D A C B A C B A C D A
– 0 0 2 0 0 5 ? ? ? ? ? ? ? ? ?

x y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Now we can calculate subsequent Z-array values efficiently, because we know
that s[0 . . .4] and s[6 . . .10] are equal. First, since z[1]= z[2]= 0, we immediately
know that also z[7]= z[8]= 0:

2The Z-algorithm was presented in [32] as the simplest known method for linear-time pattern
matching, and the original idea was attributed to [50].

248

A C B A C D A C B A C B A C D A
– 0 0 2 0 0 5 0 0 ? ? ? ? ? ? ?

x y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Then, since z[3]= 2, we know that z[9]≥ 2:

A C B A C D A C B A C B A C D A
– 0 0 2 0 0 5 0 0 ? ? ? ? ? ? ?

x y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

However, we have no information about the string after position 10, so we
need to compare the substrings character by character:

A C B A C D A C B A C B A C D A
– 0 0 2 0 0 5 0 0 ? ? ? ? ? ? ?

x y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It turns out that z[9]= 7, so the new [x, y] range is [9,15]:

A C B A C D A C B A C B A C D A
– 0 0 2 0 0 5 0 0 7 ? ? ? ? ? ?

x y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

After this, all the remaining Z-array values can be determined by using the
information already stored in the Z-array:

A C B A C D A C B A C B A C D A
– 0 0 2 0 0 5 0 0 7 0 0 2 0 0 1

x y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

249

Using the Z-array

It is often a matter of taste whether to use string hashing or the Z-algorithm.
Unlike hashing, the Z-algorithm always works and there is no risk for collisions.
On the other hand, the Z-algorithm is more difficult to implement and some
problems can only be solved using hashing.

As an example, consider again the pattern matching problem, where our task
is to find the occurrences of a pattern p in a string s. We already solved this
problem efficiently using string hashing, but the Z-algorithm provides another
way to solve the problem.

A usual idea in string processing is to construct a string that consists of mul-
tiple strings separated by special characters. In this problem, we can construct a
string p#s, where p and s are separated by a special character # that does not
occur in the strings. The Z-array of p#s tells us the positions where p occurs in s,
because such positions contain the length of p.

For example, if s =HATTIVATTI and p =ATT, the Z-array is as follows:

A T T # H A T T I V A T T I
– 0 0 0 0 3 0 0 0 0 3 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

The positions 5 and 10 contain the value 3, which means that the pattern ATT

occurs in the corresponding positions of HATTIVATTI.
The time complexity of the resulting algorithm is linear, because it suffices to

construct the Z-array and go through its values.

Implementation

Here is a short implementation of the Z-algorithm that returns a vector that
corresponds to the Z-array.

vector<int> z(string s) {

int n = s.size();

vector<int> z(n);

int x = 0, y = 0;

for (int i = 1; i < n; i++) {

z[i] = max(0,min(z[i-x],y-i+1));

while (i+z[i] < n && s[z[i]] == s[i+z[i]]) {

x = i; y = i+z[i]; z[i]++;

}

}

return z;

}

250

Chapter 27

Square root algorithms

A square root algorithm is an algorithm that has a square root in its time
complexity. A square root can be seen as a ”poor man’s logarithm”: the complexity
O(

p
n) is better than O(n) but worse than O(logn). In any case, many square

root algorithms are fast and usable in practice.
As an example, consider the problem of creating a data structure that sup-

ports two operations on an array: modifying an element at a given position and
calculating the sum of elements in the given range. We have previously solved the
problem using binary indexed and segment trees, that support both operations in
O(logn) time. However, now we will solve the problem in another way using a
square root structure that allows us to modify elements in O(1) time and calculate
sums in O(

p
n) time.

The idea is to divide the array into blocks of size
p

n so that each block contains
the sum of elements inside the block. For example, an array of 16 elements will
be divided into blocks of 4 elements as follows:

5 8 6 3 2 7 2 6 7 1 7 5 6 2 3 2

21 17 20 13

In this structure, it is easy to modify array elements, because it is only needed
to update the sum of a single block after each modification, which can be done in
O(1) time. For example, the following picture shows how the value of an element
and the sum of the corresponding block change:

5 8 6 3 2 5 2 6 7 1 7 5 6 2 3 2

21 15 20 13

Then, to calculate the sum of elements in a range, we divide the range into
three parts such that the sum consists of values of single elements and sums of
blocks between them:

5 8 6 3 2 5 2 6 7 1 7 5 6 2 3 2

21 15 20 13

251

Since the number of single elements is O(
p

n) and the number of blocks is
also O(

p
n), the sum query takes O(

p
n) time. The purpose of the block size

p
n is

that it balances two things: the array is divided into
p

n blocks, each of which
contains

p
n elements.

In practice, it is not necessary to use the exact value of
p

n as a parameter,
and instead we may use parameters k and n/k where k is different from

p
n.

The optimal parameter depends on the problem and input. For example, if an
algorithm often goes through the blocks but rarely inspects single elements inside
the blocks, it may be a good idea to divide the array into k <p

n blocks, each of
which contains n/k >p

n elements.

Combining algorithms
In this section we discuss two square root algorithms that are based on combining
two algorithms into one algorithm. In both cases, we could use either of the
algorithms without the other and solve the problem in O(n2) time. However, by
combining the algorithms, the running time is only O(n

p
n).

Case processing

Suppose that we are given a two-dimensional grid that contains n cells. Each
cell is assigned a letter, and our task is to find two cells with the same letter
whose distance is minimum, where the distance between cells (x1, y1) and (x2, y2)
is |x1 − x2|+ |y1 − y2|. For example, consider the following grid:

A

B

C

A

C

D

E

F

B

A

G

B

D

F

E

A

In this case, the minimum distance is 2 between the two ’E’ letters.
We can solve the problem by considering each letter separately. Using this

approach, the new problem is to calculate the minimum distance between two
cells with a fixed letter c. We focus on two algorithms for this:

Algorithm 1: Go through all pairs of cells with letter c, and calculate the
minimum distance between such cells. This will take O(k2) time where k is the
number of cells with letter c.

Algorithm 2: Perform a breadth-first search that simultaneously starts at
each cell with letter c. The minimum distance between two cells with letter c
will be calculated in O(n) time.

One way to solve the problem is to choose either of the algorithms and use
it for all letters. If we use Algorithm 1, the running time is O(n2), because all
cells may contain the same letter, and in this case k = n. Also if we use Algorithm
2, the running time is O(n2), because all cells may have different letters, and in
this case n searches are needed.

252

However, we can combine the two algorithms and use different algorithms for
different letters depending on how many times each letter appears in the grid.
Assume that a letter c appears k times. If k ≤p

n, we use Algorithm 1, and if
k >p

n, we use Algorithm 2. It turns out that by doing this, the total running
time of the algorithm is only O(n

p
n).

First, suppose that we use Algorithm 1 for a letter c. Since c appears at mostp
n times in the grid, we compare each cell with letter c O(

p
n) times with other

cells. Thus, the time used for processing all such cells is O(n
p

n). Then, suppose
that we use Algorithm 2 for a letter c. There are at most

p
n such letters, so

processing those letters also takes O(n
p

n) time.

Batch processing

Our next problem also deals with a two-dimensional grid that contains n cells.
Initially, each cell except one is white. We perform n−1 operations, each of which
first calculates the minimum distance from a given white cell to a black cell, and
then paints the white cell black.

For example, consider the following operation:

*

First, we calculate the minimum distance from the white cell marked with *
to a black cell. The minimum distance is 2, because we can move two steps left to
a black cell. Then, we paint the white cell black:

Consider the following two algorithms:
Algorithm 1: Use breadth-first search to calculate for each white cell the

distance to the nearest black cell. This takes O(n) time, and after the search, we
can find the minimum distance from any white cell to a black cell in O(1) time.

Algorithm 2: Maintain a list of cells that have been painted black, go through
this list at each operation and then add a new cell to the list. An operation takes
O(k) time where k is the length of the list.

We combine the above algorithms by dividing the operations into O(
p

n)
batches, each of which consists of O(

p
n) operations. At the beginning of each

batch, we perform Algorithm 1. Then, we use Algorithm 2 to process the opera-
tions in the batch. We clear the list of Algorithm 2 between the batches. At each

253

operation, the minimum distance to a black cell is either the distance calculated
by Algorithm 1 or the distance calculated by Algorithm 2.

The resulting algorithm works in O(n
p

n) time. First, Algorithm 1 is per-
formed O(

p
n) times, and each search works in O(n) time. Second, when using

Algorithm 2 in a batch, the list contains O(
p

n) cells (because we clear the list
between the batches) and each operation takes O(

p
n) time.

Integer partitions
Some square root algorithms are based on the following observation: if a positive
integer n is represented as a sum of positive integers, such a sum always contains
at most O(

p
n) distinct numbers. The reason for this is that to construct a sum

that contains a maximum number of distinct numbers, we should choose small
numbers. If we choose the numbers 1,2, . . . ,k, the resulting sum is

k(k+1)
2

.

Thus, the maximum amount of distinct numbers is k = O(
p

n). Next we will
discuss two problems that can be solved efficiently using this observation.

Knapsack

Suppose that we are given a list of integer weights whose sum is n. Our task is to
find out all sums that can be formed using a subset of the weights. For example,
if the weights are {1,3,3}, the possible sums are as follows:

• 0 (empty set)
• 1
• 3
• 1+3= 4
• 3+3= 6
• 1+3+3= 7

Using the standard knapsack approach (see Chapter 7.4), the problem can be
solved as follows: we define a function possible(x,k) whose value is 1 if the sum
x can be formed using the first k weights, and 0 otherwise. Since the sum of the
weights is n, there are at most n weights and all values of the function can be
calculated in O(n2) time using dynamic programming.

However, we can make the algorithm more efficient by using the fact that
there are at most O(

p
n) distinct weights. Thus, we can process the weights in

groups that consists of similar weights. We can process each group in O(n) time,
which yields an O(n

p
n) time algorithm.

The idea is to use an array that records the sums of weights that can be formed
using the groups processed so far. The array contains n elements: element k is 1
if the sum k can be formed and 0 otherwise. To process a group of weights, we
scan the array from left to right and record the new sums of weights that can be
formed using this group and the previous groups.

254

String construction

Given a string s of length n and a set of strings D whose total length is m, consider
the problem of counting the number of ways s can be formed as a concatenation
of strings in D. For example, if s= ABAB and D = {A,B,AB}, there are 4 ways:

• A+B+A+B

• AB+A+B

• A+B+AB

• AB+AB

We can solve the problem using dynamic programming: Let count(k) denote
the number of ways to construct the prefix s[0 . . .k] using the strings in D. Now
count(n−1) gives the answer to the problem, and we can solve the problem in
O(n2) time using a trie structure.

However, we can solve the problem more efficiently by using string hashing
and the fact that there are at most O(

p
m) distinct string lengths in D. First, we

construct a set H that contains all hash values of the strings in D. Then, when
calculating a value of count(k), we go through all values of p such that there is a
string of length p in D, calculate the hash value of s[k− p+1 . . .k] and check if it
belongs to H. Since there are at most O(

p
m) distinct string lengths, this results

in an algorithm whose running time is O(n
p

m).

Mo’s algorithm

Mo’s algorithm1 can be used in many problems that require processing range
queries in a static array, i.e., the array values do not change between the queries.
In each query, we are given a range [a,b], and we should calculate a value based
on the array elements between positions a and b. Since the array is static, the
queries can be processed in any order, and Mo’s algorithm processes the queries
in a special order which guarantees that the algorithm works efficiently.

Mo’s algorithm maintains an active range of the array, and the answer to
a query concerning the active range is known at each moment. The algorithm
processes the queries one by one, and always moves the endpoints of the active
range by inserting and removing elements. The time complexity of the algorithm
is O(n

p
nf (n)) where the array contains n elements, there are n queries and each

insertion and removal of an element takes O(f (n)) time.
The trick in Mo’s algorithm is the order in which the queries are processed:

The array is divided into blocks of k = O(
p

n) elements, and a query [a1,b1] is
processed before a query [a2,b2] if either

• ba1/kc < ba2/kc or

• ba1/kc = ba2/kc and b1 < b2.

1According to [12], this algorithm is named after Mo Tao, a Chinese competitive programmer,
but the technique has appeared earlier in the literature [44].

255

Thus, all queries whose left endpoints are in a certain block are processed
one after another sorted according to their right endpoints. Using this order, the
algorithm only performs O(n

p
n) operations, because the left endpoint moves

O(n) times O(
p

n) steps, and the right endpoint moves O(
p

n) times O(n) steps.
Thus, both endpoints move a total of O(n

p
n) steps during the algorithm.

Example

As an example, consider a problem where we are given a set of queries, each of
them corresponding to a range in an array, and our task is to calculate for each
query the number of distinct elements in the range.

In Mo’s algorithm, the queries are always sorted in the same way, but it
depends on the problem how the answer to the query is maintained. In this
problem, we can maintain an array count where count[x] indicates the number
of times an element x occurs in the active range.

When we move from one query to another query, the active range changes.
For example, if the current range is

4 2 5 4 2 4 3 3 4

and the next range is

4 2 5 4 2 4 3 3 4

there will be three steps: the left endpoint moves one step to the right, and the
right endpoint moves two steps to the right.

After each step, the array count needs to be updated. After adding an element
x, we increase the value of count[x] by 1, and if count[x] = 1 after this, we also
increase the answer to the query by 1. Similarly, after removing an element x, we
decrease the value of count[x] by 1, and if count[x]= 0 after this, we also decrease
the answer to the query by 1.

In this problem, the time needed to perform each step is O(1), so the total
time complexity of the algorithm is O(n

p
n).

256

Chapter 28

Segment trees revisited

A segment tree is a versatile data structure that can be used to solve a large num-
ber of algorithm problems. However, there are many topics related to segment
trees that we have not touched yet. Now is time to discuss some more advanced
variants of segment trees.

So far, we have implemented the operations of a segment tree by walking
from bottom to top in the tree. For example, we have calculated range sums as
follows (Chapter 9.3):

int sum(int a, int b) {

a += n; b += n;

int s = 0;

while (a <= b) {

if (a%2 == 1) s += tree[a++];

if (b%2 == 0) s += tree[b--];

a /= 2; b /= 2;

}

return s;

}

However, in more advanced segment trees, it is often necessary to implement
the operations in another way, from top to bottom. Using this approach, the
function becomes as follows:

int sum(int a, int b, int k, int x, int y) {

if (b < x || a > y) return 0;

if (a <= x && y <= b) return tree[k];

int d = (x+y)/2;

return sum(a,b,2*k,x,d) + sum(a,b,2*k+1,d+1,y);

}

Now we can calculate any value of sumq(a,b) (the sum of array values in range
[a,b]) as follows:

int s = sum(a, b, 1, 0, n-1);

257

The parameter k indicates the current position in tree. Initially k equals 1,
because we begin at the root of the tree. The range [x, y] corresponds to k and is
initially [0,n−1]. When calculating the sum, if [x, y] is outside [a,b], the sum is
0, and if [x, y] is completely inside [a,b], the sum can be found in tree. If [x, y] is
partially inside [a,b], the search continues recursively to the left and right half
of [x, y]. The left half is [x,d] and the right half is [d+1, y] where d = b x+y

2 c.
The following picture shows how the search proceeds when calculating the

value of sumq(a,b). The gray nodes indicate nodes where the recursion stops and
the sum can be found in tree.

5 8 6 3 2 7 2 6 7 1 7 5 6 2 3 2

13 9 9 8 8 12 8 5

22 17 20 13

39 33

72

a b

Also in this implementation, operations take O(logn) time, because the total
number of visited nodes is O(logn).

Lazy propagation

Using lazy propagation, we can build a segment tree that supports both range
updates and range queries in O(logn) time. The idea is to perform updates and
queries from top to bottom and perform updates lazily so that they are propagated
down the tree only when it is necessary.

In a lazy segment tree, nodes contain two types of information. Like in an
ordinary segment tree, each node contains the sum or some other value related
to the corresponding subarray. In addition, the node may contain information
related to lazy updates, which has not been propagated to its children.

There are two types of range updates: each array value in the range is
either increased by some value or assigned some value. Both operations can be
implemented using similar ideas, and it is even possible to construct a tree that
supports both operations at the same time.

Lazy segment trees

Let us consider an example where our goal is to construct a segment tree that sup-
ports two operations: increasing each value in [a,b] by a constant and calculating

258

the sum of values in [a,b].
We will construct a tree where each node has two values s/z: s denotes the

sum of values in the range, and z denotes the value of a lazy update, which means
that all values in the range should be increased by z. In the following tree, z = 0
in all nodes, so there are no ongoing lazy updates.

5 8 6 3 2 7 2 6 7 1 7 5 6 2 3 2

13/0 9/0 9/0 8/0 8/0 12/0 8/0 5/0

22/0 17/0 20/0 13/0

39/0 33/0

72/0

When the elements in [a,b] are increased by u, we walk from the root towards
the leaves and modify the nodes of the tree as follows: If the range [x, y] of a node
is completely inside [a,b], we increase the z value of the node by u and stop. If
[x, y] only partially belongs to [a,b], we increase the s value of the node by hu,
where h is the size of the intersection of [a,b] and [x, y], and continue our walk
recursively in the tree.

For example, the following picture shows the tree after increasing the ele-
ments in [a,b] by 2:

5 8 6 3 2 9 2 6 7 1 7 5 6 2 3 2

13/0 9/0 11/0 8/2 8/0 12/0 8/2 5/0

22/0 23/0 20/2 17/0

45/0 45/0

90/0

a b

We also calculate the sum of elements in a range [a,b] by walking in the
tree from top to bottom. If the range [x, y] of a node completely belongs to [a,b],
we add the s value of the node to the sum. Otherwise, we continue the search
recursively downwards in the tree.

259

Both in updates and queries, the value of a lazy update is always propagated
to the children of the node before processing the node. The idea is that updates
will be propagated downwards only when it is necessary, which guarantees that
the operations are always efficient.

The following picture shows how the tree changes when we calculate the
value of suma(a,b). The rectangle shows the nodes whose values change, because
a lazy update is propagated downwards.

5 8 6 3 2 9 2 6 7 1 7 5 6 2 3 2

13/0 9/0 11/0 8/2 8/2 12/2 8/2 5/0

22/0 23/0 28/0 17/0

45/0 45/0

90/0

a b

Note that sometimes it is needed to combine lazy updates. This happens when
a node that already has a lazy update is assigned another lazy update. When
calculating sums, it is easy to combine lazy updates, because the combination of
updates z1 and z2 corresponds to an update z1 + z2.

Polynomial updates

Lazy updates can be generalized so that it is possible to update ranges using
polynomials of the form

p(u)= tkuk + tk−1uk−1 +·· ·+ t0.

In this case, the update for a value at position i in [a,b] is p(i − a). For
example, adding the polynomial p(u) = u+1 to [a,b] means that the value at
position a increases by 1, the value at position a+1 increases by 2, and so on.

To support polynomial updates, each node is assigned k+2 values, where k
equals the degree of the polynomial. The value s is the sum of the elements in
the range, and the values z0, z1, . . . , zk are the coefficients of a polynomial that
corresponds to a lazy update.

Now, the sum of values in a range [x, y] equals

s+
y−x∑
u=0

zkuk + zk−1uk−1 +·· ·+ z0.

260

The value of such a sum can be efficiently calculated using sum formulas.
For example, the term z0 corresponds to the sum (y− x+1)z0, and the term z1u
corresponds to the sum

z1(0+1+·· ·+ y− x)= z1
(y− x)(y− x+1)

2
.

When propagating an update in the tree, the indices of p(u) change, because
in each range [x, y], the values are calculated for u = 0,1, . . . , y− x. However, this
is not a problem, because p′(u)= p(u+h) is a polynomial of equal degree as p(u).
For example, if p(u)= t2u2 + t1u− t0, then

p′(u)= t2(u+h)2 + t1(u+h)− t0 = t2u2 + (2ht2 + t1)u+ t2h2 + t1h− t0.

Dynamic trees
An ordinary segment tree is static, which means that each node has a fixed
position in the array and the tree requires a fixed amount of memory. In a
dynamic segment tree, memory is allocated only for nodes that are actually
accessed during the algorithm, which can save a large amount of memory.

The nodes of a dynamic tree can be represented as structs:

struct node {

int value;

int x, y;

node *left, *right;

node(int v, int x, int y) : value(v), x(x), y(y) {}

};

Here value is the value of the node, [x,y] is the corresponding range, and left

and right point to the left and right subtree.
After this, nodes can be created as follows:

// create new node

node *x = new node(0, 0, 15);

// change value

x->value = 5;

Sparse segment trees

A dynamic segment tree is useful when the underlying array is sparse, i.e., the
range [0,n−1] of allowed indices is large, but most array values are zeros. While
an ordinary segment tree uses O(n) memory, a dynamic segment tree only uses
O(k logn) memory, where k is the number of operations performed.

A sparse segment tree initially has only one node [0,n−1] whose value
is zero, which means that every array value is zero. After updates, new nodes
are dynamically added to the tree. For example, if n = 16 and the elements in
positions 3 and 10 have been modified, the tree contains the following nodes:

261

[0,15]

[0,7]

[0,3]

[2,3]

[3]

[8,15]

[8,11]

[10,11]

[10]

Any path from the root node to a leaf contains O(logn) nodes, so each operation
adds at most O(logn) new nodes to the tree. Thus, after k operations, the tree
contains at most O(k logn) nodes.

Note that if we know all elements to be updated at the beginning of the
algorithm, a dynamic segment tree is not necessary, because we can use an
ordinary segment tree with index compression (Chapter 9.4). However, this is
not possible when the indices are generated during the algorithm.

Persistent segment trees

Using a dynamic implementation, it is also possible to create a persistent
segment tree that stores the modification history of the tree. In such an im-
plementation, we can efficiently access all versions of the tree that have existed
during the algorithm.

When the modification history is available, we can perform queries in any
previous tree like in an ordinary segment tree, because the full structure of each
tree is stored. We can also create new trees based on previous trees and modify
them independently.

Consider the following sequence of updates, where red nodes change and
other nodes remain the same:

step 1 step 2 step 3

After each update, most nodes of the tree remain the same, so an efficient way
to store the modification history is to represent each tree in the history as a

262

combination of new nodes and subtrees of previous trees. In this example, the
modification history can be stored as follows:

step 1 step 2 step 3

The structure of each previous tree can be reconstructed by following the
pointers starting at the corresponding root node. Since each operation adds only
O(logn) new nodes to the tree, it is possible to store the full modification history
of the tree.

Data structures

Instead of single values, nodes in a segment tree can also contain data structures
that maintain information about the corresponding ranges. In such a tree, the
operations take O(f (n) logn) time, where f (n) is the time needed for processing a
single node during an operation.

As an example, consider a segment tree that supports queries of the form
”how many times does an element x appear in the range [a,b]?” For example, the
element 1 appears three times in the following range:

3 1 2 3 1 1 1 2

To support such queries, we build a segment tree where each node is assigned
a data structure that can be asked how many times any element x appears in the
corresponding range. Using this tree, the answer to a query can be calculated by
combining the results from the nodes that belong to the range.

For example, the following segment tree corresponds to the above array:

3
1

1
1

2
1

3
1

1
1

1
1

1
1

2
1

1 3
1 1

2 3
1 1

1
2

1 2
1 1

1 2 3
1 1 2

1 2
3 1

1 2 3
4 2 2

263

We can build the tree so that each node contains a map structure. In this case,
the time needed for processing each node is O(logn), so the total time complexity
of a query is O(log2 n). The tree uses O(n logn) memory, because there are O(logn)
levels and each level contains O(n) elements.

Two-dimensionality
A two-dimensional segment tree supports queries related to rectangular sub-
arrays of a two-dimensional array. Such a tree can be implemented as nested
segment trees: a big tree corresponds to the rows of the array, and each node
contains a small tree that corresponds to a column.

For example, in the array

8 5 3 8

3 9 7 1

8 7 5 2

7 6 1 6

the sum of any subarray can be calculated from the following segment tree:

7 6 1 6

13 7

20

8 7 5 2

15 7

22

3 9 7 1

12 8

20

8 5 3 8

13 11

24

15 13 6 8

28 14

42

11 14 10 9

25 19

44

26 27 16 17

53 33

86

The operations of a two-dimensional segment tree take O(log2 n) time, because
the big tree and each small tree consist of O(logn) levels. The tree requires O(n2)
memory, because each small tree contains O(n) values.

264

Chapter 29

Geometry

In geometric problems, it is often challenging to find a way to approach the
problem so that the solution to the problem can be conveniently implemented
and the number of special cases is small.

As an example, consider a problem where we are given the vertices of a
quadrilateral (a polygon that has four vertices), and our task is to calculate its
area. For example, a possible input for the problem is as follows:

One way to approach the problem is to divide the quadrilateral into two triangles
by a straight line between two opposite vertices:

After this, it suffices to sum the areas of the triangles. The area of a triangle can
be calculated, for example, using Heron’s formula√

s(s−a)(s−b)(s− c),

where a, b and c are the lengths of the triangle’s sides and s = (a+b+ c)/2.
This is a possible way to solve the problem, but there is one pitfall: how to

divide the quadrilateral into triangles? It turns out that sometimes we cannot
just pick two arbitrary opposite vertices. For example, in the following situation,
the division line is outside the quadrilateral:

265

However, another way to draw the line works:

It is clear for a human which of the lines is the correct choice, but the situation is
difficult for a computer.

However, it turns out that we can solve the problem using another method
that is more convenient to a programmer. Namely, there is a general formula

x1 y2 − x2 y1 + x2 y3 − x3 y2 + x3 y4 − x4 y3 + x4 y1 − x1 y4,

that calculates the area of a quadrilateral whose vertices are (x1, y1), (x2, y2),
(x3, y3) and (x4, y4). This formula is easy to implement, there are no special cases,
and we can even generalize the formula to all polygons.

Complex numbers

A complex number is a number of the form x+ yi, where i =p−1 is the imagi-
nary unit. A geometric interpretation of a complex number is that it represents
a two-dimensional point (x, y) or a vector from the origin to a point (x, y).

For example, 4+2i corresponds to the following point and vector:

(4,2)

The C++ complex number class complex is useful when solving geometric
problems. Using the class we can represent points and vectors as complex
numbers, and the class contains tools that are useful in geometry.

In the following code, C is the type of a coordinate and P is the type of a point
or a vector. In addition, the code defines macros X and Y that can be used to refer
to x and y coordinates.

typedef long long C;

typedef complex<C> P;

#define X real()

#define Y imag()

266

For example, the following code defines a point p = (4,2) and prints its x and
y coordinates:

P p = {4,2};

cout << p.X << " " << p.Y << "\n"; // 4 2

The following code defines vectors v = (3,1) and u = (2,2), and after that
calculates the sum s = v+u.

P v = {3,1};

P u = {2,2};

P s = v+u;

cout << s.X << " " << s.Y << "\n"; // 5 3

In practice, an appropriate coordinate type is usually long long (integer) or
long double (real number). It is a good idea to use integer whenever possible,
because calculations with integers are exact. If real numbers are needed, preci-
sion errors should be taken into account when comparing numbers. A safe way
to check if real numbers a and b are equal is to compare them using |a−b| < ε,
where ε is a small number (for example, ε= 10−9).

Functions

In the following examples, the coordinate type is long double.
The function abs(v) calculates the length |v| of a vector v = (x, y) using the

formula
√

x2 + y2. The function can also be used for calculating the distance
between points (x1, y1) and (x2, y2), because that distance equals the length of the
vector (x2 − x1, y2 − y1).

The following code calculates the distance between points (4,2) and (3,−1):

P a = {4,2};

P b = {3,-1};

cout << abs(b-a) << "\n"; // 3.16228

The function arg(v) calculates the angle of a vector v = (x, y) with respect to
the x axis. The function gives the angle in radians, where r radians equals 180r/π
degrees. The angle of a vector that points to the right is 0, and angles decrease
clockwise and increase counterclockwise.

The function polar(s,a) constructs a vector whose length is s and that points
to an angle a. A vector can be rotated by an angle a by multiplying it by a vector
with length 1 and angle a.

The following code calculates the angle of the vector (4,2), rotates it 1/2
radians counterclockwise, and then calculates the angle again:

P v = {4,2};

cout << arg(v) << "\n"; // 0.463648

v *= polar(1.0,0.5);

cout << arg(v) << "\n"; // 0.963648

267

Points and lines

The cross product a×b of vectors a = (x1, y1) and b = (x2, y2) is calculated using
the formula x1 y2 − x2 y1. The cross product tells us whether b turns left (positive
value), does not turn (zero) or turns right (negative value) when it is placed
directly after a.

The following picture illustrates the above cases:

a

b

a×b = 6

a
b

a×b = 0

a

b

a×b =−8

For example, in the first case a = (4,2) and b = (1,2). The following code calculates
the cross product using the class complex:

P a = {4,2};

P b = {1,2};

C p = (conj(a)*b).Y; // 6

The above code works, because the function conj negates the y coordinate of
a vector, and when the vectors (x1,−y1) and (x2, y2) are multiplied together, the y
coordinate of the result is x1 y2 − x2 y1.

Point location

Cross products can be used to test whether a point is located on the left or right
side of a line. Assume that the line goes through points s1 and s2, we are looking
from s1 to s2 and the point is p.

For example, in the following picture, p is on the left side of the line:

s1

s2

p

The cross product (p− s1)× (p− s2) tells us the location of the point p. If the
cross product is positive, p is located on the left side, and if the cross product is
negative, p is located on the right side. Finally, if the cross product is zero, points
s1, s2 and p are on the same line.

268

Line segment intersection

Next we consider the problem of testing whether two line segments ab and cd
intersect. The possible cases are:

Case 1: The line segments are on the same line and they overlap each other.
In this case, there is an infinite number of intersection points. For example, in
the following picture, all points between c and b are intersection points:

a

d

c

b

In this case, we can use cross products to check if all points are on the same
line. After this, we can sort the points and check whether the line segments
overlap each other.

Case 2: The line segments have a common vertex that is the only intersection
point. For example, in the following picture the intersection point is b = c:

a

b = c

d

This case is easy to check, because there are only four possibilities for the
intersection point: a = c, a = d, b = c and b = d.

Case 3: There is exactly one intersection point that is not a vertex of any line
segment. In the following picture, the point p is the intersection point:

c

d

a

b

p

In this case, the line segments intersect exactly when both points c and d are
on different sides of a line through a and b, and points a and b are on different
sides of a line through c and d. We can use cross products to check this.

Point distance from a line

Another feature of cross products is that the area of a triangle can be calculated
using the formula

|(a− c)× (b− c)|
2

,

269

where a, b and c are the vertices of the triangle. Using this fact, we can derive
a formula for calculating the shortest distance between a point and a line. For
example, in the following picture d is the shortest distance between the point p
and the line that is defined by the points s1 and s2:

s1

s2

p

d

The area of the triangle whose vertices are s1, s2 and p can be calculated
in two ways: it is both 1

2 |s2 − s1|d and 1
2 ((s1 − p)× (s2 − p)). Thus, the shortest

distance is
d = (s1 − p)× (s2 − p)

|s2 − s1|
.

Point inside a polygon

Let us now consider the problem of testing whether a point is located inside or
outside a polygon. For example, in the following picture point a is inside the
polygon and point b is outside the polygon.

a

b

A convenient way to solve the problem is to send a ray from the point to an
arbitrary direction and calculate the number of times it touches the boundary
of the polygon. If the number is odd, the point is inside the polygon, and if the
number is even, the point is outside the polygon.

For example, we could send the following rays:

a

b

The rays from a touch 1 and 3 times the boundary of the polygon, so a is
inside the polygon. Correspondingly, the rays from b touch 0 and 2 times the
boundary of the polygon, so b is outside the polygon.

270

Polygon area
A general formula for calculating the area of a polygon, sometimes called the
shoelace formula, is as follows:

1
2
|
n−1∑
i=1

(pi × pi+1)| = 1
2
|
n−1∑
i=1

(xi yi+1 − xi+1 yi)|,

Here the vertices are p1 = (x1, y1), p2 = (x2, y2), . . ., pn = (xn, yn) in such an order
that pi and pi+1 are adjacent vertices on the boundary of the polygon, and the
first and last vertex is the same, i.e., p1 = pn.

For example, the area of the polygon

(4,1)

(7,3)

(5,5)

(2,4)

(4,3)

is
|(2 ·5−5 ·4)+ (5 ·3−7 ·5)+ (7 ·1−4 ·3)+ (4 ·3−4 ·1)+ (4 ·4−2 ·3)|

2
= 17/2.

The idea of the formula is to go through trapezoids whose one side is a side of
the polygon, and another side lies on the horizontal line y= 0. For example:

(4,1)

(7,3)

(5,5)

(2,4)

(4,3)

The area of such a trapezoid is

(xi+1 − xi)
yi + yi+1

2
,

where the vertices of the polygon are pi and pi+1. If xi+1 > xi, the area is positive,
and if xi+1 < xi, the area is negative.

The area of the polygon is the sum of areas of all such trapezoids, which yields
the formula

|
n−1∑
i=1

(xi+1 − xi)
yi + yi+1

2
| = 1

2
|
n−1∑
i=1

(xi yi+1 − xi+1 yi)|.

Note that the absolute value of the sum is taken, because the value of the
sum may be positive or negative, depending on whether we walk clockwise or
counterclockwise along the boundary of the polygon.

271

Pick’s theorem

Pick’s theorem provides another way to calculate the area of a polygon provided
that all vertices of the polygon have integer coordinates. According to Pick’s
theorem, the area of the polygon is

a+b/2−1,

where a is the number of integer points inside the polygon and b is the number
of integer points on the boundary of the polygon.

For example, the area of the polygon

(4,1)

(7,3)

(5,5)

(2,4)

(4,3)

is 6+7/2−1= 17/2.

Distance functions
A distance function defines the distance between two points. The usual dis-
tance function is the Euclidean distance where the distance between points
(x1, y1) and (x2, y2) is √

(x2 − x1)2 + (y2 − y1)2.

An alternative distance function is the Manhattan distance where the distance
between points (x1, y1) and (x2, y2) is

|x1 − x2|+ |y1 − y2|.
For example, consider the following picture:

(2,1)

(5,2)

(2,1)

(5,2)

Euclidean distance Manhattan distance

The Euclidean distance between the points is√
(5−2)2 + (2−1)2 =

p
10

and the Manhattan distance is

|5−2|+ |2−1| = 4.

The following picture shows regions that are within a distance of 1 from the
center point, using the Euclidean and Manhattan distances:

272

Euclidean distance Manhattan distance

Rotating coordinates

Some problems are easier to solve if Manhattan distances are used instead of
Euclidean distances. As an example, consider a problem where we are given n
points in the two-dimensional plane and our task is to calculate the maximum
Manhattan distance between any two points.

For example, consider the following set of points:

A

C

B

D

The maximum Manhattan distance is 5 between points B and C:

A

C

B

D

A useful technique related to Manhattan distances is to rotate all coordinates
45 degrees so that a point (x, y) becomes (x+ y, y− x). For example, after rotating
the above points, the result is:

A

C
B

D

And the maximum distance is as follows:

273

A

C
B

D

Consider two points p1 = (x1, y1) and p2 = (x2, y2) whose rotated coordinates
are p′

1 = (x′1, y′1) and p′
2 = (x′2, y′2). Now there are two ways to express the Manhat-

tan distance between p1 and p2:

|x1 − x2|+ |y1 − y2| =max(|x′1 − x′2|, |y′1 − y′2|)

For example, if p1 = (1,0) and p2 = (3,3), the rotated coordinates are p′
1 =

(1,−1) and p′
2 = (6,0) and the Manhattan distance is

|1−3|+ |0−3| =max(|1−6|, |−1−0|)= 5.

The rotated coordinates provide a simple way to operate with Manhattan
distances, because we can consider x and y coordinates separately. To maximize
the Manhattan distance between two points, we should find two points whose
rotated coordinates maximize the value of

max(|x′1 − x′2|, |y′1 − y′2|).

This is easy, because either the horizontal or vertical difference of the rotated
coordinates has to be maximum.

274

Chapter 30

Sweep line algorithms

Many geometric problems can be solved using sweep line algorithms. The idea
in such algorithms is to represent an instance of the problem as a set of events
that correspond to points in the plane. The events are processed in increasing
order according to their x or y coordinates.

As an example, consider the following problem: There is a company that has
n employees, and we know for each employee their arrival and leaving times on
a certain day. Our task is to calculate the maximum number of employees that
were in the office at the same time.

The problem can be solved by modeling the situation so that each employee
is assigned two events that correspond to their arrival and leaving times. After
sorting the events, we go through them and keep track of the number of people
in the office. For example, the table

person arrival time leaving time
John 10 15

Maria 6 12
Peter 14 16
Lisa 5 13

corresponds to the following events:

John

Maria

Peter

Lisa

We go through the events from left to right and maintain a counter. Always when
a person arrives, we increase the value of the counter by one, and when a person
leaves, we decrease the value of the counter by one. The answer to the problem is
the maximum value of the counter during the algorithm.

In the example, the events are processed as follows:

275

John

Maria

Peter

Lisa

+ −+ − + −+ −
3 12 2 2 01 1

The symbols + and − indicate whether the value of the counter increases or
decreases, and the value of the counter is shown below. The maximum value of
the counter is 3 between John’s arrival and Maria’s leaving.

The running time of the algorithm is O(n logn), because sorting the events
takes O(n logn) time and the rest of the algorithm takes O(n) time.

Intersection points
Given a set of n line segments, each of them being either horizontal or vertical,
consider the problem of counting the total number of intersection points. For
example, when the line segments are

there are three intersection points:

It is easy to solve the problem in O(n2) time, because we can go through all
possible pairs of line segments and check if they intersect. However, we can solve
the problem more efficiently in O(n logn) time using a sweep line algorithm and
a range query data structure.

The idea is to process the endpoints of the line segments from left to right
and focus on three types of events:

(1) horizontal segment begins
(2) horizontal segment ends
(3) vertical segment

276

The following events correspond to the example:

1 2

1 2
1 2

3 3

We go through the events from left to right and use a data structure that
maintains a set of y coordinates where there is an active horizontal segment. At
event 1, we add the y coordinate of the segment to the set, and at event 2, we
remove the y coordinate from the set.

Intersection points are calculated at event 3. When there is a vertical segment
between points y1 and y2, we count the number of active horizontal segments
whose y coordinate is between y1 and y2, and add this number to the total number
of intersection points.

To store y coordinates of horizontal segments, we can use a binary indexed
or segment tree, possibly with index compression. When such structures are
used, processing each event takes O(logn) time, so the total running time of the
algorithm is O(n logn).

Closest pair problem
Given a set of n points, our next problem is to find two points whose Euclidean
distance is minimum. For example, if the points are

we should find the following points:

This is another example of a problem that can be solved in O(n logn) time
using a sweep line algorithm1. We go through the points from left to right and
maintain a value d: the minimum distance between two points seen so far. At

1Besides this approach, there is also an O(n logn) time divide-and-conquer algorithm [56] that
divides the points into two sets and recursively solves the problem for both sets.

277

each point, we find the nearest point to the left. If the distance is less than d, it
is the new minimum distance and we update the value of d.

If the current point is (x, y) and there is a point to the left within a distance of
less than d, the x coordinate of such a point must be between [x−d, x] and the y
coordinate must be between [y−d, y+d]. Thus, it suffices to only consider points
that are located in those ranges, which makes the algorithm efficient.

For example, in the following picture, the region marked with dashed lines
contains the points that can be within a distance of d from the active point:

d

d

The efficiency of the algorithm is based on the fact that the region always
contains only O(1) points. We can go through those points in O(logn) time by
maintaining a set of points whose x coordinate is between [x−d, x], in increasing
order according to their y coordinates.

The time complexity of the algorithm is O(n logn), because we go through n
points and find for each point the nearest point to the left in O(logn) time.

Convex hull problem
A convex hull is the smallest convex polygon that contains all points of a given
set. Convexity means that a line segment between any two vertices of the polygon
is completely inside the polygon.

For example, for the points

the convex hull is as follows:

278

Andrew’s algorithm [3] provides an easy way to construct the convex hull
for a set of points in O(n logn) time. The algorithm first locates the leftmost
and rightmost points, and then constructs the convex hull in two parts: first the
upper hull and then the lower hull. Both parts are similar, so we can focus on
constructing the upper hull.

First, we sort the points primarily according to x coordinates and secondarily
according to y coordinates. After this, we go through the points and add each
point to the hull. Always after adding a point to the hull, we make sure that
the last line segment in the hull does not turn left. As long as it turns left, we
repeatedly remove the second last point from the hull.

The following pictures show how Andrew’s algorithm works:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

279

280

Bibliography

[1] A. V. Aho, J. E. Hopcroft and J. Ullman. Data Structures and Algorithms,
Addison-Wesley, 1983.

[2] R. K. Ahuja and J. B. Orlin. Distance directed augmenting path algorithms
for maximum flow and parametric maximum flow problems. Naval Research
Logistics, 38(3):413–430, 1991.

[3] A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions.
Information Processing Letters, 9(5):216–219, 1979.

[4] B. Aspvall, M. F. Plass and R. E. Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing
Letters, 8(3):121–123, 1979.

[5] R. Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[6] M. Beck, E. Pine, W. Tarrat and K. Y. Jensen. New integer representations
as the sum of three cubes. Mathematics of Computation, 76(259):1683–1690,
2007.

[7] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Latin
American Symposium on Theoretical Informatics, 88–94, 2000.

[8] J. Bentley. Programming Pearls. Addison-Wesley, 1999 (2nd edition).

[9] J. Bentley and D. Wood. An optimal worst case algorithm for reporting inter-
sections of rectangles. IEEE Transactions on Computers, C-29(7):571–577,
1980.

[10] C. L. Bouton. Nim, a game with a complete mathematical theory. Annals of
Mathematics, 3(1/4):35–39, 1901.

[11] Croatian Open Competition in Informatics, http://hsin.hr/coci/

[12] Codeforces: On ”Mo’s algorithm”, http://codeforces.com/blog/entry/

20032

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to
Algorithms, MIT Press, 2009 (3rd edition).

281

http://hsin.hr/coci/
http://codeforces.com/blog/entry/20032
http://codeforces.com/blog/entry/20032

[14] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1(1):269–271, 1959.

[15] K. Diks et al. Looking for a Challenge? The Ultimate Problem Set from
the University of Warsaw Programming Competitions, University of Warsaw,
2012.

[16] M. Dima and R. Ceterchi. Efficient range minimum queries using binary
indexed trees. Olympiad in Informatics, 9(1):39–44, 2015.

[17] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,
17(3):449–467, 1965.

[18] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[19] S. Even, A. Itai and A. Shamir. On the complexity of time table and multi-
commodity flow problems. 16th Annual Symposium on Foundations of Com-
puter Science, 184–193, 1975.

[20] D. Fanding. A faster algorithm for shortest-path – SPFA. Journal of South-
west Jiaotong University, 2, 1994.

[21] P. M. Fenwick. A new data structure for cumulative frequency tables. Soft-
ware: Practice and Experience, 24(3):327–336, 1994.

[22] J. Fischer and V. Heun. Theoretical and practical improvements on the
RMQ-problem, with applications to LCA and LCE. In Annual Symposium on
Combinatorial Pattern Matching, 36–48, 2006.

[23] R. W. Floyd Algorithm 97: shortest path. Communications of the ACM,
5(6):345, 1962.

[24] L. R. Ford. Network flow theory. RAND Corporation, Santa Monica, Califor-
nia, 1956.

[25] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8(3):399–404, 1956.

[26] R. Freivalds. Probabilistic machines can use less running time. In IFIP
congress, 839–842, 1977.

[27] F. Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th International Symposium on Symbolic and Algebraic Computation,
296–303, 2014.

[28] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[29] Google Code Jam Statistics (2017), https://www.go-hero.net/jam/17

282

https://www.go-hero.net/jam/17

[30] A. Grønlund and S. Pettie. Threesomes, degenerates, and love triangles.
In Proceedings of the 55th Annual Symposium on Foundations of Computer
Science, 621–630, 2014.

[31] P. M. Grundy. Mathematics and games. Eureka, 2(5):6–8, 1939.

[32] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science
and Computational Biology, Cambridge University Press, 1997.

[33] S. Halim and F. Halim. Competitive Programming 3: The New Lower Bound
of Programming Contests, 2013.

[34] M. Held and R. M. Karp. A dynamic programming approach to sequencing
problems. Journal of the Society for Industrial and Applied Mathematics,
10(1):196–210, 1962.

[35] C. Hierholzer and C. Wiener. Über die Möglichkeit, einen Linienzug ohne
Wiederholung und ohne Unterbrechung zu umfahren. Mathematische An-
nalen, 6(1), 30–32, 1873.

[36] C. A. R. Hoare. Algorithm 64: Quicksort. Communications of the ACM,
4(7):321, 1961.

[37] C. A. R. Hoare. Algorithm 65: Find. Communications of the ACM, 4(7):321–
322, 1961.

[38] J. E. Hopcroft and J. D. Ullman. A linear list merging algorithm. Technical
report, Cornell University, 1971.

[39] E. Horowitz and S. Sahni. Computing partitions with applications to the
knapsack problem. Journal of the ACM, 21(2):277–292, 1974.

[40] D. A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[41] The International Olympiad in Informatics Syllabus, https://people.ksp.
sk/~misof/ioi-syllabus/

[42] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

[43] P. W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer
arrangements on a quadratic lattice. Physica, 27(12):1209–1225, 1961.

[44] C. Kent, G. M. Landau and M. Ziv-Ukelson. On the complexity of sparse
exon assembly. Journal of Computational Biology, 13(5):1013–1027, 2006.

[45] J. Kleinberg and É. Tardos. Algorithm Design, Pearson, 2005.

[46] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical
Algorithms, Addison–Wesley, 1998 (3rd edition).

283

https://people.ksp.sk/~misof/ioi-syllabus/
https://people.ksp.sk/~misof/ioi-syllabus/

[47] D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and
Searching, Addison–Wesley, 1998 (2nd edition).

[48] J. B. Kruskal. On the shortest spanning subtree of a graph and the travel-
ing salesman problem. Proceedings of the American Mathematical Society,
7(1):48–50, 1956.

[49] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Soviet physics doklady, 10(8):707–710, 1966.

[50] M. G. Main and R. J. Lorentz. An O(n logn) algorithm for finding all repeti-
tions in a string. Journal of Algorithms, 5(3):422–432, 1984.

[51] J. Pachocki and J. Radoszewski. Where to use and how not to use polynomial
string hashing. Olympiads in Informatics, 7(1):90–100, 2013.

[52] I. Parberry. An efficient algorithm for the Knight’s tour problem. Discrete
Applied Mathematics, 73(3):251–260, 1997.

[53] D. Pearson. A polynomial-time algorithm for the change-making problem.
Operations Research Letters, 33(3):231–234, 2005.

[54] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36(6):1389–1401, 1957.

[55] 27-Queens Puzzle: Massively Parallel Enumeration and Solution Counting.
https://github.com/preusser/q27

[56] M. I. Shamos and D. Hoey. Closest-point problems. In Proceedings of the 16th
Annual Symposium on Foundations of Computer Science, 151–162, 1975.

[57] M. Sharir. A strong-connectivity algorithm and its applications in data flow
analysis. Computers & Mathematics with Applications, 7(1):67–72, 1981.

[58] S. S. Skiena. The Algorithm Design Manual, Springer, 2008 (2nd edition).

[59] S. S. Skiena and M. A. Revilla. Programming Challenges: The Programming
Contest Training Manual, Springer, 2003.

[60] SZKOpuł, https://szkopul.edu.pl/

[61] R. Sprague. Über mathematische Kampfspiele. Tohoku Mathematical Jour-
nal, 41:438–444, 1935.

[62] P. Stańczyk. Algorytmika praktyczna w konkursach Informatycznych, MSc
thesis, University of Warsaw, 2006.

[63] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

[64] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal
of the ACM, 22(2):215–225, 1975.

284

https://github.com/preusser/q27

[65] R. E. Tarjan. Applications of path compression on balanced trees. Journal of
the ACM, 26(4):690–715, 1979.

[66] R. E. Tarjan and U. Vishkin. Finding biconnected componemts and comput-
ing tree functions in logarithmic parallel time. In Proceedings of the 25th
Annual Symposium on Foundations of Computer Science, 12–20, 1984.

[67] H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics
– an exact result. Philosophical Magazine, 6(68):1061–1063, 1961.

[68] USA Computing Olympiad, http://www.usaco.org/

[69] H. C. von Warnsdorf. Des Rösselsprunges einfachste und allgemeinste Lösung.
Schmalkalden, 1823.

[70] S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12,
1962.

285

http://www.usaco.org/

286

	Preface
	I Basic techniques
	Introduction
	Programming languages
	Input and output
	Working with numbers
	Shortening code
	Mathematics
	Contests and resources

	Time complexity
	Calculation rules
	Complexity classes
	Estimating efficiency
	Maximum subarray sum

	Sorting
	Sorting theory
	Sorting in C++
	Binary search

	Data structures
	Dynamic arrays
	Set structures
	Map structures
	Iterators and ranges
	Other structures
	Comparison to sorting

	Complete search
	Generating subsets
	Generating permutations
	Backtracking
	Pruning the search
	Meet in the middle

	Greedy algorithms
	Coin problem
	Scheduling
	Tasks and deadlines
	Minimizing sums
	Data compression

	Dynamic programming
	Coin problem
	Longest increasing subsequence
	Paths in a grid
	Knapsack problems
	Edit distance
	Counting tilings

	Amortized analysis
	Two pointers method
	Nearest smaller elements
	Sliding window minimum

	Range queries
	Static array queries
	Binary indexed tree
	Segment tree
	Additional techniques

	Bit manipulation
	Bit representation
	Bit operations
	Representing sets
	Bit optimizations
	Dynamic programming

	II Graph algorithms
	Basics of graphs
	Graph terminology
	Graph representation

	Graph traversal
	Depth-first search
	Breadth-first search
	Applications

	Shortest paths
	Bellman–Ford algorithm
	Dijkstra's algorithm
	Floyd–Warshall algorithm

	Tree algorithms
	Tree traversal
	Diameter
	All longest paths
	Binary trees

	Spanning trees
	Kruskal's algorithm
	Union-find structure
	Prim's algorithm

	Directed graphs
	Topological sorting
	Dynamic programming
	Successor paths
	Cycle detection

	Strong connectivity
	Kosaraju's algorithm
	2SAT problem

	Tree queries
	Finding ancestors
	Subtrees and paths
	Lowest common ancestor
	Offline algorithms

	Paths and circuits
	Eulerian paths
	Hamiltonian paths
	De Bruijn sequences
	Knight's tours

	Flows and cuts
	Ford–Fulkerson algorithm
	Disjoint paths
	Maximum matchings
	Path covers

	III Advanced topics
	Number theory
	Primes and factors
	Modular arithmetic
	Solving equations
	Other results

	Combinatorics
	Binomial coefficients
	Catalan numbers
	Inclusion-exclusion
	Burnside's lemma
	Cayley's formula

	Matrices
	Operations
	Linear recurrences
	Graphs and matrices

	Probability
	Calculation
	Events
	Random variables
	Markov chains
	Randomized algorithms

	Game theory
	Game states
	Nim game
	Sprague–Grundy theorem

	String algorithms
	String terminology
	Trie structure
	String hashing
	Z-algorithm

	Square root algorithms
	Combining algorithms
	Integer partitions
	Mo's algorithm

	Segment trees revisited
	Lazy propagation
	Dynamic trees
	Data structures
	Two-dimensionality

	Geometry
	Complex numbers
	Points and lines
	Polygon area
	Distance functions

	Sweep line algorithms
	Intersection points
	Closest pair problem
	Convex hull problem

	Bibliography

